

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6520-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nome	Pin Nu	umber	Pin	Buffer	Description		
Pin Name	PIC18F6X20	PIC18F8X20	Туре	Туре	Description		
					PORTE is a bidirectional I/O port.		
RE0/RD/AD8	2	4					
RE0			I/O	ST	Digital I/O.		
RD			I	TTL	Read control for Parallel Slave Port (see \overline{WR} and \overline{CS} pins).		
AD8 ⁽³⁾			I/O	TTL	External memory address/data 8.		
RE1/WR/AD9	1	3					
RE1			I/O	ST	Digital I/O.		
WR			I	TTL	Write control for Parallel Slave Port		
(2)					(see \overline{CS} and \overline{RD} pins).		
AD9 ⁽³⁾			I/O	TTL	External memory address/data 9.		
RE2/CS/AD10	64	78					
RE2			I/O	ST	Digital I/O.		
CS			I	TTL	Chip select control for Parallel Slave		
(2)					Port (see \overline{RD} and \overline{WR}).		
AD10 ⁽³⁾			I/O	TTL	External memory address/data 10.		
RE3/AD11	63	77					
RE3			I/O	ST	Digital I/O.		
AD11 ⁽³⁾			I/O	TTL	External memory address/data 11.		
RE4/AD12	62	76					
RE4			I/O	ST	Digital I/O.		
AD12			I/O	TTL	External memory address/data 12.		
RE5/AD13	61	75					
RE5			I/O	ST	Digital I/O.		
AD13 ⁽³⁾			I/O	TTL	External memory address/data 13.		
RE6/AD14	60	74					
RE6			I/O	ST	Digital I/O.		
AD14 ⁽³⁾			I/O	TTL	External memory address/data 14.		
RE7/CCP2/AD15	59	73					
RE7			I/O	ST	Digital I/O.		
CCP2 ^(1,4)			I/O	ST	Capture2 input/Compare2 output/		
					PWM2 output.		
AD15 ⁽³⁾			I/O	TTL	External memory address/data 15.		
_egend: TTL = TTL o	compatible inp	ut		CMOS =	CMOS compatible input or output		
		ut with CMOS le	evels	Analog =	Analog input		
I = Input					Output		
P = Powe	er			OD =	 Open-Drain (no P diode to VDD) 		

PIC18EXX20 PINOLIT I/O DESCRIPTIONS (CONTINUED) TARI E 1-2.

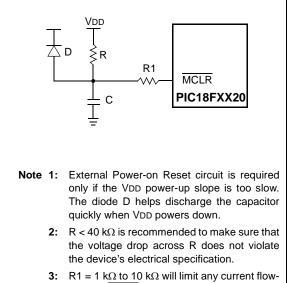
Microcontroller).

2: Default assignment when CCP2MX is set.

3: External memory interface functions are only available on PIC18F8X20 devices.

4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is multiplexed with either RB3 or RC1.

5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.


6: AVDD must be connected to a positive supply and AVss must be connected to a ground reference for proper operation of the part in user or ICSP modes. See parameter D001A for details.

3.1 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected. To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a 1 k Ω to 10 k Ω resistor to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 3-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

FIGURE 3-2: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

ing into MCLR from external capacitor C, in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

3.2 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (parameter #33) only on power-up from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in Reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameter #33 for details.

3.3 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset, or wake-up from Sleep.

3.4 PLL Lock Time-out

With the PLL enabled, the time-out sequence following a Power-on Reset is different from other oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

3.5 Brown-out Reset (BOR)

A configuration bit, BOREN, can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below parameter D005 for greater than parameter #35, the brown-out situation will reset the chip. A Reset may not occur if VDD falls below parameter D005 for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. If the Power-up Timer is enabled, it will be invoked after VDD rises above BVDD; it then will keep the chip in Reset for an additional time delay (parameter #33). If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute the additional time delay.

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked after the POR time delay has expired. Then, OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figures 3-3 through 3-7 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, the time-outs will expire if MCLR is kept low long enough. Bringing MCLR high will begin execution immediately (Figure 3-5). This is useful for testing purposes, or to synchronize more than one PIC18FXX20 device operating in parallel.

Table 3-2 shows the Reset conditions for some Special Function Registers, while Table 3-3 shows the Reset conditions for all of the registers.

REGISTER 5-1:	EECON1 F	REGISTER	(ADDRE	SS FA6h)							
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0			
	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD			
	bit 7							bit 0			
bit 7	EEPGD: F	lash Prograr	n or Data E		mory Select b	it					
	1 = Acces	s Flash prog s data EEPF	ram memo	ry	,						
bit 6				-	figuration Sele	ct bit					
		 Access configuration registers Access Flash program or data EEPROM memory 									
bit 5	Unimplem	ented: Read	d as '0'								
bit 4	FREE: Flas	EE: Flash Row Erase Enable bit									
	(cleare	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write only 									
bit 3	WRERR: F	WRERR: Flash Program/Data EEPROM Error Flag bit									
	(any R 0 = The w	leset during rite operatio	self-timed n complete	d	g in normal ope	,					
	Note:	When a Wi tracing of th			GD and CFGS	bits are not	t cleared. T	his allows			
bit 2	WREN: Fla	ash Program	/Data EEP	ROM Write I	Enable bit						
		•	•	rogram/data program/data							
bit 1	WR: Write	Control bit									
	cycle. comple	(The opera	tion is sel bit can on	f-timed and ly be set (no	cle or a progra the bit is clea t cleared) in so	ared by ha					
bit 0		•		bompiete							
bit 0	1 = Initiate can or	 RD: Read Control bit 1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.) 0 = Does not initiate an EEPROM read 									
	Legend:]			
	R = Reada	ble bit	W = V	Vritable bit	U = Unimp	lemented bi	it. read as '	0'			
					-						

'1' = Bit is set

'0' = Bit is cleared

- n = Value at POR

x = Bit is unknown

NOTES:

LIN 3-11.	IF NZ. FLN	IFILINAL			I I KLOIS			
	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	CMIP	_	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP
	bit 7							bit 0
bit 7	Unimpleme	ented: Rea	d as '0'					
bit 6	CMIP: Com 1 = High pri 0 = Low pri	iority	errupt Priorit	y bit				
bit 5	Unimpleme	ented: Rea	d as '0'					
bit 4	EEIP: Data 1 = High pri 0 = Low pri	iority	Flash Write	Operation In	terrupt Prior	ity bit		
bit 3	BCLIP: Bus 1 = High pri 0 = Low pri	iority	nterrupt Prio	rity bit				
bit 2	LVDIP: Low 1 = High pri 0 = Low pri	iority	etect Interru	pt Priority bi	t			
bit 1	TMR3IP: T 1 = High pr 0 = Low pri	iority	ow Interrupt	Priority bit				
bit 0	CCP2IP: C 1 = High pr 0 = Low pri	iority	pt Priority bi	t				
	Legend:							
	R = Readal	ole bit	W = W	ritable bit	U = Unin	plemented	bit, read as	'0'
	1							

'1' = Bit is set

'0' = Bit is cleared

REGISTER 9-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

- n = Value at POR

x = Bit is unknown

10.2 PORTB, TRISB and LATB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATB) is also memory mapped. Read-modify-write operations on the LATB register, read and write the latched output value for PORTB.

EXAMPLE 10-2: INITIALIZING PORTB

CLRF	PORTB	; Initialize PORTB by
		; clearing output
		; data latches
CLRF	LATB	; Alternate method
		; to clear output
		; data latches
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISB	; Set RB<3:0> as inputs
		; RB<5:4> as outputs
		; RB<7:6> as inputs
		, 1

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (INTCON2<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

On a Power-on Reset, these pins are Note: configured as digital inputs.

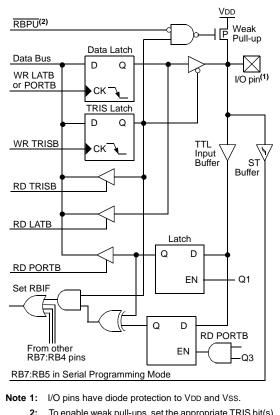
Four of the PORTB pins (RB3:RB0) are the external interrupt pins, INT3 through INT0. In order to use these pins as external interrupts, the corresponding TRISB bit must be set to '1'.

The other four PORTB pins (RB7:RB4) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with Flag bit, RBIF (INTCON<0>).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB (except with the MOVFF instruction). This will end the mismatch condition.
- Clear flag bit RBIF. b)

A mismatch condition will continue to set flag bit, RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.


The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

RB3 can be configured by the configuration bit CCP2MX, as the alternate peripheral pin for the CCP2 module. This is only available when the device is configured in Microprocessor, Microprocessor with Boot Block, or Extended Microcontroller operating modes.

The RB5 pin is used as the LVP programming pin. When the LVP configuration bit is programmed, this pin loses the I/O function and become a programming test function.

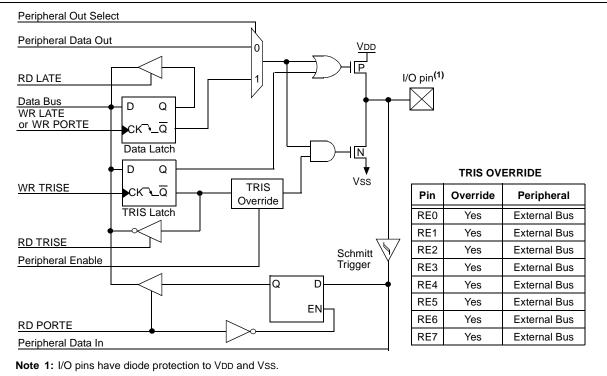
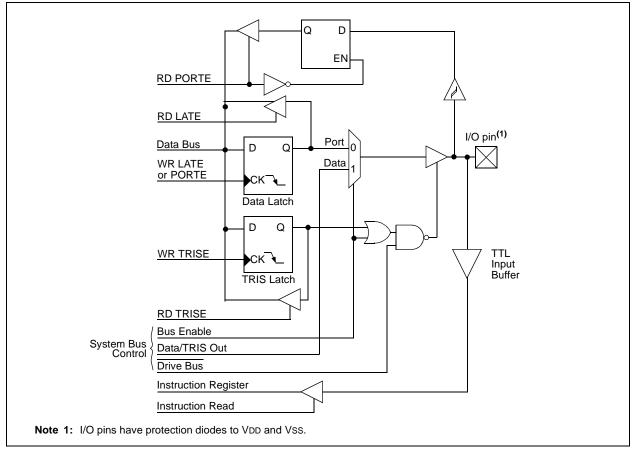

Note: When LVP is enabled, the weak pull-up on RB5 is disabled.

FIGURE 10-5: BLOCK DIAGRAM OF RB7:RB4 PINS



^{2:} To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).

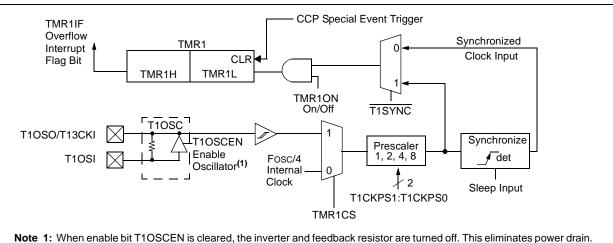
FIGURE 10-11: PORTE BLOCK DIAGRAM IN I/O MODE

FIGURE 10-12: PORTE BLOCK DIAGRAM IN SYSTEM BUS MODE

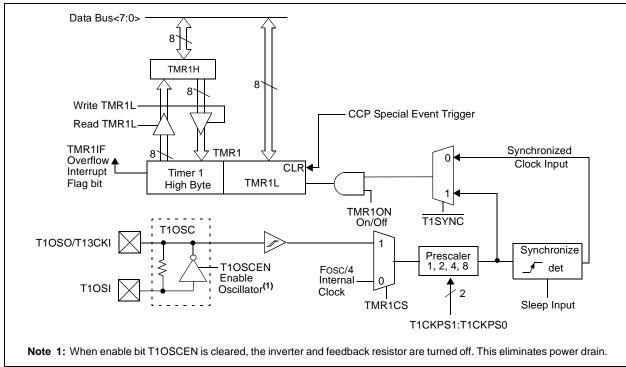
© 2003-2013 Microchip Technology Inc.

12.1 Timer1 Operation

Timer1 can operate in one of these modes:


- As a timer
- As a synchronous counter
- As an asynchronous counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).


When TMR1CS = 0, Timer1 increments every instruction cycle. When TMR1CS = 1, Timer1 increments on every rising edge of the external clock input or the Timer1 oscillator, if enabled.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI and RC0/T1OSO/T13CKI pins become inputs. That is, the TRISC<1:0> value is ignored and the pins are read as '0'.

Timer1 also has an internal "Reset input". This Reset can be generated by the CCP module (see Section 16.0 "Capture/Compare/PWM (CCP) Modules").

FIGURE 12-2: TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE

FIGURE 12-1: TIMER1 BLOCK DIAGRAM

16.3 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against either the TMR1 register pair value or the TMR3 register pair value. When a match occurs, the CCP1 pin:

- is driven High
- is driven Low
- toggles output (high-to-low or low-to-high)
- · remains unchanged

The action on the pin is based on the value of control bits, CCP1M3:CCP1M0. At the same time, interrupt flag bit CCP1IF (CCP2IF) is set.

16.3.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRIS bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to
	the default low level. This is not the
	PORTC I/O data latch.

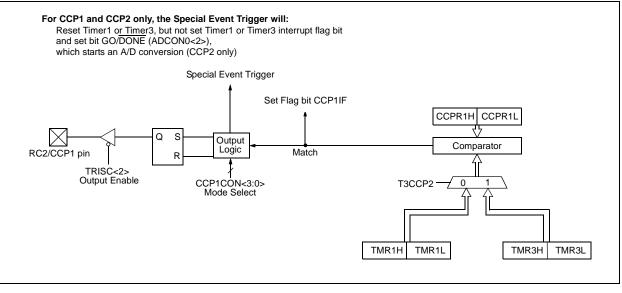
16.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode, or Synchronized Counter mode, if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

16.3.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

16.3.4 SPECIAL EVENT TRIGGER


In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of either CCP1 or CCP2, resets the TMR1 or TMR3 register pair, depending on which timer resource is currently selected. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1 or Timer3.

The CCP2 Special Event Trigger will also start an A/D conversion if the A/D module is enabled.

Note: The special event trigger from the CCP2 module will not set the Timer1 or Timer3 interrupt flag bits.

FIGURE 16-3: COMPARE MODE OPERATION BLOCK DIAGRAM

IER 17-2:		. 11001 0		EGISTER'		JL)						
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0				
	bit 7							bit 0				
bit 7	WCOL: Wr	ite Collision	Detect bit (1	ransmit mod	de only)							
		be cleared in		n while it is s	till transmitti	ing the prev	ious word					
bit 6	SSPOV: Re	eceive Overl	flow Indicato	or bit								
	<u>SPI Slave r</u>	SPI Slave mode:										
	of over must re	flow, the da ead the SSF be cleared ir	ta in SSPSF BUF, even i	e SSPBUF r R is lost. Ove f only transn	erflow can o	nly occur in	Slave mod	e. The user				
	Note:			overflow bit d by writing t				eption (and				
bit 5	1 = Enable	s serial port	•	nable bit res SCK, SD ires these pi			I port pins					
	Note:	When enab	led, these p	ins must be	properly cor	nfigured as i	nput or outp	out.				
bit 4	CKP: Clock	Polarity Se	elect bit									
			s a high leve s a low leve									
bit 3-0	SSPM3:SS	PM0: Synch	nronous Seri	ial Port Mode	e Select bits							
	 0101 = SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin 0100 = SPI Slave mode, clock = SCK pin, SS pin control enabled 0011 = SPI Master mode, clock = TMR2 output/2 0010 = SPI Master mode, clock = Fosc/64 0001 = SPI Master mode, clock = Fosc/16 0000 = SPI Master mode, clock = Fosc/4 											
	Note:	Bit combina I ² C mode o		ecifically list	ed here are	either reser	ved, or impl	lemented in				
	Legend:											
	R = Readal	ble bit	W = Writab	le bit	U = Unimp	lemented bi	t, read as '0	,				
	- n = Value	at POR	'1' = Bit is s	set	'0' = Bit is o	cleared	x = Bit is u	nknown				

REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER1 (SPI MODE)

19.4 A/D Conversions

Figure 19-3 shows the operation of the A/D converter after the GO bit has been set. Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2 TAD wait is required before the next acquisition is started. After this 2 TAD wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.

19.5 Use of the CCP2 Trigger

An A/D conversion can be started by the "special event trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/ DONE bit will be set, starting the A/D conversion and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH/ADRESL to the desired location). The appropriate analog input channel must be selected and the minimum acquisition done before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

FIGURE 19-3: A/D CONVERSION TAD CYCLES

Tcy - Tad	TAD1	TAD2	TAD3	TAD4	TAD5	TAD6	TAD7	TAD8	TAD9	TAD10	TAD11		
↑ ↑ ↑	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	b0		
	Conver	sion sta	arts										
Holding	g capad	citor is	discon	nected	from a	inalog i	nput (t	ypically	/ 100 n	ıs)			
Set GO I	bit			↓									
				Ne	xt Q4:					') bit is cl	,	
						ADIF b	oit is se	et, hold	ing cap	cacitor	is conne	ected to analog inp	out.

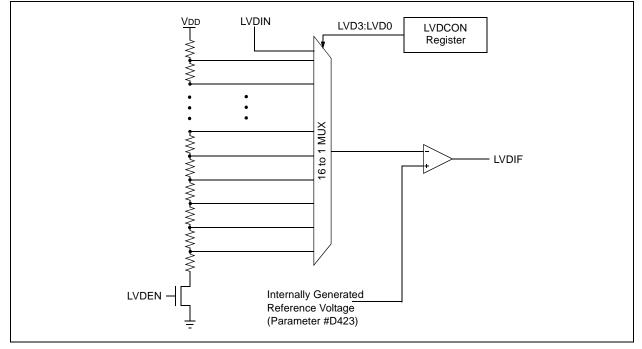

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 0000	0000 0000
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0111 1111	0111 1111
PIR2	_	CMIF	_	_	BCLIF	LVDIF	TMR3IF	CCP2IF	-0 0000	-0 0000
PIE2	_	CMIE	_	_	BCLIE	LVDIE	TMR3IE	CCP2IE	-0 0000	-0 0000
IPR2	_	CMIP	_	_	BCLIP	LVDIP	TMR3IP	CCP2IP	-0 0000	-0 0000
ADRESH	A/D Resul	t Register I	ligh Byte						xxxx xxxx	uuuu uuuu
ADRESL	A/D Resul	t Register I	_ow Byte						xxxx xxxx	uuuu uuuu
ADCON0	_	_	CHS3	CHS3	CHS1	CHS0	GO/DONE	ADON	00 0000	00 0000
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000
ADCON2	ADFM		_	_	_	ADCS2	ADCS1	ADCS0	0 000	0 000
PORTA	_	RA6	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
TRISA	_	PORTA D	ata Directio	n Registe	r				11 1111	11 1111
PORTF	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	x000 0000	u000 0000
LATF	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx xxxx	uuuu uuuu
TRISF	PORTF Data Direction Control Register									1111 1111
PORTH ⁽¹⁾	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	0000 xxxx	0000 xxxx
LATH ⁽¹⁾	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATH0	xxxx xxxx	uuuu uuuu
TRISH ⁽¹⁾	PORTH Da	ata Directio	n Control R	egister					1111 1111	1111 1111

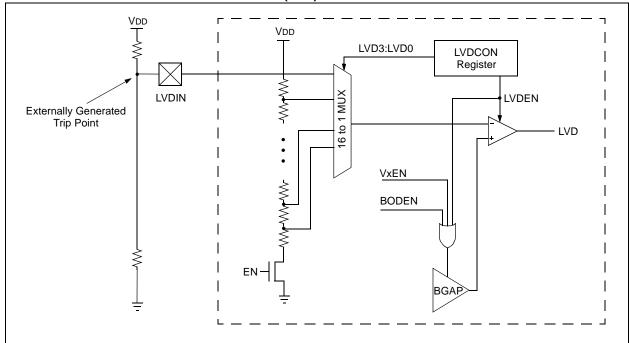
TABLE 19-2: SUMMARY OF A/D REGISTERS

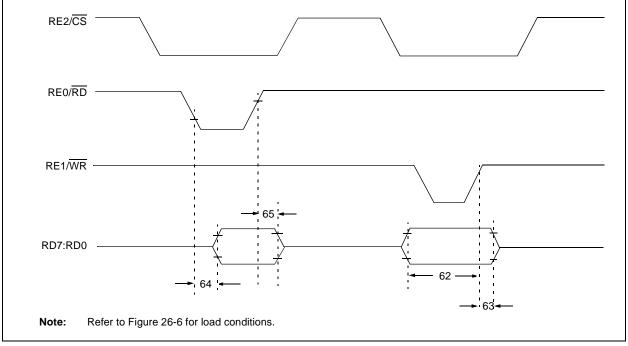
Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: Only available on PIC18F8X20 devices.

FIGURE 22-2: LOW-VOLTAGE DETECT (LVD) BLOCK DIAGRAM

The LVD module has an additional feature that allows the user to supply the trip voltage to the module from an external source. This mode is enabled when bits LVDL3:LVDL0 are set to '1111'. In this state, the comparator input is multiplexed from the external input pin, LVDIN (Figure 22-3). This gives users flexibility because it allows them to configure the Low-Voltage Detect interrupt to occur at any voltage in the valid operating range.




FIGURE 22-3: LOW-VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM

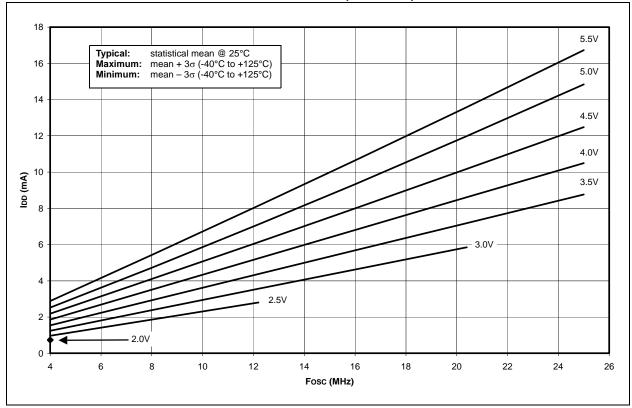
BNC	;	Branch if	Not Carry		BNN		Branch if	Not Negati	ive	
Syn	tax:	[label] B	NC n		Synta	x:	[label] B	NN n		
Ope	rands:		127		Opera	ands:	 -128 ≤ n ≤	127		
-	ration:	if Carry bit (PC) + 2 +			Opera			if Negative bit is '0' (PC) + 2 + 2n \rightarrow PC		
Stat	us Affected:	None			Status	Affected:	None			
Enc	oding:	1110 0011 nnnn nnnn		Encod	ding:	1110	0111 nr	ınn nnnn		
Des	cription:	If the Carry bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.		Descr	iption:	If the Negative bit is '0', the program will branch. The 2's complement number added to the PC. Since the have incremented to fetch t instruction, the new address PC+2+2n. This instruction a two-cycle instruction.		number '2n' is ce the PC will fetch the next ddress will be action is then		
Wor	ds:	1			Words	S:	1			
Сус	les:	1(2)			Cycle	s:	1(2)			
	Cycle Activity: ump:				Q Cy If Jur	cle Activity	:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC	
	No	No	No	No		No	No	No	No	
IF N	operation	operation	operation	operation		operation	operation	operation	operation	
	o Jump: Q1	Q2	Q3	Q4	II NO	Jump: Q1	Q2	Q3	Q4	
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation	
<u>Exa</u>	mple:	HERE	BNC Jump		Exam	<u>ple</u> :	HERE	BNN Jum	p	
Before Instruction PC = address (HERE) After Instruction If Carry = 0; PC = address (Jump) If Carry = 1; PC = address (HERE+2)					efore Instru PC fter Instruc If Negativ PC If Negativ PC	= ad tion ve = 0; = ad ve = 1;	dress (HERI dress (Jump dress (HERI	5)		

Param No.	Symbol	Cł	aracteristic	:	Min	Max	Units	Conditions
50	TccL	CCPx Input Low	No prescal	er	0.5 Tcy + 20	_	ns	
		Time	With	PIC18FXX20	10	_	ns	
			prescaler	PIC18LFXX20	20	_	ns	
51	ТссН	CCPx Input High	No prescal	er	0.5 TCY + 20	_	ns	
	Time	With	PIC18FXX20	10	_	ns		
			prescaler	PIC18LFXX20	20	_	ns	
52	TCCP	CCPx Input Period	k		<u>3 Tcy + 40</u> N	_	ns	N = prescale value (1, 4 or 16)
53	TCCR	CCPx Output Rise	Time	PIC18FXX20	_	25	ns	
				PIC18LFXX20	_	45	ns	VDD = 2.0V
54	TccF	CCPx Output Fall	Coutput Fall Time		_	25	ns	
				PIC18LFXX20	—	45	ns	VDD = 2.0V

TABLE 26-13: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)

Param No.	Symbol	Charac	teristic	Min	Мах	Units	Conditions
130	TAD	A/D Clock Period	PIC18FXX20	1.6	20 (5)	μS	Tosc based, VREF \geq 3.0V
			PIC18LFXX20	3.0	20 ⁽⁵⁾	μS	Tosc based, VREF full range
			PIC18FXX20	2.0	6.0	μS	A/D RC mode
			PIC18LFXX20		9.0	μS	A/D RC mode
131	TCNV	Conversion Time (not including acquisi	Conversion Time (not including acquisition time) (Note 1)			Tad	
132	TACQ	Acquisition Time (No	te 3)	15 10	_	μS μS	-40°C ≤ Temp ≤ +125°C 0°C ≤ Temp ≤ +125°C
135	Tswc	Switching Time from	Convert \rightarrow Sample	_	(Note 4)	pro	
136	Тамр	Amplifier Settling Tim	e (Note 2)	1	_	μS	This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 5 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).

TABLE 26-26: A/D CONVERSION REQUIREMENTS


Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 19.0 "10-Bit Analog-to-Digital Converter (A/D) Module" for minimum conditions when input voltage has changed more than 1 LSb.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (AVDD to AVss, or AVss to AVDD). The source impedance (Rs) on the input channels is 50Ω .

4: On the next Q4 cycle of the device clock.

5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

FIGURE 27-13: MAXIMUM IDD vs. Fosc OVER VDD (EC MODE)

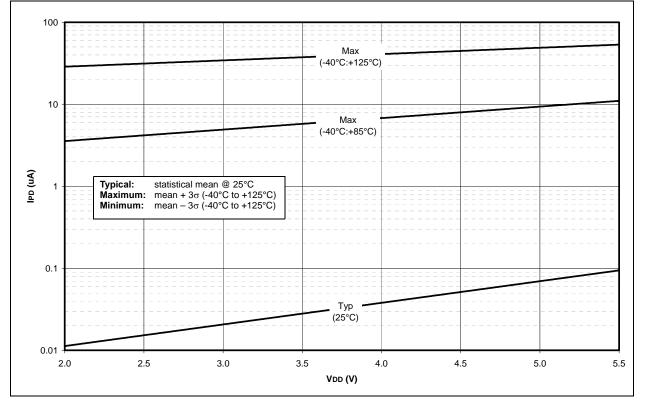
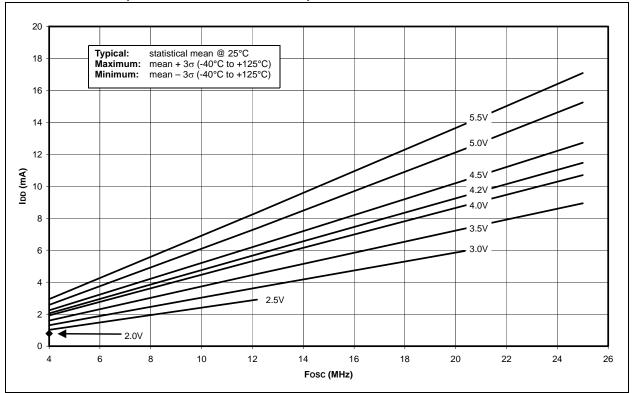
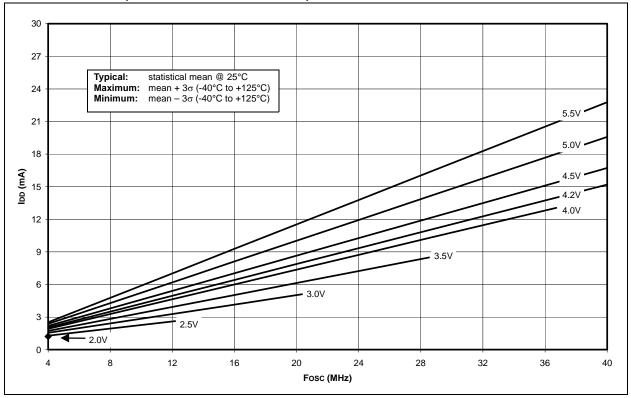
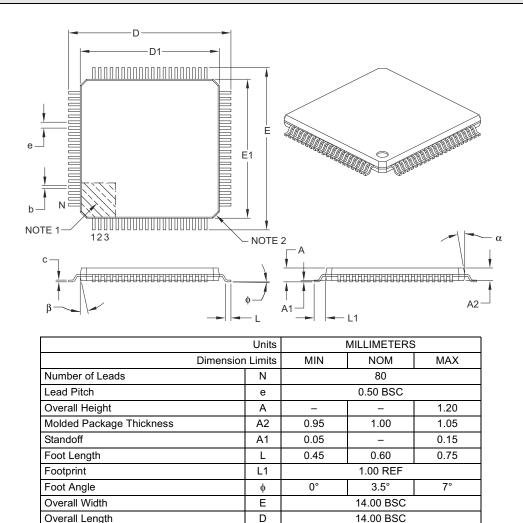


FIGURE 27-21: MAXIMUM IDD vs. Fosc OVER VDD (EC MODE) EXTENDED (PIC18F8520 DEVICES ONLY)


FIGURE 27-22: TYPICAL IDD vs. Fosc OVER VDD (HS/PLL MODE) (PIC18F8520 DEVICES ONLY)

© 2003-2013 Microchip Technology Inc.

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

Molded Package Width

Molded Package Length

Mold Draft Angle Top

Mold Draft Angle Bottom

Lead Thickness

Lead Width

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

E1

D1

С

b

α

β

0.09

0.17

11°

11°

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

0.20

0.27

13°

13°

12.00 BSC

12.00 BSC

0.22

12°

12°

APPENDIX E: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration*". This Application Note is available as Literature Number DS00726.