

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	564
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	83
Number of Gates	4000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/a14v40a-vq100c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Plan

		Speed	Grade ¹	Application ¹				
Device/Package	Std.	-1	-2	-3	С	I	М	В
A1415A Device		1		1			•	
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	1	D	D	✓	1	1	-
100-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	1	1	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	1	1	1	-
100-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	-	-
A14V15A Device							•	
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	-	-	—	✓	-	-	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	-	-	-	1	-	-	-
A1425A Device	•	I		1			1	
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	✓	D	D	✓	1		
100-Pin Plastic Quad Flatpack (PQFP)	1	1	D	D	1	✓	-	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	1	1	-	-
132-Pin Ceramic Quad Flatpack (CQFP)	1	1	-	-	1	-	1	1
133-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	_	D	D
160-Pin Plastic Quad Flatpack (PQFP)	1	✓	D	D	✓	~	-	-
A14V25A Device	•		•			•		
84-Pin Plastic Leaded Chip Carrier (PLCC)	1	-	-	—	✓	-	-	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	-	-	-	1	-	-	-
160-Pin Plastic Quad Flatpack (PQFP)	1	-	-	-	1	-	-	-
A1440A Device		1	L	1	J		1	
84-Pin Plastic Leaded Chip Carrier (PLCC)	✓	1	D	D	1	1	_	-
100-Pin Very Thin Quad Flatpack (VQFP)	1	1	D	D	✓	✓	-	-
160-Pin Plastic Quad Flatpack (PQFP)	 ✓ 	1	D	D	1	1	-	-
175-Pin Ceramic Pin Grid Array (CPGA)	D	D	D	D	D	-	-	-
176-Pin Thin Quad Flatpack (TQFP)	1	1	D	D	1	1	-	_

Notes:

 Applications:
 C = Commercial
 I = Industrial M = Military

Availability: $\checkmark = Available$ P = Planned

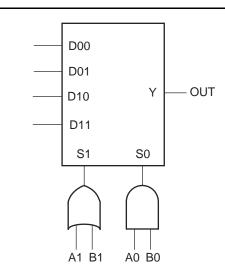
- = Not plannedD = Discontinued

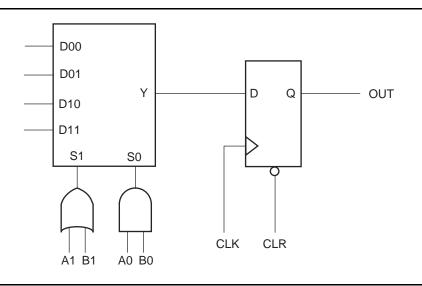
Speed Grade: -1 = Approx. 15% faster than Std. -2 = Approx. 25% faster than Std. -3 = Approx. 35% faster than Std. (-2 and -3 speed grades have been discontinued.)

ACT 3 Family Overview

Device and Speed Grade	t _{CKHS} (ns)	t _{TRACE} (ns)	t _{INSU} (ns)	Total (ns)	MHz
A1425A -3	7.5	1.0	1.8	10.3	97
A1460A -3	9.0	1.0	1.3	11.3	88
A1425A -2	7.5	1.0	2.0	10.5	95
A1460A -2	9.0	1.0	1.5	11.5	87
A1425A -1	9.0	1.0	2.3	12.3	81
A1460A -1	10.0	1.0	1.8	12.8	78
A1425A STD	10.0	1.0	2.7	13.7	73
A1460A STD	11.5	1.0	2.0	14.5	69

Table 1-1 • Chip-to-Chip Performance (worst-case commercial)


Note: The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.


Detailed Specifications

Logic Modules

ACT 3 logic modules are enhanced versions of the 1200XL family logic modules. As in the 1200XL family, there are two types of modules: C-modules and S-modules (Figure 2-2 and Figure 2-3). The C-module is functionally equivalent to the 1200XL C-module and implements high fanin combinatorial macros, such as 5-input AND, 5-input OR, and so on. It is available for use as the CM8 hard macro. The S-module is designed to implement high-speed sequential functions within a single module.

Figure 2-3 • S-Module Diagram

S-modules consist of a full C-module driving a flip-flop, which allows an additional level of logic to be implemented without additional propagation delay. It is available for use as the DFM8A/B and DLM8A/B hard macros. C-modules and S-modules are arranged in pairs called module-pairs. Module-pairs are arranged in alternating patterns and make up the bulk of the array. This arrangement allows the placement software to support two-module macros of four types (CC, CS, SC, and SS). The C-module implements the following function:

EQ 1

where: S0 = A0 * B0 and S1 = A1 + B1

Horizontal Routing

Horizontal channels are located between the rows of modules and are composed of several routing tracks. The horizontal routing tracks within the channel are divided into one or more segments. The minimum horizontal segment length is the width of a module-pair, and the maximum horizontal segment length is the full length of the channel. Any segment that spans more than one-third the row length is considered a long horizontal segment. A typical channel is shown in Figure 2-7. Undedicated horizontal routing tracks are used to route signal nets. Dedicated routing tracks are used for the global clock networks and for power and ground tie-off tracks.

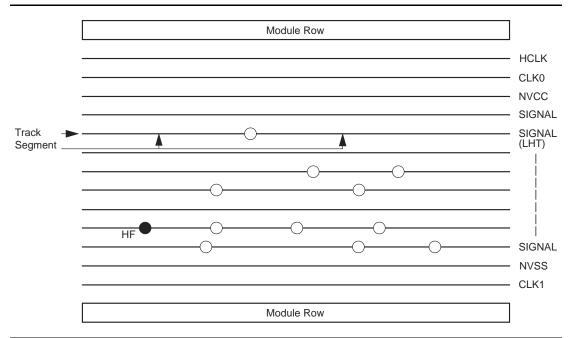


Figure 2-7 • Horizontal Routing Tracks and Segments

Vertical Routing

Other tracks run vertically through the modules. Vertical tracks are of three types: input, output, and long. Vertical tracks are also divided into one or more segments. Each segment in an input track is dedicated to the input of a particular module. Each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing. Each output segment spans four channels (two above and two below), except near the top and bottom of the array where edge effects occur. LVTs contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 2-8.

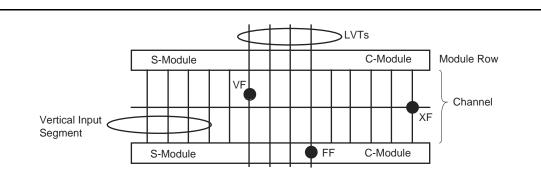


Figure 2-8 • Vertical Routing Tracks and Segments

Antifuse Connections

An antifuse is a "normally open" structure as opposed to the normally closed fuse structure used in PROMs or PALs. The use of antifuses to implement a programmable logic device results in highly testable structures as well as an efficient programming architecture. The structure is highly testable because there are no preexisting connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed as well as isolate individual circuit structures to be tested. This can be done both before and after programming. For example, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified.

Four types of antifuse connections are used in the routing structure of the ACT 3 array. (The physical structure of the antifuse is identical in each case; only the usage differs.)

Table 2-1 shows four types of antifuses.

Туре	Description
XF	Horizontal-to-vertical connection
HF	Horizontal-to-horizontal connection
VF	Vertical-to-vertical connection
FF	"Fast" vertical connection

Examples of all four types of connections are shown in Figure 2-7 on page 2-6 and Figure 2-8 on page 2-6.

Module Interface

Connections to Logic and I/O modules are made through vertical segments that connect to the module inputs and outputs. These vertical segments lie on vertical tracks that span the entire height of the array.

Module Input Connections

The tracks dedicated to module inputs are segmented by pass transistors in each module row. During normal user operation, the pass transistors are inactive, which isolates the inputs of a module from the inputs of the module directly above or below it. During certain test modes, the pass transistors are active to verify the continuity of the metal tracks. Vertical input segments span only the channel above or the channel below. The logic modules are arranged such that half of the inputs are connected to the channel above and half of the inputs to segments in the channel below, as shown in Figure 2-9.

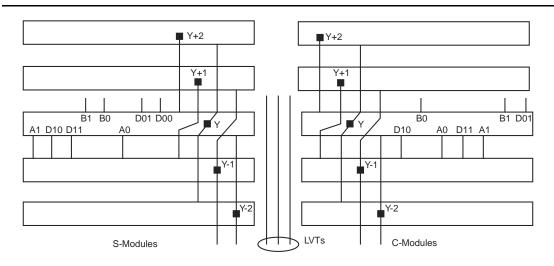


Figure 2-9 • Logic Module Routing Interface

5 V Operating Conditions

Symbol	Parameter	Limits	Units
VCC	DC supply voltage	-0.5 to +7.0	V
VI	Input voltage	-0.5 to VCC + 0.5	V
VO	Output voltage	-0.5 to VCC + 0.5	V
IIO	I/O source sink current ²	±20	mA
T _{STG}	Storage temperature	-65 to +150	°C

Table 2-2 • Absolute Maximum Ratings¹, Free Air Temperature Range

Notes:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Device should not be operated outside the recommended operating conditions.

2. Device inputs are normally high impedance and draw extremely low current. However, when input voltage is greater than VCC + 0.5 V for less than GND –0.5 V, the internal protection diodes will forward bias and can draw excessive current.

Table 2-3 • Recommended Operating Conditions

Parameter	Commercial	Industrial	Military	Units
Temperature range*	0 to +70	-40 to +85	-55 to +125	°C
5 V power supply tolerance	±5	±10	±10	%VCC

Note: *Ambient temperature (T_A) is used for commercial and industrial; case temperature (T_C) is used for military.

			Со	nmercial	In	dustrial	Ν		
Symbol	Parameter	Test Condition	Min.	Max.	Min.	Max.	Min.	Max.	Units
VOH ^{1,2}	High level output	IOH = -4 mA (CMOS)	-	-	3.7	-	3.7	-	V
		IOH = –6 mA (CMOS)	3.84						V
		IOH = –10 mA (TTL) ³	2.40						V
VOL ^{1,2}	Low level output	IOL = +6 mA (CMOS)		0.33		0.4		0.4	V
		IOL = +12 mA (TTL) ³		0.50					
VIH	High level input	TTL inputs	2.0	VCC + 0.3	2.0	VCC + 0.3	2.0	VCC + 0.3	V
VIL	Low level input	TTL inputs	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
IIN	Input leakage	VI = VCC or GND	-10	+10	-10	+10	-10	+10	μA
IOZ	3-state output leakage	VO = VCC or GND	-10	+10	-10	+10	-10	+10	μA
C _{IO}	I/O capacitance ^{3,4}			10		10		10	pF
ICC(S)	Standby VCC supply cu	rrent (typical = 0.7 mA)		2		10		20	mA
ICC(D)	Dynamic VCC supply c	urrent. See the Power Dis	ssipatio	on section.	•			•	.

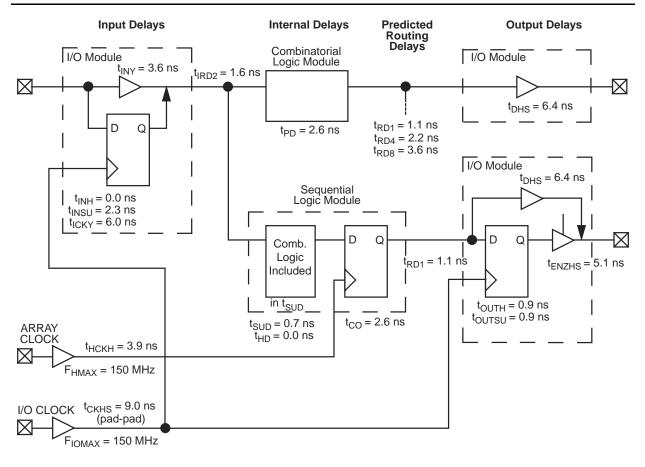
Table 2-4 • Electrical Specifications

Notes:

1. Microsemi devices can drive and receive either CMOS or TTL signal levels. No assignment of I/Os as TTL or CMOS is required.

2. Tested one output at a time, VCC = minimum.

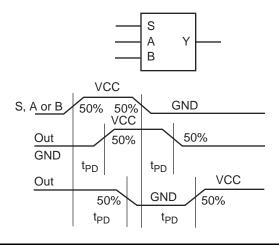
3. Not tested; for information only.


4. VOUT = 0 V, f = 1 MHz

5. Typical standby current = 0.7 mA. All outputs unloaded. All inputs = VCC or GND.

Detailed Specifications


ACT 3 Timing Model



Note: Values shown for A1425A –1 speed grade device.

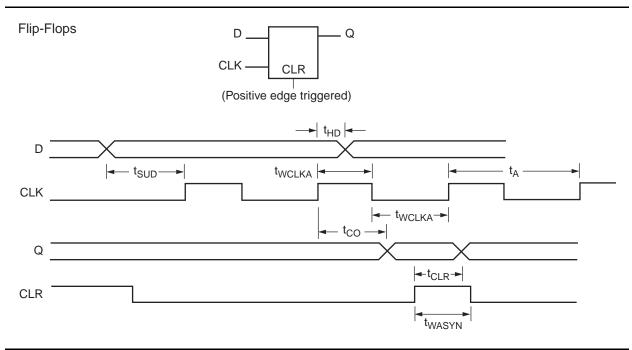

Figure 2-10 • Timing Model

Figure 2-14 • Module Delays

Figure 2-15 • Sequential Module Timing Characteristics

Detailed Specifications

A1425A, A14V25A Timing Characteristics (continued)

Table 2-24 • A1425A, A14V25A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Mod	dule – TTL Output Timing ¹	-3 S	beed ²	-2 Sp	beed ²	–1 S	peed	Std.	Speed	3.3 V	Units	
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.5		7.5		8.5		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		7.5		7.5		9.0		10.0		13.0	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Moo	dule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		6.7		7.5		8.5		10.0		13.0	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		6.7		7.5		9.0		10.0		13.0	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.9		8.9		10.7		11.8		15.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes: *

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1440A, A14V40A Timing Characteristics (continued)

Table 2-27 \bullet $\Lambda 1/10\Lambda$	A14V40A Worst-Case	Commercial Conditions	, VCC = 4.75 V, T _J = 70°C
<i>Table 2-27</i> • A 1440A,	A 14V4UA WUISI-Case	Commercial Conditions	, v = 4.75 v, 1 = 70 c

I/O Moc	lule Input Propagation Delays	-3 Sp	beed ¹	-2 Sp	beed ¹	–1 S	peed	Std.	Speed	3.3 V Speed ¹		Units
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{INY}	Input Data Pad to Y		2.8		3.2		3.6		4.2		5.5	ns
t _{ICKY}	Input Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCKY}	Output Reg IOCLK Pad to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{ICLRY}	Input Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
t _{OCLRY}	Output Asynchronous Clear to Y		4.7		5.3		6.0		7.0		9.2	ns
Predict	ed Input Routing Delays ²											
t _{RD1}	FO = 1 Routing Delay		0.9		1.0		1.1		1.3		1.7	ns
t _{RD2}	FO = 2 Routing Delay		1.2		1.4		1.6		1.8		2.4	ns
t _{RD3}	FO = 3 Routing Delay		1.4		1.6		1.8		2.1		2.8	ns
t _{RD4}	FO = 4 Routing Delay		1.7		1.9		2.2		2.5		3.3	ns
t _{RD8}	FO = 8 Routing Delay		2.8		3.2		3.6		4.2		5.5	ns
I/O Mod	lule Sequential Timing (wrt IOCLK	pad)										
t _{INH}	Input F-F Data Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{INSU}	Input F-F Data Setup	1.8		1.7		2.0		2.3		2.3		ns
t _{IDEH}	Input Data Enable Hold	0.0		0.0		0.0		0.0		0.0		ns
t _{IDESU}	Input Data Enable Setup	5.8		6.5		7.5		8.6		8.6		ns
t _{OUTH}	Output F-F Data hold	0.7		0.8		0.9		1.0		1.0		ns
t _{OUTSU}	Output F-F Data Setup	0.7		0.8		0.9		1.0		1.0		ns
t _{ODEH}	Output Data Enable Hold	0.3		0.4		0.4		0.5		0.5		ns
f _{ODESU}	Output Data Enable Setup	1.3		1.5		1.7		2.0		2.0		ns

Notes:

1. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

 Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

Detailed Specifications

A1440A, A14V40A Timing Characteristics (continued)

Table 2-28 • A1440A, A14V40A Worst-Case Commercial Conditions, VCC = 4.75 V, T_J = 70°C

I/O Moo	dule – TTL Output Timing ¹	-3 S	beed ²	-2 Sp	beed ²	–1 S	peed	Std.	Speed	3.3 V	Units	
Parame	eter/Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
t _{DHS}	Data to Pad, High Slew		5.0		5.6		6.4		7.5		9.8	ns
t _{DLS}	Data to Pad, Low Slew		8.0		9.0		10.2		12.0		15.6	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		4.0		4.5		5.1		6.0		7.8	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		8.5		8.5		9.5		11.0		14.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		11.3		11.3		13.5		15.0		19.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.02		0.02		0.03		0.03		0.04	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.04		0.04		0.04		0.05		0.07	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.05		0.05		0.06		0.07		0.09	ns/pF
I/O Moo	dule – CMOS Output Timing ¹											
t _{DHS}	Data to Pad, High Slew		6.2		7.0		7.9		9.3		12.1	ns
t _{DLS}	Data to Pad, Low Slew		11.7		13.1		14.9		17.5		22.8	ns
t _{ENZHS}	Enable to Pad, Z to H/L, High Slew		5.2		5.9		6.6		7.8		10.1	ns
t _{ENZLS}	Enable to Pad, Z to H/L, Low Slew		8.9		10.0		11.3		13.3		17.3	ns
t _{ENHSZ}	Enable to Pad, H/L to Z, High Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{ENLSZ}	Enable to Pad, H/L to Z, Low Slew		7.4		8.3		9.4		11.0		14.3	ns
t _{CKHS}	IOCLK Pad to Pad H/L, High Slew		9.0		9.0		10.1		11.8		14.3	ns
t _{CKLS}	IOCLK Pad to Pad H/L, Low Slew		13.0		13.0		15.6		17.3		22.5	ns
d _{TLHHS}	Delta Low to High, High Slew		0.04		0.04		0.05		0.06		0.08	ns/pF
d _{TLHLS}	Delta Low to High, Low Slew		0.07		0.08		0.09		0.11		0.14	ns/pF
d _{THLHS}	Delta High to Low, High Slew		0.03		0.03		0.03		0.04		0.05	ns/pF
d _{THLLS}	Delta High to Low, Low Slew		0.04		0.04		0.04		0.05		0.07	ns/pF

Notes:

1. Delays based on 35 pF loading.

2. The –2 and –3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

A1440A, A14V40A Timing Characteristics (continued)

Dedicated (hardwired) I/O Clock Network		-3 Speed ¹		–2 Speed ¹		-1 Speed		Std. Speed		3.3 V Speed ¹		Units
Parameter/Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t _{IOCKH}	Input Low to High (pad to I/O module input)		2.0		2.3		2.6		3.0		3.5	ns
t _{IOPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{IPOWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{IOSAPW}	Minimum Asynchronous Pulse Width	1.9		2.4		3.3		3.8		4.8		ns
t _{IOCKSW}	Maximum Skew		0.4		0.4		0.4		0.4		0.4	ns
t _{IOP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{IOMAX}	Maximum Frequency		250		200		150		125		100	MHz
Dedicate	d (hardwired) Array Clock											
t _{HCKH}	Input Low to High (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HCKL}	Input High to Low (pad to S-module input)		3.0		3.4		3.9		4.5		5.5	ns
t _{HPWH}	Minimum Pulse Width High	1.9		2.4		3.3		3.8		4.8		ns
t _{HPWL}	Minimum Pulse Width Low	1.9		2.4		3.3		3.8		4.8		ns
t _{HCKSW}	Delta High to Low, Low Slew		0.3		0.3		0.3		0.3		0.3	ns
t _{HP}	Minimum Period	4.0		5.0		6.8		8.0		10.0		ns
f _{HMAX}	Maximum Frequency		250		200		150		125		100	MHz
Routed A	rray Clock Networks								-			
^t RCKH	Input Low to High (FO = 64)		3.7		4.1		4.7		5.5		9.0	ns
t _{RCKL}	Input High to Low (FO = 64)		4.0		4.5		5.1		6.0		9.0	ns
t _{RPWH}	Min. Pulse Width High (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RPWL}	Min. Pulse Width Low (FO = 64)	3.3		3.8		4.2		4.9		6.5		ns
t _{RCKSW}	Maximum Skew (FO = 128)		0.7		0.8		0.9		1.0		1.0	ns
t _{RP}	Minimum Period (FO = 64)	6.8		8.0		8.7		10.0		13.4		ns
f _{RMAX}	Maximum Frequency (FO = 64)		150		125		115		100		75	MHz
Clock-to-	Clock Skews											
t _{IOHCKSW}	I/O Clock to H-Clock Skew	0.0	1.7	0.0	1.8	0.0	2.0	0.0	2.2	0.0	3.0	ns
t _{IORCKSW}	I/O Clock to R-Clock Skew (FO = 64) (FO = 144)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	3.0 3.0	ns
t _{HRCKSW}	H-Clock to R-Clock Skew (FO = 64) (FO = 144)	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	0.0 0.0	1.0 3.0	ns

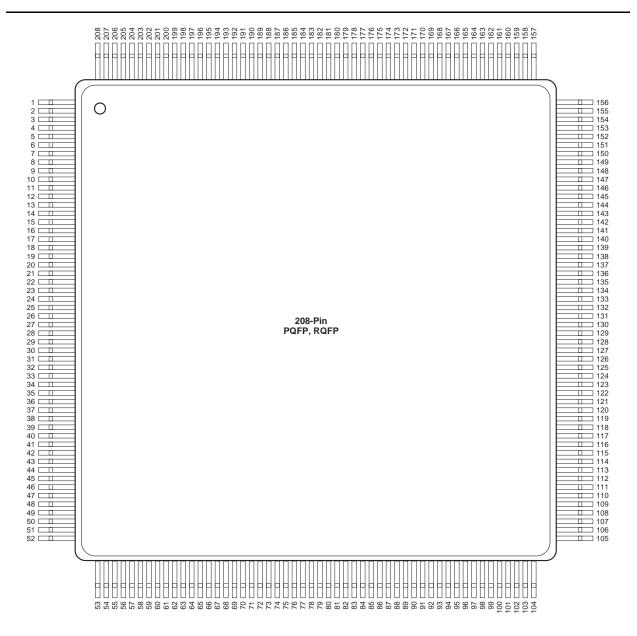
Notes:

1. The -2 and -3 speed grades have been discontinued. Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004 at http://www.microsemi.com/soc/support/notifications/default.aspx#pdn.

2. Delays based on 35 pF loading.

Package Pin Assignments

PL84						
Pin Number	A1415, A14V15 Function	A1425, A14V25 Function	A1440, A14V40 Function			
1	VCC	VCC	VCC			
2	GND	GND	GND			
3	VCC	VCC	VCC			
4	PRA, I/O	PRA, I/O	PRA, I/O			
11	DCLK, I/O	DCLK, I/O	DCLK, I/O			
12	SDI, I/O	SDI, I/O	SDI, I/O			
16	MODE	MODE	MODE			
27	GND	GND	GND			
28	VCC	VCC	VCC			
40	PRB, I/O	PRB, I/O	PRB, I/O			
41	VCC	VCC	VCC			
42	GND	GND	GND			
43	VCC	VCC	VCC			
45	HCLK, I/O	HCLK, I/O	HCLK, I/O			
52	SDO	SDO	SDO			
53	IOPCL, I/O	IOPCL, I/O	IOPCL, I/O			
59	VCC	VCC	VCC			
60	VCC	VCC	VCC			
61	GND	GND	GND			
68	VCC	VCC	VCC			
69	GND	GND	GND			
74	IOCLK, I/O	IOCLK, I/O	IOCLK, I/O			
83	CLKA, I/O	CLKA, I/O	CLKA, I/O			
84	CLKB, I/O	CLKB, I/O	CLKB, I/O			


Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Package Pin Assignments

PQ208, RQ208

Note: This is the top view of the package

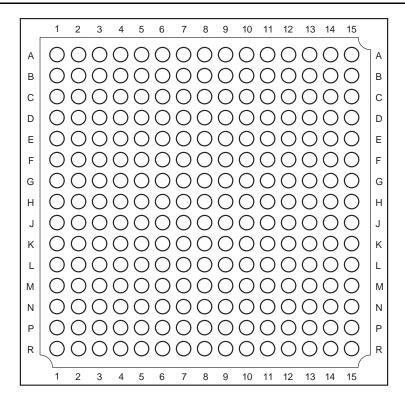
Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Microsemi

Accelerator Series FPGAs – ACT 3 Family

TQ176			TQ176				
Pin Number	A1440, A14V40 Function	A1460, A14V60 Function	Pin Number	A1440, A14V40 Function	A1460, A14V60 Function		
1	GND	GND	89	GND	GND		
2	SDI, I/O	SDI, I/O	98	VCC	VCC		
10	MODE	MODE	99	VCC	VCC		
11	VCC	VCC	108	GND	GND		
20	NC	I/O	109	VCC	VCC		
21	GND	GND	110	GND	GND		
22	VCC	VCC	119	NC	I/O		
23	GND	GND	121	NC	I/O		
32	VCC	VCC	122	VCC	VCC		
33	VCC	VCC	123	GND	GND		
44	GND	GND	124	VCC	VCC		
49	NC	I/O	132	IOCLK, I/O	IOCLK, I/O		
51	NC	I/O	133	GND	GND		
63	NC	I/O	138	NC	I/O		
64	PRB, I/O	PRB, I/O	152	CLKA, I/O	CLKA, I/O		
65	GND	GND	153	CLKB, I/O	CLKB, I/O		
66	VCC	VCC	154	VCC	VCC		
67	VCC	VCC	155	GND	GND		
69	HCLK, I/O	HCLK, I/O	156	VCC	VCC		
82	NC	I/O	157	PRA, I/O	PRA, I/O		
83	NC	I/O	158	NC	I/O		
87	SDO	SDO	170	NC	I/O		
88	IOPCL, I/O	IOPCL, I/O	176	DCLK, I/O	DCLK, I/O		


Notes:

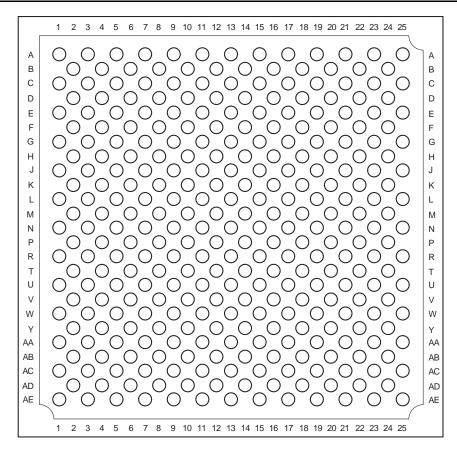
- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

Microsemi.

Package Pin Assignments

BG225

Note: This is the top view.


Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Package Pin Assignments

Microsemi

BG313

Note: This is the top view.

Note

For Package Manufacturing and Environmental information, visit the Resource Center at http://www.microsemi.com/soc/products/solutions/package/docs.aspx

Microsemi

Accelerator Series FPGAs – ACT 3 Family

	PG207				
A1460 Function	Location				
CLKA or I/O	К1				
CLKB or I/O	J3				
DCLK or I/O	E4				
GND	C14, D4, D5, D9, D14, J4, J14, P3, P4, P7, P9, P14, R15				
HCLK or I/O	J15				
IOCLK or I/O	P5				
IOPCL or I/O	N14				
MODE	D7				
NC	A1, A2, A16, A17, B1, B17, C1, C2, S1, S3, S17, T1, T2, T16, T17				
PRA or I/O	H1				
PRB or I/O	К16				
SDI or I/O	C3				
SDO	P15				
VCC	B2, B9, B16, D11, J2, J16, P12, S2, S9, S16, T5				

Notes:

- 1. All unlisted pin numbers are user I/Os.
- 2. NC denotes no connection.
- 3. MODE should be terminated to GND through a 10K resistor to enable Actionprobe usage; otherwise it can be terminated directly to GND.

4 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each version of the datasheet.

Revision	Changes	Page		
Revision 3 (January 2012)	The description for SDO pins had earlier been removed from the datasheet and has now been included again, in the "Pin Descriptions" section (SAR 35820).	2-21		
	SDO pin numbers had earlier been removed from package pin assignment tables in the datasheet, and have now been restored to the pin tables (SAR 35820).			
Revision 2 (September 2011)	The ACT 3 datasheet was formatted newly in the style used for current datasheets. The same information is present (other than noted in the list of changes for this revision) but divided into chapters.	N/A		
	The datasheet was revised to note in multiple places that speed grades -2 and -3 have been discontinued. The following device/package combinations have been discontinued for all speed grades and temperatures (SAR 33872): A1415 PG100 A1425 PG133 A1440 PG175 A1460 BG225 Refer to PDN 0104, PDN 0203, PDN 0604, and PDN 1004.	I and others		
	The "Features" section was revised to state the clock-to-ouput time and on-chip performance for –1 speed grade as 9.0 ns and 186 MHz. The "General Description" section was revised in accordance (SAR 33872).	Ι		
	The maximum performance values were updated in Table 1 • ACT 3 Family Product Information, and now reflect worst-case commercial for the -1 speed grade (SAR 33872).	Ι		
	The "Product Plan" table was updated as follows to conform to current offerings (SAR 33872): The A1415A device is offered in PL84, PG100, and VQ100 packages for Military application. The A1440A device is offered in TQ176 and VQ100 packages for Industrial application.	III		
	Table 1-1 • Chip-to-Chip Performance (worst-case commercial) was updated to include data for all speed grades instead of only –3 (SAR 33872).	1-2		
	Figure 1-1 • Predictable Performance (worst-case commercial, –1 speed grade) was revised to reflect values for the –1 speed grade (SAR 33872).	1-1		
	Figure 2-10 • Timing Model was updated to show data for the –1 speed grade instead of –3 (SAR 33872).	2-16		
	Table 2-14 • Logic Module and Routing Delay by Fanout (ns); Worst-Case Commercial Conditions was updated to include data for all speed grades instead of only –3 (SAR 33872).	2-20		
	Package names used in the "Package Pin Assignments" section and throughout the document were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	3-1		

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.