
STMicroelectronics - STM32F756ZGT6 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M7

Core Size 32-Bit Single-Core

Speed 216MHz

Connectivity CANbus, Ethernet, HDMI-CEC, I²C, IrDA, LINbus, MMC/SD, SAI, SPDIFRX, SPI, UART/USART, USB OTG

Peripherals Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT

Number of I/O 114

Program Memory Size 1MB (1M x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 320K x 8

Voltage - Supply (Vcc/Vdd) 1.7V ~ 3.6V

Data Converters A/D 24x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 144-LQFP

Supplier Device Package 144-LQFP (20x20)

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f756zgt6

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32f756zgt6-4393119
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Direct memory access controller (DMA) RM0385

234/1671 DocID026670 Rev 6

8.3.15 DMA transfer suspension

At any time, a DMA transfer can be suspended to be restarted later on or to be definitively
disabled before the end of the DMA transfer.

There are two cases:

• The stream disables the transfer with no later-on restart from the point where it was
stopped. There is no particular action to do, except to clear the EN bit in the
DMA_SxCR register to disable the stream. The stream may take time to be disabled
(ongoing transfer is completed first). The transfer complete interrupt flag (TCIF in the
DMA_LISR or DMA_HISR register) is set in order to indicate the end of transfer. The
value of the EN bit in DMA_SxCR is now ‘0’ to confirm the stream interruption. The
DMA_SxNDTR register contains the number of remaining data items at the moment
when the stream was stopped so that the software can determine how many data items
have been transferred before the stream was interrupted.

• The stream suspends the transfer before the number of remaining data items to be
transferred in the DMA_SxNDTR register reaches 0. The aim is to restart the transfer
later by re-enabling the stream. In order to restart from the point where the transfer was
stopped, the software has to read the DMA_SxNDTR register after disabling the stream
by writing the EN bit in DMA_SxCR register (and then checking that it is at ‘0’) to know
the number of data items already collected. Then:

– The peripheral and/or memory addresses have to be updated in order to adjust
the address pointers

– The SxNDTR register has to be updated with the remaining number of data items
to be transferred (the value read when the stream was disabled)

– The stream may then be re-enabled to restart the transfer from the point it was
stopped

Note: Note that a Transfer complete interrupt flag (TCIF in DMA_LISR or DMA_HISR) is set to
indicate the end of transfer due to the stream interruption.

8.3.16 Flow controller

The entity that controls the number of data to be transferred is known as the flow controller.
This flow controller is configured independently for each stream using the PFCTRL bit in the
DMA_SxCR register.

The flow controller can be:

• The DMA controller: in this case, the number of data items to be transferred is
programmed by software into the DMA_SxNDTR register before the DMA stream is
enabled.

• The peripheral source or destination: this is the case when the number of data items to
be transferred is unknown. The peripheral indicates by hardware to the DMA controller
when the last data are being transferred. This feature is only supported for peripherals
which are able to signal the end of the transfer, that is:

– SDMMC1

When the peripheral flow controller is used for a given stream, the value written into the
DMA_SxNDTR has no effect on the DMA transfer. Actually, whatever the value written, it will

Direct memory access controller (DMA) RM0385

240/1671 DocID026670 Rev 6

8.5.2 DMA high interrupt status register (DMA_HISR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. TCIF7 HTIF7 TEIF7 DMEIF7 Res. FEIF7 TCIF6 HTIF6 TEIF6 DMEIF6 Res. FEIF6

r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. TCIF5 HTIF5 TEIF5 DMEIF5 Res. FEIF5 TCIF4 HTIF4 TEIF4 DMEIF4 Res. FEIF4

r r r r r r r r r r

Bits 31:28, 15:12 Reserved, must be kept at reset value.

Bits 27, 21, 11, 5 TCIFx: Stream x transfer complete interrupt flag (x=7..4)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_HIFCR register.
0: No transfer complete event on stream x
1: A transfer complete event occurred on stream x

Bits 26, 20, 10, 4 HTIFx: Stream x half transfer interrupt flag (x=7..4)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_HIFCR register.
0: No half transfer event on stream x
1: A half transfer event occurred on stream x

Bits 25, 19, 9, 3 TEIFx: Stream x transfer error interrupt flag (x=7..4)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_HIFCR register.
0: No transfer error on stream x
1: A transfer error occurred on stream x

Bits 24, 18, 8, 2 DMEIFx: Stream x direct mode error interrupt flag (x=7..4)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_HIFCR register.
0: No Direct mode error on stream x
1: A Direct mode error occurred on stream x

Bits 23, 17, 7, 1 Reserved, must be kept at reset value.

Bits 22, 16, 6, 0 FEIFx: Stream x FIFO error interrupt flag (x=7..4)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_HIFCR register.
0: No FIFO error event on stream x
1: A FIFO error event occurred on stream x

Flexible memory controller (FMC) RM0385

336/1671 DocID026670 Rev 6

Figure 49. Wait configuration waveforms

DocID026670 Rev 6 363/1671

RM0385 Flexible memory controller (FMC)

380

Figure 55. Burst read SDRAM access

The FMC SDRAM controller features a Cacheable read FIFO (6 lines x 32 bits). It is used to
store data read in advance during the CAS latency period and the RPIPE delay following the
below formula. The RBURST bit must be set in the FMC_SDCR1 register to anticipate the
next read access.

Number for anticipated data = CAS latency + 1 + (RPIPE delay)/2

Examples:

• CAS latency = 3, RPIPE delay = 0: Four data (not committed) are stored in the FIFO.

• CAS latency = 3, RPIPE delay = 0: Five data (not committed) are stored in the FIFO.

The read FIFO features a 14-bit address tag to each line to identify its content: 11 bits for the
column address, 2 bits to select the internal bank and the active row, and 1 bit to select the
SDRAM device

When the end of the row is reached in advance during an AHB burst read, the data read in
advance (not committed) are not stored in the read FIFO. For single read access, data are
correctly stored in the FIFO.

Each time a read request occurs, the SDRAM controller checks:

• If the address matches one of the address tags, data are directly read from the FIFO
and the corresponding address tag/ line content is cleared and the remaining data in
the FIFO are compacted to avoid empty lines.

• Otherwise, a new read command is issued to the memory and the FIFO is updated with
new data. If the FIFO is full, the older data are lost.

DocID026670 Rev 6 501/1671

RM0385 Digital camera interface (DCMI)

504

17.8.8 DCMI embedded synchronization unmask register (DCMI_ESUR)

Address offset: 0x1C

Reset value: 0x0000 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FEU LEU LSU FSU

rw rw

Bits 31:24 FEU: Frame end delimiter unmask

This byte specifies the mask to be applied to the code of the frame end delimiter.
0: The corresponding bit in the FEC byte in DCMI_ESCR is masked while
comparing the frame end delimiter with the received data.
1: The corresponding bit in the FEC byte in DCMI_ESCR is compared while
comparing the frame end delimiter with the received data

Bits 23:16 LEU: Line end delimiter unmask

This byte specifies the mask to be applied to the code of the line end delimiter.
0: The corresponding bit in the LEC byte in DCMI_ESCR is masked while
comparing the line end delimiter with the received data
1: The corresponding bit in the LEC byte in DCMI_ESCR is compared while
comparing the line end delimiter with the received data

Bits 15:8 LSU: Line start delimiter unmask

This byte specifies the mask to be applied to the code of the line start delimiter.
0: The corresponding bit in the LSC byte in DCMI_ESCR is masked while
comparing the line start delimiter with the received data
1: The corresponding bit in the LSC byte in DCMI_ESCR is compared while
comparing the line start delimiter with the received data

Bits 7:0 FSU: Frame start delimiter unmask

This byte specifies the mask to be applied to the code of the frame start
delimiter.
0: The corresponding bit in the FSC byte in DCMI_ESCR is masked while
comparing the frame start delimiter with the received data
1: The corresponding bit in the FSC byte in DCMI_ESCR is compared while
comparing the frame start delimiter with the received data

Cryptographic processor (CRYP) RM0385

564/1671 DocID026670 Rev 6

Figure 128 shows how the 64-bit data block M1...64 is constructed from two consecutive 32-
bit words popped off the IN FIFO by the CRYP processor, according to the DATATYPE
value. The same schematic can easily be extended to form the 128-bit block for the AES
cryptographic algorithm (for the AES, the block length is four 32-bit words, but swapping
only takes place at word level, so it is identical to the one described here for the TDES).

Note: The same swapping is performed between the IN FIFO and the CRYP data block, and
between the CRYP data block and the OUT FIFO.

Table 122. Data types

DATATYPE in
CRYP_CR

Swapping performed
System memory data
(plaintext or cypher)

00b No swapping

Example: TDES block value 0xABCD77206973FE01 is
represented in system memory as:

01b
Half-word (16-bit)

swapping

Example: TDES block value 0xABCD77206973FE01 is
represented in system memory as:

10b Byte (8-bit) swapping

Example: TDES block value 0xABCD77206973FE01 is
represented in system memory as:

11b Bit swapping

TDES block value 0x4E6F772069732074 is represented in system
memory as:

Hash processor (HASH) RM0385

588/1671 DocID026670 Rev 6

21.3 HASH functional description

21.3.1 HASH block diagram

Figure 130 shows the block diagram of the hash processor.

Figure 130. HASH block diagram

The FIPS PUB 180-2 standard and the IETF RFC 1321 publication specify the SHA-1, SHA-
224 and SHA-256 and MD5 secure hash algorithms, respectively, for computing a
condensed representation of a message or data file. When a message of any length below
264 bits is provided on input, the SHA-1, SHA-224 and SHA-256 and MD5 produce
respective a 160-bit, 224 bit, 256 bit and 128-bit output string, respectively, called a
message digest. The message digest can then be processed with a digital signature
algorithm in order to generate or verify the signature for the message. Signing the message
digest rather than the message often improves the efficiency of the process because the
message digest is usually much smaller in size than the message. The verifier of a digital
signature has to use the same hash algorithm as the one used by the creator of the digital
signature.

The SHA-1, SHA-224 and SHA-256 and MD5 are qualified as “secure” because it is
computationally infeasible to find a message that corresponds to a given message digest, or
to find two different messages that produce the same message digest. Any change to a
message in transit will, with very high probability, result in a different message digest, and
the signature will fail to verify. For more detail on the SHA-1 or SHA-224 and SHA-256
algorithm, please refer to the FIPS PUB 180-2 (Federal Information Processing Standards
Publication 180-2), 2002 august 1.

DocID026670 Rev 6 635/1671

RM0385 Advanced-control timers (TIM1/TIM8)

703

22.3.8 PWM input mode

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, the user can measure the period (in TIMx_CCR1 register) and the duty cycle
(in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure
(depending on CK_INT frequency and prescaler value):

• Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P and CC1NP bits to ‘0’ (active on rising edge).

• Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
and CC2NP bits to CC2P/CC2NP=’10’ (active on falling edge).

• Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

• Configure the slave mode controller in reset mode: write the SMS bits to 0100 in the
TIMx_SMCR register.

• Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register.

Figure 165. PWM input mode timing

22.3.9 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCXREF/OCx) to its active level, user just needs to
write 0101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is

DocID026670 Rev 6 637/1671

RM0385 Advanced-control timers (TIM1/TIM8)

703

shadow register is updated only at the next update event UEV). An example is given in
Figure 166.

Figure 166. Output compare mode, toggle on OC1

22.3.11 PWM mode

Pulse Width Modulation mode allows you to generate a signal with a frequency determined
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing ‘0110’ (PWM mode 1) or ‘0111’ (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. You must enable the corresponding preload register by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in
upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, you have to initialize all the registers by setting the UG
bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by a combination of
the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers).
Refer to the TIMx_CCER register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx ≤ TIMx_CNT or TIMx_CNT ≤ TIMx_CCRx (depending on the direction
of the counter).

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.

Advanced-control timers (TIM1/TIM8) RM0385

672/1671 DocID026670 Rev 6

22.4.3 TIM1/TIM8 slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000 0000

Bit 2 CCUS: Capture/compare control update selection

0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit only
1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit or when an rising edge occurs on TRGI

Note: This bit acts only on channels that have a complementary output.

Bit 1 Reserved, must be kept at reset value.

Bit 0 CCPC: Capture/compare preloaded control

0: CCxE, CCxNE and OCxM bits are not preloaded
1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated
only when a commutation event (COM) occurs (COMG bit set or rising edge detected on
TRGI, depending on the CCUS bit).

Note: This bit acts only on channels that have a complementary output.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SMS[3]

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0] Res. SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 SMS[3]: Slave mode selection - bit 3

Refer to SMS description - bits 2:0

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.

Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with
TRGI connected to ETRF (SMS=111 and TS=111).

2: It is possible to simultaneously use external clock mode 2 with the following slave
modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be
connected to ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time,
the external clock input is ETRF.

Advanced-control timers (TIM1/TIM8) RM0385

684/1671 DocID026670 Rev 6

Output compare mode

Input capture mode

Bits 31:25 Reserved, must be kept at reset value.

Bit 24 OC4M[3]: Output Compare 4 mode - bit 3

Bits 23:17 Reserved, must be kept at reset value.

Bit 16 OC3M[3]: Output Compare 3 mode - bit 3

Bit 15 OC4CE: Output compare 4 clear enable

Bits 14:12 OC4M: Output compare 4 mode

Bit 11 OC4PE: Output compare 4 preload enable

Bit 10 OC4FE: Output compare 4 fast enable

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER).

Bit 7 OC3CE: Output compare 3 clear enable

Bits 6:4 OC3M: Output compare 3 mode

Bit 3 OC3PE: Output compare 3 preload enable

Bit 2 OC3FE: Output compare 3 fast enable

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER).

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:12 IC4F: Input capture 4 filter

Bits 11:10 IC4PSC: Input capture 4 prescaler

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER).

DocID026670 Rev 6 807/1671

RM0385 General-purpose timers (TIM9/TIM10/TIM11/TIM12/TIM13/TIM14)

822

24.4.7 TIM9/TIM12 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. CC2NP Res. CC2P CC2E CC1NP Res. CC1P CC1E

rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 CC2NP: Capture/Compare 2 output Polarity

Refer to CC1NP description

Bits 6 Reserved, must be kept at reset value.

Bit 5 CC2P: Capture/Compare 2 output Polarity

Refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable

Refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity

CC1 channel configured as output: CC1NP must be kept cleared
CC1 channel configured as input: CC1NP is used in conjunction with CC1P to define
TI1FP1/TI2FP1 polarity (refer to CC1P description).

Bit 2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
0: OC1 active high.
1: OC1 active low.
CC1 channel configured as input:
CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations.
00: noninverted/rising edge
Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode).
01: inverted/falling edge
Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).
10: reserved, do not use this configuration.
11: noninverted/both edges
Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset, external
clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This configuration
must not be used for encoder mode.

Bit 0 CC1E: Capture/Compare 1 output enable.

CC1 channel configured as output:
0: Off - OC1 is not active.
1: On - OC1 signal is output on the corresponding output pin.
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

Inter-integrated circuit (I2C) interface RM0385

942/1671 DocID026670 Rev 6

• If the master addresses a 10-bit address slave, transmits data to this slave and then
reads data from the same slave, a master transmission flow must be done first. Then a
repeated start is set with the 10 bit slave address configured with HEAD10R=1. In this
case the master sends this sequence: ReStart + Slave address 10-bit header Read.

Figure 301. 10-bit address read access with HEAD10R=1

Master transmitter

In the case of a write transfer, the TXIS flag is set after each byte transmission, after the 9th
SCL pulse when an ACK is received.

A TXIS event generates an interrupt if the TXIE bit is set in the I2C_CR1 register. The flag is
cleared when the I2C_TXDR register is written with the next data byte to be transmitted.

The number of TXIS events during the transfer corresponds to the value programmed in
NBYTES[7:0]. If the total number of data bytes to be sent is greater than 255, reload mode
must be selected by setting the RELOAD bit in the I2C_CR2 register. In this case, when
NBYTES data have been transferred, the TCR flag is set and the SCL line is stretched low
until NBYTES[7:0] is written to a non-zero value.

The TXIS flag is not set when a NACK is received.

• When RELOAD=0 and NBYTES data have been transferred:

– In automatic end mode (AUTOEND=1), a STOP is automatically sent.

– In software end mode (AUTOEND=0), the TC flag is set and the SCL line is
stretched low in order to perform software actions:

A RESTART condition can be requested by setting the START bit in the I2C_CR2
register with the proper slave address configuration, and number of bytes to be
transferred. Setting the START bit clears the TC flag and the START condition is
sent on the bus.

A STOP condition can be requested by setting the STOP bit in the I2C_CR2
register. Setting the STOP bit clears the TC flag and the STOP condition is sent on
the bus.

• If a NACK is received: the TXIS flag is not set, and a STOP condition is automatically
sent after the NACK reception. the NACKF flag is set in the I2C_ISR register, and an
interrupt is generated if the NACKIE bit is set.

Inter-integrated circuit (I2C) interface RM0385

974/1671 DocID026670 Rev 6

Bit 10 RD_WRN: Transfer direction (master mode)

0: Master requests a write transfer.
1: Master requests a read transfer.

Note: Changing this bit when the START bit is set is not allowed.

Bits 9:8 SADD[9:8]: Slave address bit 9:8 (master mode)

In 7-bit addressing mode (ADD10 = 0):

These bits are don’t care

In 10-bit addressing mode (ADD10 = 1):

These bits should be written with bits 9:8 of the slave address to be sent

Note: Changing these bits when the START bit is set is not allowed.

Bits 7:1 SADD[7:1]: Slave address bit 7:1 (master mode)

In 7-bit addressing mode (ADD10 = 0):

These bits should be written with the 7-bit slave address to be sent

In 10-bit addressing mode (ADD10 = 1):

These bits should be written with bits 7:1 of the slave address to be sent.

Note: Changing these bits when the START bit is set is not allowed.

Bit 0 SADD0: Slave address bit 0 (master mode)

In 7-bit addressing mode (ADD10 = 0):

This bit is don’t care

In 10-bit addressing mode (ADD10 = 1):

This bit should be written with bit 0 of the slave address to be sent

Note: Changing these bits when the START bit is set is not allowed.

Universal synchronous asynchronous receiver transmitter (USART) RM0385

1008/1671 DocID026670 Rev 6

The USART exits from mute mode when an address character is received which matches
the programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been
cleared.

An example of mute mode behavior using address mark detection is given in Figure 324.

Figure 324. Mute mode using address mark detection

31.5.8 Modbus communication using USART

The USART offers basic support for the implementation of Modbus/RTU and Modbus/ASCII
protocols. Modbus/RTU is a half duplex, block transfer protocol. The control part of the
protocol (address recognition, block integrity control and command interpretation) must be
implemented in software.

The USART offers basic support for the end of the block detection, without software
overhead or other resources.

Modbus/RTU

In this mode, the end of one block is recognized by a “silence” (idle line) for more than 2
character times. This function is implemented through the programmable timeout function.

The timeout function and interrupt must be activated, through the RTOEN bit in the
USART_CR2 register and the RTOIE in the USART_CR1 register. The value corresponding
to a timeout of 2 character times (for example 22 x bit duration) must be programmed in the
RTO register. when the receive line is idle for this duration, after the last stop bit is received,
an interrupt is generated, informing the software that the current block reception is
completed.

Modbus/ASCII

In this mode, the end of a block is recognized by a specific (CR/LF) character sequence.
The USART manages this mechanism using the character match function.

By programming the LF ASCII code in the ADD[7:0] field and by activating the character
match interrupt (CMIE=1), the software is informed when a LF has been received and can
check the CR/LF in the DMA buffer.

DocID026670 Rev 6 1397/1671

RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS)

1478

37.15.52 OTG device IN endpoint 0 transfer size register
(OTG_DIEPTSIZ0)

Address offset: 0x910

Reset value: 0x0000 0000

The application must modify this register before enabling endpoint 0. Once endpoint 0 is
enabled using the endpoint enable bit in the device control endpoint 0 control registers
(EPENA in OTG_DIEPCTL0), the core modifies this register. The application can only read
this register once the core has cleared the Endpoint enable bit.

Nonzero endpoints use the registers for endpoints 1–3.

Bits 31:7 Reserved, must be kept at reset value.

Bit 6 B2BSTUP: Back-to-back SETUP packets received

Applies to control OUT endpoint only.
This bit indicates that the core has received more than three back-to-back SETUP packets
for this particular endpoint.

Bit 5 Reserved, must be kept at reset value.

Bit 4 OTEPDIS: OUT token received when endpoint disabled

Applies only to control OUT endpoints.
Indicates that an OUT token was received when the endpoint was not yet enabled. This
interrupt is asserted on the endpoint for which the OUT token was received.

Bit 3 STUP: SETUP phase done

Applies to control OUT endpoint only.
Indicates that the SETUP phase for the control endpoint is complete and no more back-to-
back SETUP packets were received for the current control transfer. On this interrupt, the
application can decode the received SETUP data packet.

Bit 2 Reserved, must be kept at reset value.

Bit 1 EPDISD: Endpoint disabled interrupt

This bit indicates that the endpoint is disabled per the application’s request.

Bit 0 XFRC: Transfer completed interrupt

This field indicates that the programmed transfer is complete on the AHB as well as on the
USB, for this endpoint.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PKTCNT Res. Res. Res.

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. XFRSIZ

rw rw rw rw rw rw rw

DocID026670 Rev 6 1409/1671

RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS)

1478

.

.

.

.

.

.

.

.

.

.

.

.

0x728

OTG_
HCINT11 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
T

E
R

R

F
R

M
O

R

B
B

E
R

R

T
X

E
R

R

R
es

.

A
C

K

N
A

K

S
TA

L
L

R
es

.

C
H

H

X
F

R
C

Reset value 0 0 0 0 0 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

0x7A8

OTG_
HCINT15 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
T

E
R

R

F
R

M
O

R

B
B

E
R

R

T
X

E
R

R

R
es

.

A
C

K

N
A

K

S
TA

LL

R
es

.

C
H

H

X
F

R
C

Reset value 0 0 0 0 0 0 0 0 0

0x800

OTG_
DCFG R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
R

R
A

T
IM

R
es

.

R
es

.

P
F

IV
L

D
A

D

R
es

.

N
Z

LS
O

H
S

K

D
S

P
D

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x800

OTG_
DCFG R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
R

R
A

T
IM

R
es

.

R
es

.

P
F

IV
L

D
A

D

R
es

.

N
Z

L
S

O
H

S
K

D
S

P
D

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x800

OTG_
DCFG R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
E

R
S

C
H

IV
L

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
R

R
A

T
IM

X
C

V
R

D
LY

R
es

.

P
F

IV
L

D
A

D

R
es

.

N
Z

L
S

O
H

S
K

D
S

P
D

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x804

OTG_
DCTL R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
S

B
E

S
L

R
JC

T

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
O

P
R

G
D

N
E

C
G

O
N

A
K

S
G

O
N

A
K

C
G

IN
A

K

S
G

IN
A

K

T
C

T
L

G
O

N
S

T
S

G
IN

S
T

S

S
D

IS

R
W

U
S

IG

Reset value 0 0 0 0 0 0 0 0 0 0 0 1 0

0x808

OTG_
DSTS R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. DEV
LN

STS
FNSOF

R
es

.

R
es

.

R
es

.

R
es

.

E
E

R
R

E
N

U
M

S
P

D

S
U

S
P

S
T

S

Reset value 0

0x810

OTG_
DIEPMSK R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

N
A

K
M

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

IN
E

P
N

E
M

IN
E

P
N

M
M

IT
T

X
F

E
M

S
K

T
O

M

R
es

.

E
P

D
M

X
F

R
C

M

Reset value 0 0 0 0 0 0 0

Table 245. OTG_FS/OTG_HS register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID026670 Rev 6 1465/1671

RM0385 USB on-the-go full-speed/high-speed (OTG_FS/OTG_HS)

1478

• Generic non-periodic IN data transfers

Application requirements:

1. Before setting up an IN transfer, the application must ensure that all data to be
transmitted as part of the IN transfer are part of a single buffer.

2. For IN transfers, the Transfer Size field in the Endpoint Transfer Size register denotes a
payload that constitutes multiple maximum-packet-size packets and a single short
packet. This short packet is transmitted at the end of the transfer.

– To transmit a few maximum-packet-size packets and a short packet at the end of
the transfer:

Transfer size[EPNUM] = x × MPSIZ[EPNUM] + sp

If (sp > 0), then packet count[EPNUM] = x + 1.
Otherwise, packet count[EPNUM] = x

– To transmit a single zero-length data packet:

Transfer size[EPNUM] = 0

Packet count[EPNUM] = 1

– To transmit a few maximum-packet-size packets and a zero-length data packet at
the end of the transfer, the application must split the transfer into two parts. The
first sends maximum-packet-size data packets and the second sends the zero-
length data packet alone.

First transfer: transfer size[EPNUM] = x × MPSIZ[epnum]; packet count = n;

Second transfer: transfer size[EPNUM] = 0; packet count = 1;

3. Once an endpoint is enabled for data transfers, the core updates the Transfer size
register. At the end of the IN transfer, the application must read the Transfer size
register to determine how much data posted in the transmit FIFO have already been
sent on the USB.

4. Data fetched into transmit FIFO = Application-programmed initial transfer size – core-
updated final transfer size

– Data transmitted on USB = (application-programmed initial packet count – Core
updated final packet count) × MPSIZ[EPNUM]

– Data yet to be transmitted on USB = (Application-programmed initial transfer size
– data transmitted on USB)

Internal data flow:

1. The application must set the transfer size and packet count fields in the endpoint-
specific registers and enable the endpoint to transmit the data.

2. The application must also write the required data to the transmit FIFO for the endpoint.

3. Every time a packet is written into the transmit FIFO by the application, the transfer size
for that endpoint is decremented by the packet size. The data is fetched from the
memory by the application, until the transfer size for the endpoint becomes 0. After
writing the data into the FIFO, the “number of packets in FIFO” count is incremented
(this is a 3-bit count, internally maintained by the core for each IN endpoint transmit
FIFO. The maximum number of packets maintained by the core at any time in an IN
endpoint FIFO is eight). For zero-length packets, a separate flag is set for each FIFO,
without any data in the FIFO.

4. Once the data are written to the transmit FIFO, the core reads them out upon receiving
an IN token. For every non-isochronous IN data packet transmitted with an ACK

DocID026670 Rev 6 1563/1671

RM0385 Ethernet (ETH): media access control (MAC) with DMA controller

1601

Bits 9:8 RFFL: Rx FIFO fill level

This gives the status of the Rx FIFO fill-level:
00: RxFIFO empty
01: RxFIFO fill-level below flow-control de-activate threshold
10: RxFIFO fill-level above flow-control activate threshold
11: RxFIFO full

Bit 7 Reserved, must be kept at reset value.

Bits 6:5 RFRCS: Rx FIFO read controller status

It gives the state of the Rx FIFO read controller:
00: IDLE state
01: Reading frame data
10: Reading frame status (or time-stamp)
11: Flushing the frame data and status

Bit 4 RFWRA: Rx FIFO write controller active

When high, it indicates that the Rx FIFO write controller is active and transferring a received
frame to the FIFO.

Bit 3 Reserved, must be kept at reset value.

Bits 2:1 MSFRWCS: MAC small FIFO read / write controllers status

When high, these bits indicate the respective active state of the small FIFO read and write
controllers of the MAC receive frame controller module.

Bit 0 MMRPEA: MAC MII receive protocol engine active

When high, it indicates that the MAC MII receive protocol engine is actively receiving data
and is not in the Idle state.

HDMI-CEC controller (HDMI-CEC) RM0385

1616/1671 DocID026670 Rev 6

39.7.3 CEC Tx data register (CEC_TXDR)

Address offset: 0x8

Reset value: 0x0000 0000

39.7.4 CEC Rx Data Register (CEC_RXDR)

Address offset: 0xC

Reset value: 0x0000 0000

39.7.5 CEC Interrupt and Status Register (CEC_ISR)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. TXD[7:0]

w w w w w w w w

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 TXD[7:0]: Tx Data register.

TXD is a write-only register containing the data byte to be transmitted.

Note: TXD must be written when TXSTART=1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. RXD[7:0]

r r r r r r r r

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 RXD[7:0]: Rx Data register.

RXD is read-only and contains the last data byte which has been received from the CEC line.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res.
TX

ACKE
TX

ERR
TX

UDR
TX

END
TXBR

ARB
LST

RX
ACKE

LBPE SBPE BRE
RX

OVR
RX

END
RXBR

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

