

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	SH-2
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	Ethernet, Host Interface, FIFO, SCI
Peripherals	DMA, POR, WDT
Number of I/O	71
Program Memory Size	•
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.4V ~ 1.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LFBGA
Supplier Device Package	176-LFBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d17618abgw100v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The revision list can be viewed directly by clicking the title page.

The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

32

SH7618 Group

Hardware Manual

Renesas 32-Bit RISC Microcomputer SuperHTM RISC engine Family / SH7618 Series

> SH7618 HD6417618 SH7618A HD6417618A

Renesas Electronics

Rev.6.00 2007.06

Туре	Kinds of Instruction	Op Code	Function	Number of Instructions
Arithmetic	21	MULS	Signed multiplication	33
operation instructions		MULU	Unsigned multiplication	
		NEG	Sign inversion	
		NEGC	Sign inversion with borrow	
		SUB	Binary subtraction	
		SUBC	Binary subtraction with carry	
		SUBV	Binary subtraction with underflow	
Logic	6	AND	Logical AND	14
operation instructions		NOT	Bit inversion	
		OR	Logical OR	
		TAS	Memory test and bit setting	
		TST	T bit setting for logical AND	
		XOR	Exclusive logical OR	
Shift	10	ROTL	1-bit left shift	14
instructions		ROTR	1-bit right shift	
		ROTCL	1-bit left shift with T bit	
		ROTCR	1-bit right shift with T bit	
		SHAL	Arithmetic 1-bit left shift	
		SHAR	Arithmetic 1-bit right shift	
		SHLL	Logical 1-bit left shift	
		SHLLn	Logical n-bit left shift	
		SHLR	Logical 1-bit right shift	
		SHLRn	Logical n-bit right shift	

Instruc	tion	Operation	Code	Execution Cycles	T Bit	
MOV.L	Rm,@(R0,Rn)	$\text{Rm} \rightarrow (\text{R0} + \text{Rn})$	0000nnnnmmm0110	1	—	
MOV.B	@(R0,Rm),Rn	$(R0 + Rm) \rightarrow Sign$ extension $\rightarrow Rn$	0000nnnnmmm1100	1		
MOV.W	@(R0,Rm),Rn	$(R0 + Rm) \rightarrow Sign$ extension $\rightarrow Rn$	0000nnnnmmm1101	1		
MOV.L	@(R0,Rm),Rn	$(R0 + Rm) \rightarrow Rn$	0000nnnnmmm1110	1	_	
MOV.B	R0,@(disp,GBR)	$\text{R0} \rightarrow (\text{disp} + \text{GBR})$	11000000ddddddd	1	_	
MOV.W	R0,@(disp,GBR)	$\text{R0} \rightarrow (\text{disp} \times \text{2 + GBR})$	11000001ddddddd	1	_	
MOV.L	R0,@(disp,GBR)	$\text{R0} \rightarrow (\text{disp} \times \text{4} + \text{GBR})$	11000010ddddddd	1	_	
MOV.B	@(disp,GBR),R0	$\begin{array}{l} (\text{disp} + \text{GBR}) \rightarrow \text{Sign} \\ \text{extension} \rightarrow \text{R0} \end{array}$	11000100ddddddd	1		
MOV.W	@(disp,GBR),R0	$\begin{array}{l} (\text{disp} \times 2 + \text{GBR}) \rightarrow \\ \text{Sign extension} \rightarrow \text{R0} \end{array}$	11000101ddddddd	1		
MOV.L	@(disp,GBR),R0	$(\text{disp}\times 4+\text{GBR})\rightarrow\text{R0}$	11000110ddddddd	1	_	
MOVA	@(disp,PC),R0	$\text{disp} \times \text{4} + \text{PC} \rightarrow \text{R0}$	11000111ddddddd	1		
MOVT	Rn	$T \to Rn$	0000nnnn00101001	1		
SWAP.E	3 Rm,Rn	$\label{eq:Rm} \begin{array}{l} Rm \to Swap \text{ lowest two} \\ bytes \to Rn \end{array}$	0110nnnnmmm1000	1		
SWAP.W	/Rm,Rn	$Rm \rightarrow Swap two$ consecutive words $\rightarrow Rn$	0110nnnnmmm1001	1		
XTRCT	Rm,Rn	Rm: Middle 32 bits of $Rn \rightarrow Rn$	0010nnnnmmm1101	1		

31	access	24 23	J	(14*)(1 12	3*)(12 11 10		3	2 1	0
	1111 0000		**		W	Entry address	0	* C	0
Write 31	access	24 23	1	(14*)(1 12	3*)(12 11 10		3	2 1	0
	1111 0000		**		W	Entry address	А	* () ()
0	1 - 1 - 1		Tag address (28 to 10)			LRU	Х	хU	V
Data arra (a) Addre	ay access (both	ı	vrite accesses)	(14*)(1		!*)(11*)			
Data arra	ay access (both		vrite accesses)	. , .	3*)(12 11 10 W	!*)(11*)	X 3 L	2 1	
Data arra (a) Addra 31	ay access (both ess specification 1111 0001	ı	vrite accesses)	. , .	11 10	!*)(11*)) 9 4	3	2 1	0
Data arra (a) Addro 31 (b) Data	ay access (both ess specification 1111 0001 specification	ı	vrite accesses)	. , .	11 10	!*)(11*)) 9 4	3	2 1	0
Data arra (a) Addra 31	ay access (both ess specification 1111 0001 specification	ı	vrite accesses)	12	11 10	!*)(11*)) 9 4	3	2 1	0

Figure 3.4 Specifying Address and Data for Memory-Mapped Cache Access

7.4.1 Common Control Register (CMNCR)

CMNCR is a 32-bit register that controls the common items for each area. Do not access external memory other than area 0 until setting CMNCR is complete.

Bit	Bit Name	Initial Value	R/W	Description
31 to 13	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
12	MAP	0	R/W	Space Specification
				Selects the address map for the external address space. The address maps to be selected are shown in tables 7.2 and 7.3.
				0: Selects address map 1
				1: Selects address map 2
11 to 5	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
4	—	1	R	Reserved
				This bit is always read as 1. The write value should always be 1.
3	ENDIAN	0/1*	R	Endian Flag
				Fetches the external pin (MD5) state for specifying endian at a power-on reset. The endian setting for all the address spaces are set by this bit. This is a read-only bit.
				 External pin (MD5) for specifying endian was driven low at a power-on reset. This LSI is operated as big endian.
				 External pin (MD5) for specifying endian was driven high at a power-on reset. This LSI is being operated as little endian.
2	_	1	R	Reserved
				This bit is always read as 1. The write value should always be 1.

7.5.2 Normal Space Interface

Basic Timing: For access to a normal space, this LSI uses strobe signal output in consideration of the fact that mainly static RAM will be directly connected. When using SRAM with a byte-selection pin, see section 7.5.6, Byte-Selection SRAM Interface. Figure 7.3 shows the basic timings of normal space access. A no-wait normal access is completed in two cycles. The \overline{BS} signal is asserted for one cycle to indicate the start of a bus cycle.

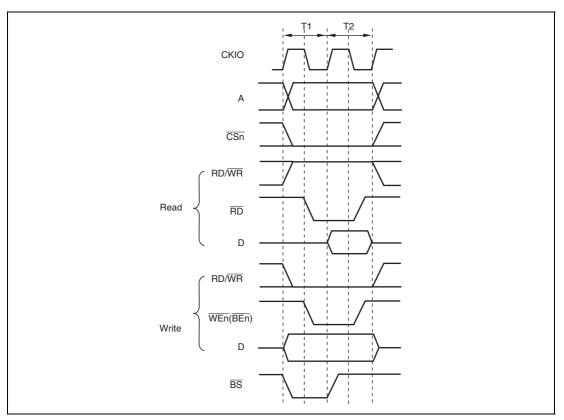


Figure 7.3 Normal Space Basic Access Timing (No-Wait Access)

There is no output signal which informs external devices of the access size when reading. Although the least significant bit of the address indicates the correct address when the access starts, 16-bit data is always read from a 16-bit device. When writing, only the $\overline{\text{WEn}}$ ($\overline{\text{BEn}}$) signal for the byte to be written to is asserted.

		Initial		
Bit	Bit Name	Value	R/W	Description
2	CKS2	0	R/W	Clock Select 2 to 0
1	CKS1	0	R/W	These bits select the clock to be used for the
0	CKS0	0	R/W	WTCNT count from the eight types obtainable by dividing the peripheral clock ($P\phi$). The overflow period that is shown inside the parenthesis in the table is the value when the peripheral clock ($P\phi$) is 25 MHz.
				000: Ρφ (10 μs)
				001: Ρφ/4 (41 μs)
				010: Ρφ/16 (164 μs)
				011: Ρφ/32 (328 μs)
				100: Ρφ/64 (655 μs)
				101: Ρφ/256 (2.62 ms)
				110: Pø/1024 (10.49 ms)
				111: Ρφ/4096 (41.94 ms)
				Note: If bits CKS2 to CKS0 are modified when the WDT is operating, the up-count may not be performed correctly. Ensure that these bits are modified only when the WDT is not operating.

9.2.3 Notes on Register Access

The watchdog timer counter (WTCNT) and watchdog timer control/status register (WTCSR) are more difficult to write to than other registers. The procedure for writing to these registers is given below.

Writing to WTCNT and WTCSR: These registers must be written by a word transfer instruction. They cannot be written by a byte or longword transfer instruction. When writing to WTCNT, set the upper byte to H'5A and transfer the lower byte as the write data, as shown in figure 9.2. When writing to WTCSR, set the upper byte to H'A5 and transfer the lower byte as the write data. This transfer procedure writes the lower byte data to WTCNT or WTCSR.

10.3.1 Standby Control Register (STBCR)

STBCR is an 8-bit readable/writable register that specifies the state of the power-down mode.

		Initial		
Bit	Bit Name	Value	R/W	Description
7	STBY	0	R/W	Standby
				Specifies transition to software standby mode.
				0: Executing SLEEP instruction makes this LSI sleep mode
				 Executing SLEEP instruction makes this LSI software standby mode
6 to 4	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.
3	MDCHG	0	R/W	MD2 to MD0 Pin Control
				Specifies whether or not the values of pins MD2 to MD0 are reflected in software standby mode. The values of pins MD2 to MD0 are reflected at returning from software standby mode by an interrupt when the MDCHG bit has been set to 1.
				0: The values of pins MD2 to MO0 are not reflected in software standby mode.
				1: The values of pins MD2 to MD0 are reflected in software standby mode.
2 to 0	_	All 0	R	Reserved
				These bits are always read as 0. The write value should always be 0.

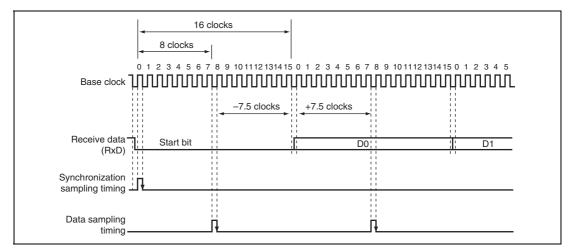
		Initial		
Bit	Bit Name	value	R/W	Description
29	TFP1	0	R/W	Transmit Frame Position 1, 0
28	TFP0	0	R/W	These two bits specify the relationship between the transmit buffer and transmit frame. In the preceding and following descriptors, a logically positive relationship must be maintained between the settings of this bit and the TDLE bit.
				00: Frame transmission for transmit buffer indicated by this descriptor continues (frame is not concluded)
				01: Transmit buffer indicated by this descriptor contains end of frame (frame is concluded)
				10: Transmit buffer indicated by this descriptor is start of frame (frame is not concluded)
				 Contents of transmit buffer indicated by this descriptor are equivalent to one frame (one frame/one buffer)
27	TFE	0	R/W	Transmit Frame Error
				Indicates that one or other bit of the transmit frame status indicated by bits 26 to 0 is set. Whether or not the transmit frame status information is copied into this bit is specified by the transmit/receive status copy enable register.
				0: No error during transmission
				1: An error occurred during transmission
26 to 0	TFS26 to	All 0	R/W	Transmit Frame Status
	TFS0			TFS26 to TFS4: Reserved (The write value should always be 0.)
				TFS3: Carrier Not Detect (corresponds to CND bit in EESR)
				TFS2: Detect Loss of Carrier (corresponds to DLC bit in EESR)
				TFS1: Delayed collision Detect (corresponds to CD bit in EESR)
				TFS0: Transmit Retry Over (corresponds to TRO bit in EESR)

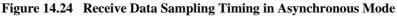
14.3 Register Description

The SCIF has the following registers. These registers specify the data format and bit rate, and control the transmitter and receiver sections.

- Receive FIFO data register_0 (SCFRDR_0)
- Transmit FIFO data register_0 (SCFTDR_0)
- Serial mode register_0 (SCSMR_0)
- Serial control register_0 (SCSCR_0)
- Serial status register_0 (SCFSR_0)
- Bit rate register_0 (SCBRR_0)
- FIFO control register_0 (SCFCR_0)
- FIFO data count register_0 (SCFDR_0)
- Serial port register_0 (SCSPTR_0)
- Line status register_0 (SCLSR_0)
- Receive FIFO data register_1 (SCFRDR_1)
- Transmit FIFO data register_1 (SCFTDR_1)
- Serial mode register_1 (SCSMR_1)
- Serial control register_1 (SCSCR_1)
- Serial status register_1 (SCFSR_1)
- Bit rate register_1 (SCBRR_1)
- FIFO control register_1 (SCFCR_1)
- FIFO data count register_1 (SCFDR_1)
- Serial port register_1 (SCSPTR_1)
- Line status register_1 (SCLSR_1)
- Receive FIFO data register_2 (SCFRDR_2)
- Transmit FIFO data register_2 (SCFTDR_2)
- Serial mode register_2 (SCSMR_2)
- Serial control register_2 (SCSCR_2)
- Serial status register_2 (SCFSR_2)
- Bit rate register_2 (SCBRR_2)
- FIFO control register_2 (SCFCR_2)
- FIFO data count register_2 (SCFDR_2)
- Serial port register_2 (SCSPTR_2)
- Line status register_2 (SCLSR_2)

4. Sending a Break Signal


The I/O condition and level of the TxD pin are determined by the SPBIO and SPBDT bits in the serial port register (SCSPTR). This feature can be used to send a break signal.


Until TE bit is set to 1 (enabling transmission) after initializing, TxD pin does not work. During the period, mark status is performed by SPBDT bit. Therefore, the SPBIO and SPBDT bits should be set to 1 (high level output).

To send a break signal during serial transmission, clear the SPBDT bit to 0 (designating low level), then clear the TE bit to 0 (halting transmission). When the TE bit is cleared to 0, the transmitter is initialized regardless of the current transmission state, and 0 is output from the TxD pin.

5. Receive Data Sampling Timing and Receive Margin (Asynchronous Mode)

The SCIF operates on a base clock with a frequency of 16 times the transfer rate. In reception, the SCIF synchronizes internally with the fall of the start bit, which it samples on the base clock. Receive data is latched at the rising edge of the eighth base clock pulse. The timing is shown in figure 14.24.

The receive margin in asynchronous mode can therefore be expressed as shown in equation 1.

15.3 Parallel Access

15.3.1 Operation

The HIF can be accessed by combining the $\overline{\text{HIFCS}}$, $\overline{\text{HIFRR}}$, $\overline{\text{HIFWR}}$, and $\overline{\text{HIFRD}}$ pins. Table 15.2 shows the correspondence between combinations of these signals and HIF operations.

HIFCS	HIFRS	HIFWR	HIFRD	Operation
1	×	×	×	No operation (NOP)
0	0	1	0	Read from register specified by HIFIDX[7:0]
0	0	0	1	Write to register specified by HIFIDX[7:0]
0	1	1	0	Read from status register (HIFGSR[7:0])
0	1	0	1	Write to index register (HIFIDX[7:0])
0	×	1	1	No operation (NOP)
0	×	0	0	Setting prohibited

Table 15.2HIF Operations

[Legend]

 \times : Don't care

15.3.2 Connection Method

When connecting the HIF to an external device, a method like that shown in figure 15.2 should be used.

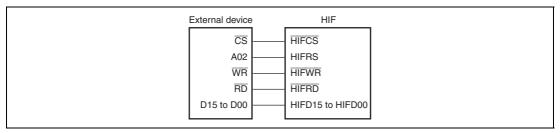


Figure 15.2 HIF Connection Example

When the external DMAC is specified to detect high level of the HIFDREQ signal, set DMD = 0 and DPOL = 1. At the time the DPOL bit is set to 1, HIFDREQ becomes low. Then after writing 1 to the DTRG bit, HIFDREQ remains high until low level is detected for both the $\overline{\text{HIFCS}}$ and HIFRS signals.

In this case, when the HIFDREQ signal is used, make sure that the setup time (HIFCS assertion to HIFRS settling) and the hold time (HIFRS hold to HIFCS negate) are satisfied. If t_{HIFAS} and t_{HIFAH} stipulated in section 21.4.9, HIF Timing, are not satisfied, the HIFDREQ signal may be negated unintentionally.

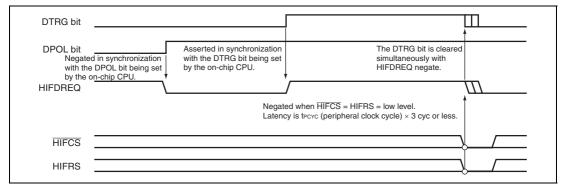


Figure 15.9 HIFDREQ Timing (When DMD = 0 and DPOL = 1)

When the external DMAC is specified to detect the falling edge of the HIFDREQ signal, set DMD = 1 and DPOL = 0. After writing 1 to the DTRG bit, a low pulse of 32 peripheral clock cycles is generated at the HIFDREQ pin.

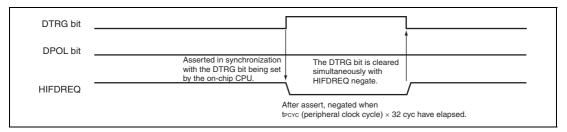


Figure 15.10 HIFDREQ Timing (When DMD = 1 and DPOL = 0)

RENESAS

• PBCRL2

Bit	Bit Name	Initial Value	R/W	Description
15	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
14	PB7MD0	0	R/W	PB7 Mode
				Selects the function of pin PB07/CE2B.
				0: PB07 input/output (port)
				1: CE2B output (BSC)
13	_	0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
12	PB6MD0	0	R/W	PB6 Mode
				Selects the function of pin PB06/ICIOWR.
				0: PB06 input/output (port)
				1: ICIOWR output (BSC)
11		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
10	PB5MD0	0	R/W	PB5 Mode
				Selects the function of pin PB05/ICIORD.
				0: PB05 input/output (port)
				1: ICIORD output (BSC)
9		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
8	PB4MD0	0	R/W	PB4 Mode
				Selects the function of pin PB04/RAS.
				0: PB04 input/output (port)
				1: RAS output (BSC)
7		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.

Bit	Bit Name	Initial Value	R/W	Description
9	PD4MD1	0	R/W	PD4 Mode
8	PD4MD0	0	R/W	Selects the function of pin PD4/IRQ4/SCK1.
				00: PD4 input/output (port)
				01: IRQ4 input (INTC)
				10: SCK1 input/output (SCIF)
				11: Setting prohibited
7	PD3MD1	0	R/W	PD3 Mode
6	PD3MD0	0	R/W	Selects the function of pin PD3/IRQ3/RxD1.
				00: PD3 input/output (port)
				01: IRQ3 input (INTC)
				10: RxD1 input (SCIF)
				11: Setting prohibited
5	PD2MD1	0	R/W	PD2 Mode
4	PD2MD0	0	R/W	Selects the function of pin PD2/IRQ2/TxD1.
				00: PD2 input/output (port)
				01: IRQ2 input (INTC)
				10: TxD1 output (SCIF)
				11: Setting prohibited
3		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
2	PD1MD0	0	R/W	PD1 Mode
				Selects the function of pin PD1/IRQ1.
				0: PD1 input/output (port)
				1: IRQ1 input (INTC)
1		0	R	Reserved
				This bit is always read as 0. The write value should always be 0.
0	PD0MD0	0	R/W	PD0 Mode
				Selects the function of pin PD0/IRQ0.
				0: PD0 input/output (port)
				1: IRQ0 input (INTC)

Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	Modul
PCIORL	PC15IOR	PC14IOR	PC13IOR	PC12IOR	PC11IOR	PC10IOR	PC9IOR	PC8IOR	I/O
	PC7IOR	PC6IOR	PC5IOR	PC4IOR	PC3IOR	PC2IOR	PC1IOR	PC0IOR	-
PCCRH2	_	_	_	_	_	_	_	PC20MD0	-
	_	PC19MD0	_	PC18MD0	_	PC17MD0	_	PC16MD0	-
PCCRL1	_	PC15MD0	_	PC14MD0	_	PC13MD0	_	PC12MD0	-
	_	PC11MD0		PC10MD0		PC9MD0	_	PC8MD0	-
PCCRL2	_	PC7MD0	_	PC6MD0	_	PC5MD0	_	PC4MD0	-
	_	PC3MD0	_	PC2MD0	_	PC1MD0	_	PC0MD0	-
PDDRL	_	_	_		_	_	_	_	-
	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR	-
PDIORL	_	_	_		_	_	_	_	-
	PD7IOR	PD6IOR	PD5IOR	PD4IOR	PD3IOR	PD2IOR	PD1IOR	PD0IOR	-
PDCRL2	PD7MD1	PD7MD0	PD6MD1	PD6MD0	PD5MD1	PD5MD0	PD4MD1	PD4MD0	-
	PD3MD1	PD3MD0	PD2MD1	PD2MD0	_	PD1MD0	_	PD0MD0	-
PEDRH	_	_	_	_	_	_	_	PE24DR	-
	PE23DR	PE22DR	PE21DR	PE20DR	PE19DR	PE18DR	PE17DR	PE16DR	-
PEDRL	PE15DR	PE14DR	PE13DR	PE12DR	PE11DR	PE10DR	PE9DR	PE8DR	-
	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR	-
PEIORH	_	_	_	_	_	_	_	PE24IOR	-
	PE23IOR	PE22IOR	PE21IOR	PE20IOR	PE19IOR	PE18IOR	PE17IOR	PE16IOR	-
PEIORL	PE15IOR	PE14IOR	PE13IOR	PE12IOR	PE11IOR	PE10IOR	PE9IOR	PE8IOR	-
	PE7IOR	PE6IOR	PE5IOR	PE4IOR	PE3IOR	PE2IOR	PE1IOR	PE0IOR	-
PECRH1	_	_	_	_	_	_	_	_	-
	_					_	PE24MD1	PE24MD0	-
PECRH2	PE23MD1	PE23MD0	PE22MD1	PE22MD0	PE21MD1	PE21MD0	PE20MD1	PE20MD0	-
	PE19MD1	PE19MD0	PE18MD1	PE18MD0	PE17MD1	PE17MD0	PE16MD1	PE16MD0	-
PECRL1	PE15MD1	PE15MD0		PE14MD0		PE13MD0	_	PE12MD0	-
	_	PE11MD0		PE10MD0		PE9MD0		PE8MD0	-
PECRL2	_	PE7MD0	_	PE6MD0	_	PE5MD0	_	PE4MD0	-
		PE3MD0	_	PE2MD0	_	PE1MD0	_	PE0MD0	-

Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	Module
CS0BCR	_	_	IWW1	IWW0	_	IWRWD1	IWRWD0	_	BSC
	IWRWS1	IWRWS0	_	IWRRD1	IWRRD0	_	IWRRS1	IWRRS0	_
	TYPE3	TYPE2	TYPE1	TYPE0	_	BSZ1	BSZ0	_	_
	_	_	_	_	_	_	_	_	_
CS3BCR	_	_	IWW1	IWW0	_	IWRWD1	IWRWD0	_	-
	IWRWS1	IWRWS0	_	IWRRD1	IWRRD0	_	IWRRS1	IWRRS0	_
	TYPE3	TYPE2	TYPE1	TYPE0	_	BSZ1	BSZ0	_	-
	_	_	_	_	_	_		_	-
CS4BCR	_		IWW1	IWW0	_	IWRWD1	IWRWD0	_	-
	IWRWS1	IWRWS0		IWRRD1	IWRRD0	_	IWRRS1	IWRRS0	-
	TYPE3	TYPE2	TYPE1	TYPE0	_	BSZ1	BSZ0	_	-
	_								-
CS5BBCR	_		IWW1	IWW0		IWRWD1	IWRWD0		-
	IWRWS1	IWRWS0	_	IWRRD1	IWRRD0	_	IWRRS1	IWRRS0	-
	TYPE3	TYPE2	TYPE1	TYPE0	_	BSZ1	BSZ0	_	-
	_				_	_		_	-
CS6BBCR	_		IWW1	IWW0	_	IWRWD1	IWRWD0	_	-
	IWRWS1	IWRWS0		IWRRD1	IWRRD0	_	IWRRS1	IWRRS0	-
	TYPE3	TYPE2	TYPE1	TYPE0	_	BSZ1	BSZ0	_	-
	_	_	_	_	_	_	_	_	-
CS0WCR	_								-
	_								-
	_	_	_	SW1	SW0	WR3	WR2	WR1	-
	WR0	WM					HW1	HW0	-
CS3WCR	_	_	_	_	_	_		_	_
	_			BAS				_	_
	_					WR3	WR2	WR1	_
	WR0	WM						_	_

21.4.10 EtherC Timing

Table 21.13 EtherC Timing

Conditions: $V_{cc}Q = 3.0 \text{ V}$ to 3.6 V, $V_{cc} = 1.4 \text{ V}$ to 1.6 V, $T_a = -20^{\circ}\text{C}$ to +75°C (regular specifications), $T_a = -40^{\circ}\text{C}$ to +85°C (wide-range specifications)

Item	Symbol	Min.	Max.	Unit	Reference Figures
TX-CLK cycle time	t _{Tcyc}	40		ns	_
TX-EN output delay time	$t_{_{\text{TENd}}}$	1	20	ns	Figure 21.43
MII_TXD[3:0] output delay time	t _{MTDd}	1	20	ns	_
CRS setup time	t _{CRSs}	10		ns	_
CRS hold time	t _{CRSh}	10		ns	—
COL setup time	t _{COLs}	10	_	ns	Figure 21.44
COL hold time	t _{colh}	10		ns	_
RX-CLK cycle time	t _{Rcyc}	40		ns	—
RX-DV setup time	t _{RDVs}	10		ns	Figure 21.45
RX-DV hold time	t _{RDVh}	10	_	ns	_
MII_RXD[3:0] setup time	t _{MRDs}	10	_	ns	_
MII_RXD[3:0] hold time	t _{MRDh}	10	_	ns	_
RX-ER setup time	t _{rens}	10	_	ns	Figure 21.46
RX-ER hold time	t _{RERh}	10	_	ns	_
MDIO setup time	t _{MDIOs}	10	_	ns	Figure 21.47
MDIO hold time	t _{MDIOh}	10	_	ns	_
MDIO output data hold time	t _{MDIOdh}	5	18	ns	Figure 21.48
WOL output delay time	t _{woLd}	1	20	ns	Figure 21.49
EXOUT output delay time	$t_{_{\rm EXOUTd}}$	1	20	ns	Figure 21.50

Item	Page	Revision (See Manual for Details)
14.4.3 Synchronous Operation	376	Amended
Clock		:
		When only receiving, the clock signal outputs while the RE bit of SCSCR is 1 and the number of data in receive FIFO is less than the receive FIFO data trigger number. In this case, $8 \times (16 + 1) = 136$ pulses of synchronous clock are output. To perform reception of n characters of data, select an external clock as the clock source. If an internal clock should be used, set RE = 1 and TE = 1 and receive n characters of data simultaneously with the transmission of n characters of dummy data.
Figure 14.13 Sample Flowchart	378	Amended
for Transmitting Serial Data		Start of transmission Read TDFE flag in SCFSR TDFE = 17 No Whe transmit data to SCFDR Read the TDFE flag is set to 1, then write Read TDFE and TEND flags in SCFSR While they are 1, then clear them to 0 III (2) Schild themeriseion confinuation procedure: Toontinue serial transmission, read 1 from the TDFE flag is be on them that the the top carbon is the top of the
Figure 14.18 Sample Flowchart	382	Amended
for Transmitting/Receiving Serial Data		Initialization [1] SCIF status check and transmit data Start of transmission and reception Read SCIFSR and check that the TDFE flag is set to 1, then write Read TDFE flag in SCFSR TDFE flag is set to 1, then write No TDFE at 100 TDFE flag is set to 100 minute Read SCIFSR in the initial set to 100 minute No TDFE at 100 Veal TDFE at 100 minute Webs transmit data to SCFTDR in the initial minute Read FDFER flag is 0.00 minute No TDFE at 100 minute Veal Read TDFE flag is 0.00 minute No TDFE at 100 minute Veal Read FDFER flag is 0.00 minute No TDFE flag is 0.00 minute Veal Read to ORER flag is 0.00 minute Read to DFE at 100 minute Diagon flag is 0.00 minute No TDFE at 100 minute Veal TDFE at 100 minute No TDFE at 100 minute Veal TDFE at 100 minute No TDFE at 100 minute Veal TDFE at 100 minute No TDFE at 100 minute Veal TDFE at 100 minute Veal TDFE flag 100 minute
19.6 Usage Notes	470	Added
		 Since the HIFMD pin is not initially set to function as a general port pin, it must be pulled up or down externally to fix its state. When using a multiplexed pin with a function not selected with its initial value (for example, using the PB12/CS3 pin, the initial function of which is PB12, as the CS3 pin), the pin must be pulled up or down externally at least after a reset until its pin function is selected by software to fix its state.