

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6520t-e-pt

Email: info@E-XFL.COM

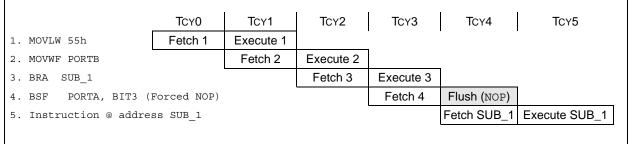
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Dia Mara	Pin N	umber	Pin Buffer	Buffer	Description		
Pin Name	PIC18F6X20	PIC18F8X20	Туре	Туре	Description		
					PORTD is a bidirectional I/O port. These pins have TTL input buffers when externa memory is enabled.		
RD0/PSP0/AD0 RD0 PSP0 AD0 ⁽³⁾	58	72	I/O I/O I/O	ST TTL TTL	Digital I/O. Parallel Slave Port data. External memory address/data 0.		
RD1/PSP1/AD1 RD1 PSP1 AD1 ⁽³⁾	55	69	I/O I/O I/O	ST TTL TTL	Digital I/O. Parallel Slave Port data. External memory address/data 1.		
RD2/PSP2/AD2 RD2 PSP2 AD2 ⁽³⁾	54	68	I/O I/O I/O	ST TTL TTL	Digital I/O. Parallel Slave Port data. External memory address/data 2.		
RD3/PSP3/AD3 RD3 PSP3 AD3 ⁽³⁾	53	67	I/O I/O I/O	ST TTL TTL	Digital I/O. Parallel Slave Port data. External memory address/data 3.		
RD4/PSP4/AD4 RD4 PSP4 AD4 ⁽³⁾	52	66	I/O I/O I/O	ST TTL TTL	Digital I/O. Parallel Slave Port data. External memory address/data 4.		
RD5/PSP5/AD5 RD5 PSP5 AD5 ⁽³⁾	51	65	I/O I/O I/O	ST TTL TTL	Digital I/O. Parallel Slave Port data. External memory address/data 5.		
RD6/PSP6/AD6 RD6 PSP6 AD6 ⁽³⁾	50	64	I/O I/O I/O	ST TTL TTL	Digital I/O. Parallel Slave Port data. External memory address/data 6.		
RD7/PSP7/AD7 RD7 PSP7 AD7 ⁽³⁾	49	63	I/O I/O I/O	ST TTL TTL	Digital I/O. Parallel Slave Port data. External memory address/data 7.		
Legend: TTL = TTL	nmitt Trigger inpu ut		evels	Analog = O =	 CMOS compatible input or output Analog input Output Open-Drain (no P diode to VDD) 		

TABLE 1-2: PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)

- 2: Default assignment when CCP2MX is set.
- 3: External memory interface functions are only available on PIC18F8X20 devices.
- 4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is multiplexed with either RB3 or RC1.
- 5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.
- **6:** AVDD must be connected to a positive supply and AVss must be connected to a ground reference for proper operation of the part in user or ICSP modes. See parameter D001A for details.


4.6 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined, such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 4-2).

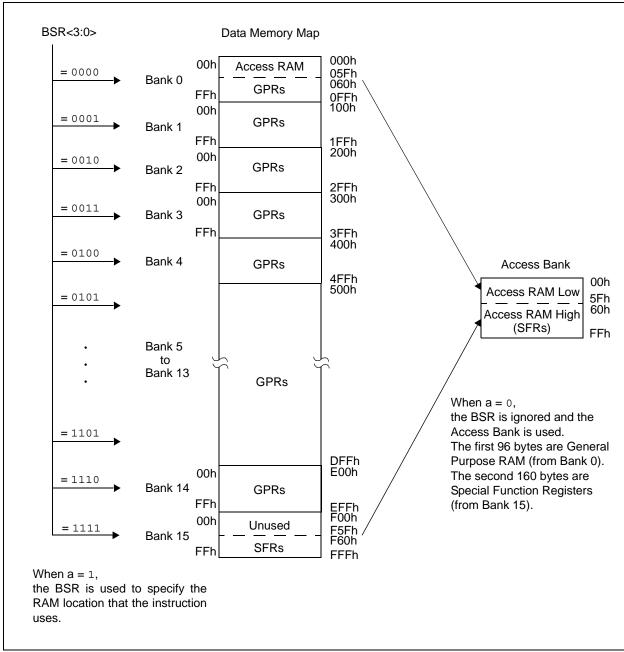
A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 4-2: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

4.7 Instructions in Program Memory


The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB = 0). Figure 4-5 shows an example of how instruction words are stored in the program memory. To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 4.4 "PCL, PCLATH and PCLATU").

The CALL and GOTO instructions have an absolute program memory address embedded into the instruction. Since instructions are always stored on

word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 4-5 shows how the instruction "GOTO 00006h" is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. **Section 24.0 "Instruction Set Summary"** provides further details of the instruction set.

FIGURE 4-5: INSTRUCTIONS IN PROGRAM MEMORY

			LSB = 1	LSB = 0	Word Address \downarrow
	Program I				000000h
	Byte Loca	tions \rightarrow			000002h
	-				000004h
					000006h
Instruction 1:		055h	0Fh	55h	000008h
Instruction 2:	GOTO	000006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	Clh	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

FIGURE 4-7: DATA MEMORY MAP FOR PIC18FX620 AND PIC18FX720 DEVICES

TABLE 4-2: SPECIAL FUNCTION REGISTER MAP

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽³⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2(3)	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2(3)	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽³⁾	FBCh	CCPR2H	F9Ch	MEMCON ⁽²⁾
FFBh	PCLATU	FDBh	PLUSW2 ⁽³⁾	FBBh	CCPR2L	F9Bh	(1)
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	TRISJ
FF9h	PCL	FD9h	FSR2L	FB9h	CCPR3H	F99h	TRISH
FF8h	TBLPTRU	FD8h	STATUS	FB8h	CCPR3L	F98h	TRISG
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	CCP3CON	F97h	TRISF
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	(1)	F96h	TRISE
FF5h	TABLAT	FD5h	T0CON	FB5h	CVRCON	F95h	TRISD
FF4h	PRODH	FD4h	(1)	FB4h	CMCON	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	LATJ
FF0h	INTCON3	FD0h	RCON	FB0h	PSPCON	F90h	LATH
FEFh	INDF0 ⁽³⁾	FCFh	TMR1H	FAFh	SPBRG1	F8Fh	LATG
FEEh	POSTINC0 ⁽³⁾	FCEh	TMR1L	FAEh	RCREG1	F8Eh	LATF
FEDh	POSTDEC0 ⁽³⁾	FCDh	T1CON	FADh	TXREG1	F8Dh	LATE
FECh	PREINC0 ⁽³⁾	FCCh	TMR2	FACh	TXSTA1	F8Ch	LATD
FEBh	PLUSW0 ⁽³⁾	FCBh	PR2	FABh	RCSTA1	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh	EEADRH	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	PORTJ
FE7h	INDF1 ⁽³⁾	FC7h	SSPSTAT	FA7h	EECON2	F87h	PORTH
FE6h	POSTINC1 ⁽³⁾	FC6h	SSPCON1	FA6h	EECON1	F86h	PORTG
FE5h	POSTDEC1 ⁽³⁾	FC5h	SSPCON2	FA5h	IPR3	F85h	PORTF
FE4h	PREINC1 ⁽³⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE
FE3h	PLUSW1 ⁽³⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

Note 1: Unimplemented registers are read as '0'.

2: This register is unused on PIC18F6X20 devices. Always maintain this register clear.

3: This is not a physical register.

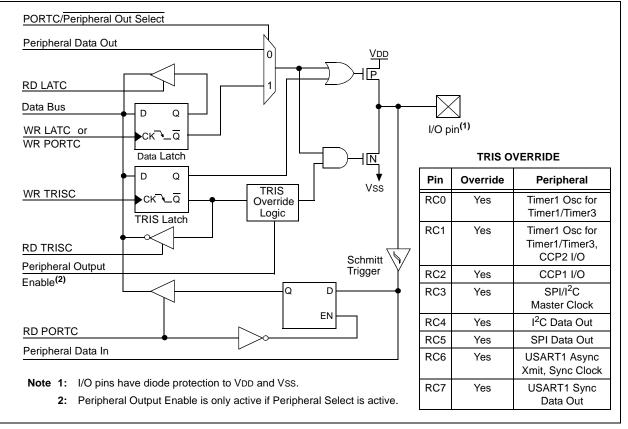
10.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register, read and write the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 10-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.


Note: On a Power-on Reset, these pins are configured as digital inputs.

The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.

RC1 is normally configured by configuration bit, CCP2MX, as the default peripheral pin of the CCP2 module (default/erased state, CCP2MX = 1).

CLRF	PORTC	; Initialize PORTC by ; clearing output ; data latches
CLRF	LATC	; Alternate method ; to clear output ; data latches
MOVLW	0xCF	; Value used to ; initialize data ; direction
MOVWF	TRISC	; Set RC<3:0> as inputs ; RC<5:4> as outputs ; RC<7:6> as inputs

FIGURE 10-8: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

10.5 PORTE, TRISE and LATE Registers

PORTE is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., put the contents of the output latch on the selected pin).

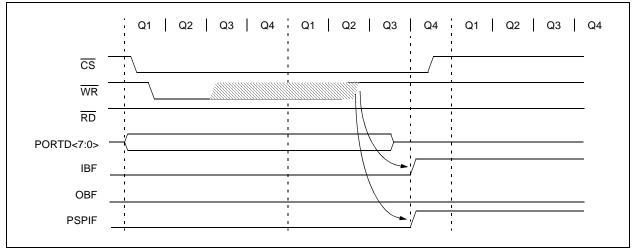
Read-modify-write operations on the LATE register, read and write the latched output value for PORTE.

PORTE is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output. PORTE is multiplexed with the CCP module (Table 10-9).

On PIC18F8X20 devices, PORTE is also multiplexed with the system bus as the external memory interface; the I/O bus is available only when the system bus is disabled, by setting the EBDIS bit in the MEMCON register (MEMCON<7>). If the device is configured in Microprocessor or Extended Microcontroller mode, then the PORTE<7:0> becomes the high byte of the address/data bus for the external program memory interface. In Microcontroller mode, the PORTE<2:0> pins become the control inputs for the Parallel Slave Port when bit PSPMODE (PSPCON<4>) is set. (Refer to Section 4.1.1 "PIC18F8X20 Program Memory Modes" for more information on program memory modes.) When the Parallel Slave Port is active, three PORTE pins (RE0/RD/AD8, RE1/WR/AD9 and RE2/CS/AD10) function as its control inputs. This automatically occurs when the PSPMODE bit (PSPCON<4>) is set. Users must also make certain that bits TRISE<2:0> are set to configure the pins as digital inputs and the ADCON1 register is configured for digital I/O. The PORTE PSP control functions are summarized in Table 10-9.

Pin RE7 can be configured as the alternate peripheral pin for CCP module 2 when the device is operating in Microcontroller mode. This is done by clearing the configuration bit, CCP2MX, in configuration register, CONFIG3H (CONFIG3H<0>).

Note:	For PIC18F8X20 (80-pin) devices operat-
	ing in Extended Microcontroller mode,
	PORTE defaults to the system bus on
	Power-on Reset.


EXAMPLE 10-5: INITIALIZING PORTE

CLRF	PORTE	; Initialize PORTE by ; clearing output
CLRF	LATE	; data latches ; Alternate method
		; to clear output ; data latches
MOVLW	0x03	; Value used to : initialize data
MOVWF	TRISE	; direction ; Set RE1:RE0 as inputs ; RE7:RE2 as outputs

REGISTER 10-1:	PSPCON REGISTER									
	R-0	R-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
	IBF	OBF	IBOV	PSPMODE				_		
	bit 7							bit 0		
bit 7	1 = A word	 IBF: Input Buffer Full Status bit 1 = A word has been received and is waiting to be read by the CPU 0 = No word has been received 								
bit 6	1 = The ou	OBF: Output Buffer Full Status bit 1 = The output buffer still holds a previously written word								
bit 5	 0 = The output buffer has been read IBOV: Input Buffer Overflow Detect bit 									
	 1 = A write occurred when a previously input word has not been read (must be cleared in software) 0 = No overflow occurred 									
bit 4	PSPMODE	PSPMODE: Parallel Slave Port Mode Select bit								
	1 = Parallel Slave Port mode0 = General Purpose I/O mode									
bit 3-0	Unimplemented: Read as '0'									
	Legend:									
	$R = Readable bit \qquad W = Writable bit \qquad U = Unimplemented bit, read as '0'$									

FIGURE 10-24: PARALLEL SLAVE PORT WRITE WAVEFORMS

- n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

EXAMPLE	12-1:	IMPLEMENTIN	IG A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE
RTCinit			
	MOVLW	0x80	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T10SC	; Asynchronous operation, external oscillator
	CLRF	secs	; Initialize timekeeping registers
	CLRF	mins	;
	MOVLW	.12	
	MOVWF	hours	
	BSF	PIE1, TMR1IE	; Enable Timer1 interrupt
	RETURN		
RTCisr			
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	
	INCF	secs, F	; Increment seconds
	MOVLW	.59	; 60 seconds elapsed?
	CPFSGT		
	RETURN		; No, done
	CLRF	secs	; Clear seconds
	INCF	mins, F	; Increment minutes
	MOVLW	.59	; 60 minutes elapsed?
	CPFSGT		
	RETURN		; No, done
	CLRF	mins	; clear minutes
	INCF	hours, F	; Increment hours
	MOVLW	.23	; 24 hours elapsed?
	CPFSGT		
	RETURN		; No, done
	MOVLW	.01	; Reset hours to 1
	MOVWF	hours	
	RETURN		; Done
J			

EXAMPLE 12-1: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

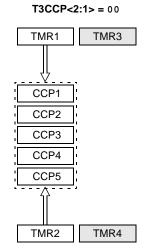
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,			e on other sets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000	0000	0000	0000
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0111	1111	0111	1111
TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								xxxx	xxxx	uuuu	uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								xxxx	xxxx	uuuu	uuuu
T1CON	RD16	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00	0000	u-uu	uuuu

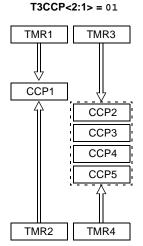
 $\label{eq:logend: Legend: Legend: u = unchanged, -= unimplemented, read as `0`. Shaded cells are not used by the Timer1 module.$

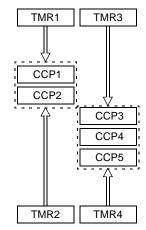
16.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

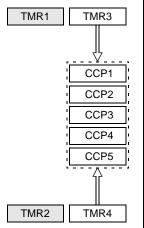
16.1.1 CCP MODULES AND TIMER RESOURCES


The CCP modules utilize Timers 1, 2, 3 or 4, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 and Timer4 are available for modules in PWM mode.


TABLE 16-1: CCP MODE – TIMER RESOURCE


CCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2 or Timer4

The assignment of a particular timer to a module is determined by the Timer-to-CCP Enable bits in the T3CON register (Register 14-1). Depending on the configuration selected, up to four timers may be active at once, with modules in the same configuration (Capture/Compare or PWM) sharing timer resources. The possible configurations are shown in Figure 16-1.


FIGURE 16-1: CCP AND TIMER INTERCONNECT CONFIGURATIONS

T3CCP<2:1> = 10

T3CCP<2:1> = 11

Timer1 is used for all Capture and Compare operations for all CCP modules. Timer2 is used for PWM operations for all CCP modules. Modules may share either timer resource as a common time base.

Timer3 and Timer4 are not available.

Timer1 and Timer2 are used for Capture and Compare or PWM operations for CCP1 only (depending on selected mode).

All other modules use either Timer3 or Timer4. Modules may share either timer resource as a common time base, if they are in Capture/ Compare or PWM modes. Timer1 and Timer2 are used for Capture and Compare or PWM operations for CCP1 and CCP2 only (depending on the mode selected for each module). Both modules may use a timer as a common time base if they are both in Capture/Compare or PWM modes.

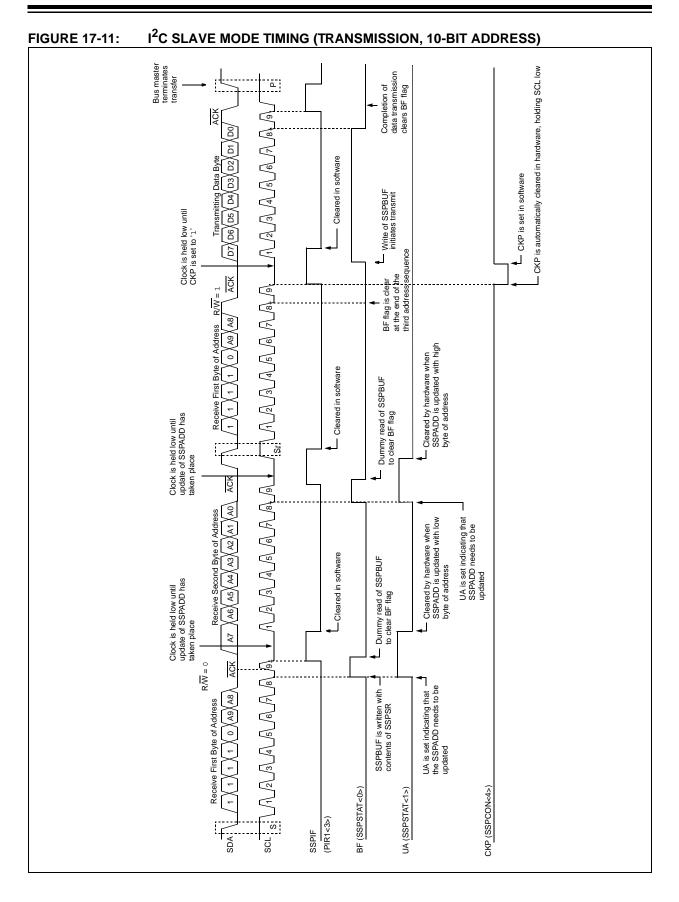
The other modules use either Timer3 or Timer4. Modules may share either timer resource as a common time base if they are in Capture/ Compare or PWM modes. Timer3 is used for all Capture and Compare operations for all CCP modules. Timer4 is used for PWM operations for all CCP modules. Modules may share either timer resource as a common time base.

Timer1 and Timer2 are not available.

17.3.2 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)


The MSSP consists of a Transmit/Receive Shift Register (SSPSR) and a Buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full detect bit, BF (SSPSTAT<0>) and the interrupt flag bit, SSPIF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the Write Collision detect bit, WCOL (SSPCON1<7>), will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer Full bit, BF (SSPSTAT<0>), indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 17-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP Status register (SSPSTAT) indicates the various status conditions.

EQUATION 17-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BTFSS	SSPSTAT, BF	;Has data been received (transmit complete)?
	BRA	LOOP	; No
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to transmit

18.2 USART Asynchronous Mode

In this mode, the USARTs use standard Non-Return-to-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip dedicated 8-bit Baud Rate Generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent, but use the same data format and baud rate. The Baud Rate Generator produces a clock, either 16 or 64 times the bit shift rate, depending on bit BRGH (TXSTAx<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during Sleep.

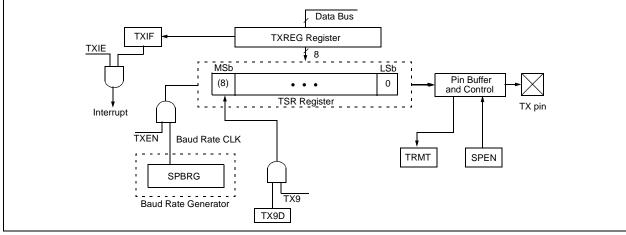
Asynchronous mode is selected by clearing bit SYNC (TXSTAx<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- · Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

18.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 18-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer register, TXREGx. The TXREGx register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREGx register (if available). Once the TXREGx register transfers the data to the TSR register (occurs in one Tcr), the TXREGx register is empty and flag bit, TXx1IF (PIR1<4> for USART1,

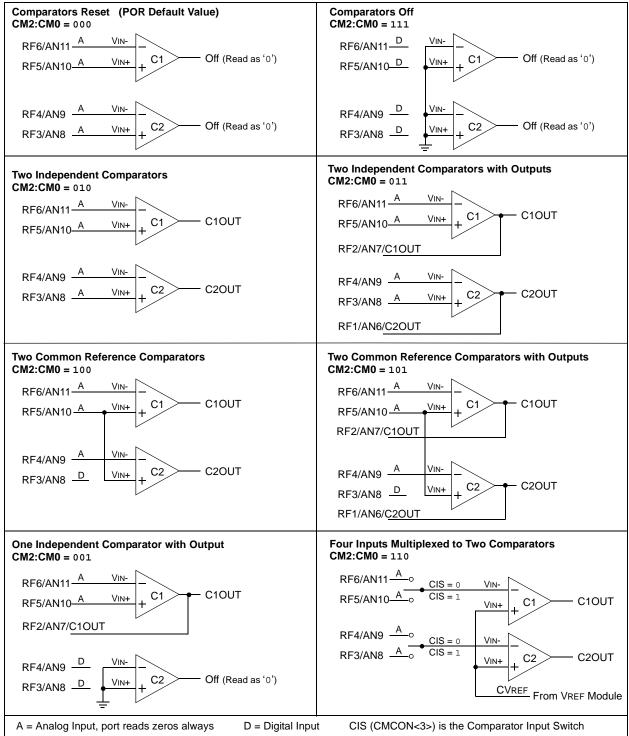

PIR3<4> for USART2), is set. This interrupt can be enabled/disabled by setting/clearing enable bit, TXxIE (PIE1<4> for USART1, PIE<4> for USART2). Flag bit TXxIF will be set, regardless of the state of enable bit TXxIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREGx register. While flag bit TXIF indicates the status of the TXREGx register, another bit, TRMT (TXSTAx<1>), shows the status of the TSR register. Status bit TRMT is a read-only bit, which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

- Note 1: The TSR register is not mapped in data memory, so it is not available to the user.
 - 2: Flag bit TXIF is set when enable bit TXEN is set.

To set up an Asynchronous Transmission:

- Initialize the SPBRGx register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH (Section 18.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit TXxIE in the appropriate PIE register.
- 4. If 9-bit transmission is desired, set transmit bit TX9. Can be used as address/data bit.
- 5. Enable the transmission by setting bit TXEN, which will also set bit TXxIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREGx register (starts transmission).

Note: TXIF is not cleared immediately upon loading data into the transmit buffer TXREG. The flag bit becomes valid in the second instruction cycle following the load instruction.


FIGURE 18-1: USART TRANSMIT BLOCK DIAGRAM

20.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select these modes. Figure 20-1 shows the eight possible modes. The TRISF register controls the data direction of the comparator pins for each mode. If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in the Electrical Specifications (Section 26.0 "Electrical Characteristics").

Note: Comparator interrupts should be disabled during a Comparator mode change. Otherwise, a false interrupt may occur.

Mnemonic, Operands		Description	Qualas	16-Bit Instruction Word				Status	Natas
		Description	Cycles	MSb			LSb	Affected	Notes
CONTROL	OPERAT	IONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	_	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	—	No Operation	1	1111	xxxx	XXXX	xxxx	None	4
POP	—	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	_	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,	
RETLW	Ŀ	Return with literal in WREG	2		1100	1_1_1_1_	1-1-1-1-	PEIE/GIEL None	1
	k		2	0000	1100	kkkk	kkkk		
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 24-1: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTE, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

ΒZ		Branch if	Branch if Zero						
Synt	ax:	[label] B	[<i>label</i>] BZ n						
Ope	rands:	-128 ≤ n ≤	$-128 \le n \le 127$						
Ope	ration:		if Zero bit is '1' (PC) + 2 + 2n \rightarrow PC						
Statu	us Affected:	None	None						
Enco	oding:	1110	0000 ni	nnn	nnnn				
Desc	cription:	program w The 2's co added to t have incre instruction PC+2+2n.	If the Zero bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.						
Word	ds:	1							
Cycl	es:	1(2)	1(2)						
	cycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'n'	Process Data	Wri	te to PC				
	No	No	No		No				
If N	operation o Jump:	operation	operation	ор	operation Q4				
	Q1	Q2	Q3						
	Decode	Read literal	Process		No				
		'n'	Data	ор	operation				
	<u>mple</u> : Before Instru	HERE	BZ Jum	p					
	PC		= address (HERE)						
	After Instruct If Zero PC	= 1;	= 1;						
	If Zero PC	= 0;	= 0;						

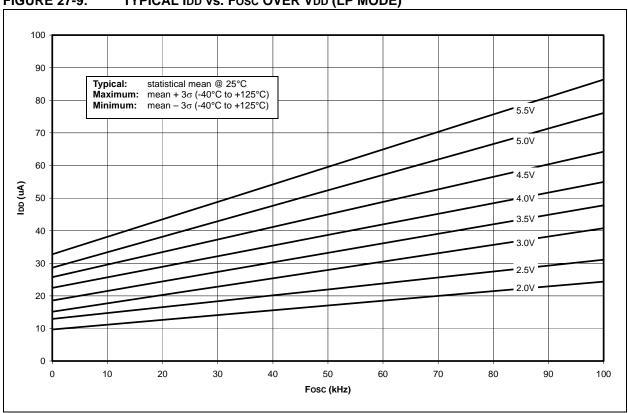
CAL	.L	Subrouti	ne Call					
Syn	tax:	[<i>label</i>] CALL k [,s]						
Ope	erands:	$0 \le k \le 1048575$ s $\in [0,1]$						
Ope	eration:	$(PC) + 4 \rightarrow TOS,$ $k \rightarrow PC<20:1>,$ if s = 1 $(W) \rightarrow WS,$ $(STATUS) \rightarrow STATUSS,$ $(BSR) \rightarrow BSRS$						
Stat	us Affected:	None						
1st v	oding: word (k<7:0>) word(k<19:8>		110s k ₇ kkl k ₁₉ kkk kkkk			kkkk ₀ kkkk ₈		
		= 1, tl egiste respe WS, 0, nc	he V ers a ctive STA o up the PC<	ATUSS date 20-bit 20:1>.				
Wor	ds:	2						
Сус	les:	2						
QC	Cycle Activity:							
	Q1	Q2	Q	3		Q4		
	Decode	Read literal 'k'<7:0>	Push P stac		Read litera 'k'<19:8>, Write to PC	<19:8>,		
	No	No	No			No		
	operation	operation	operation operation opera			peration		
<u>Exa</u>	mple:	HERE	HERE CALL THERE, 1					
	Before Instruc							
	PC	= address (HERE)						
	After Instructi PC TOS WS BSRS	on = address = address = W = BSR						

BSRS = BSR STATUSS = STATUS

26.1 DC Characteristics: Supply Voltage PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended) PIC18LF6520/8520/6620/8620/6720/8720 (Industrial)

	F6520/852 ustrial)	0/6620/8620/6720/8720	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
	6520/8520 ustrial, Ext	/6620/8620/6720/8720 ended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
D001	Vdd	Supply Voltage							
		PIC18LFXX20	2.0	_	5.5	V	HS, XT, RC and LP Oscillator mode		
		PIC18FXX20	4.2	_	5.5	V			
D001A	AVdd	Analog Supply Voltage	Vdd - 0.3	_	VDD + 0.3	V			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	-	V			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	—	0.7	V	See section on Power-on Reset for details		
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	_	V/ms	See section on Power-on Reset for details		
D005	VBOR	Brown-out Reset Voltage	_						
		BORV1:BORV0 = 11	N/A		N/A	V	Reserved		
		BORV1:BORV0 = 10	2.64	_	2.92	V			
		BORV1:BORV0 = 01	4.11	_	4.55	V			
		BORV1:BORV0 = 00	4.41		4.87	V			

Legend: Shading of rows is to assist in readability of the table.


Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

Param No.	Symbol	Charact	eristic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)		ms	
			400 kHz mode	2(Tosc)(BRG + 1)		ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		ms	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		ms	
102	TR	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
103	TF	SDA and SCL	100 kHz mode	—	300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	100	ns	
90	TSU:STA	A Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)		ms	Only relevant for
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	Repeated Start condition
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
91	THD:STA	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)		ms	After this period, the first
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
106	THD:DAT	Data Input Hold Time	100 kHz mode	0		ns	
			400 kHz mode	0	0.9	ms	
			1 MHz mode ⁽¹⁾	TBD	_	ns	
107	TSU:DAT	Data Input	100 kHz mode	250	_	ns	(Note 2)
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode ⁽¹⁾	TBD	—	ns	
92	TSU:STO	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)		ms	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)		ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
109	ΤΑΑ	Output Valid	100 kHz mode		3500	ns	
		from Clock	400 kHz mode		1000	ns	
			1 MHz mode ⁽¹⁾			ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	ms	Time the bus must be free
			400 kHz mode	1.3	—	ms	before a new transmission
			1 MHz mode ⁽¹⁾	TBD		ms	can start
D102	Св	Bus Capacitive Lo	bading		400	pF	

TABLE 26-22: MASTER SSP I²C BUS DATA REQUIREMENTS

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

2: A fast mode I²C bus device can be used in a standard mode I²C bus system, but parameter #107 ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL line is released.

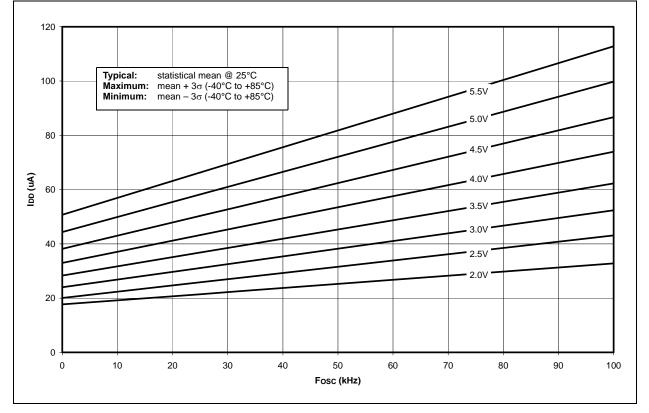


FIGURE 27-9: TYPICAL IDD vs. Fosc OVER VDD (LP MODE)

LFSR	3
MOVF	3
MOVFF	4
MOVLB	
MOVLW	
MOVWF	
MULLW286	
MULWF286	
NEGF287	
NOP	
POP	
PUSH	
RCALL	
RESET	•
RETFIE	
RETLW	
RLCF	
RLNCF	
RENCF	
RRNCF	_
SETF	
SLEEP	
SUBFWB	
SUBLW	
SUBWF	
SUBWFB	
SWAPF	
TBLRD	
TBLWT	-
TSTFSZ	
XORLW	
XORWF	
Summary Table262	
Summary Table	2
Summary Table	2 9
Summary Table	2 9
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 100 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Internet Address 375	2 9 5
Summary Table	2 9 5 9
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 100 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Interrupt Sources 235	2 9 5 9 7
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 89 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Interrupt Sources 239 A/D Conversion Complete 217	2 9 5 9 7
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 89 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Interrupt Sources 239 A/D Conversion Complete 217 Capture Complete (CCP) 151 Compare Complete (CCP) 152 INTO 102	2 9 5 9 7 1 2 2
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 89 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Interrupt Sources 239 A/D Conversion Complete 217 Capture Complete (CCP) 151 Compare Complete (CCP) 152	2 9 5 9 7 1 2 2
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 89 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Interrupt Sources 239 A/D Conversion Complete 217 Capture Complete (CCP) 151 Compare Complete (CCP) 152 INTO 102 Interrupt-on-Change (RB7:RB4) 106 PORTB, Interrupt-on-Change 102	2 9 5 9 7 1 2 2 6 2
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 89 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Interrupt Sources 239 A/D Conversion Complete 217 Capture Complete (CCP) 151 Compare Complete (CCP) 152 INTO 102 Interrupt-on-Change (RB7:RB4) 106	2 9 5 9 7 1 2 2 6 2
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 89 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Interrupt Sources 239 A/D Conversion Complete 217 Capture Complete (CCP) 151 Compare Complete (CCP) 152 INTO 102 Interrupt-on-Change (RB7:RB4) 106 PORTB, Interrupt-on-Change 102 RB0/INT Pin, External 102 TMR0 102	2 9 5 9 7 1 2 2 6 2 2 2
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 89 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Interrupt Sources 239 A/D Conversion Complete 217 Capture Complete (CCP) 151 Compare Complete (CCP) 152 INTO 102 Interrupt-on-Change (RB7:RB4) 106 PORTB, Interrupt-on-Change 102 RB0/INT Pin, External 102	2 9 5 9 7 1 2 2 6 2 2 2
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 89 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Interrupt Sources 239 A/D Conversion Complete 217 Capture Complete (CCP) 151 Compare Complete (CCP) 152 INTO 102 Interrupt-on-Change (RB7:RB4) 106 PORTB, Interrupt-on-Change 102 RB0/INT Pin, External 102 TMR0 102 TMR0 102 TMR0 Overflow 133 TMR1 Overflow 135, 138	2 9 5 9 7 1 2 2 6 2 2 3 8
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 89 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Interrupt Sources 239 A/D Conversion Complete 217 Capture Complete (CCP) 151 Compare Complete (CCP) 152 INTO 102 Interrupt-on-Change (RB7:RB4) 106 PORTB, Interrupt-on-Change 102 TMR0 102 TMR0 102 TMR0 Overflow 133 TMR1 Overflow 135, 138 TMR2 to PR2 Match 142	2 9 597122622382
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 89 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 75 Interrupt Sources 239 A/D Conversion Complete 217 Capture Complete (CCP) 151 Compare Complete (CCP) 152 INTO 102 Interrupt-on-Change (RB7:RB4) 106 PORTB, Interrupt-on-Change 102 TMR0 102 TMR0 102 TMR0 Overflow 133 TMR1 Overflow 135, 138 TMR2 to PR2 Match 142 TMR2 to PR2 Match (PWM) 141, 154	2 9 59712262223824
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 89 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Interrupt Sources 239 A/D Conversion Complete 217 Capture Complete (CCP) 151 Compare Complete (CCP) 152 INTO 102 Interrupt-on-Change (RB7:RB4) 106 PORTB, Interrupt-on-Change 102 TMR0 102 TMR0 102 TMR0 Overflow 133 TMR1 Overflow 135, 138 TMR2 to PR2 Match (PWM) 141, 154 TMR3 Overflow 143, 145	2 9 597122622238245
Summary Table262INT Interrupt (RB0/INT). See Interrupt SourcesINTCON Registers89Inter-Integrated Circuit. See I²CInternet Address375Interrupt Sources239A/D Conversion Complete217Capture Complete (CCP)151Compare Complete (CCP)152INTO102Interrupt-on-Change (RB7:RB4)106PORTB, Interrupt-on-Change102TMR0102TMR0 Overflow133TMR1 Overflow135, 138TMR2 to PR2 Match142TMR3 Overflow143, 145TMR4 to PR4 Match148	2 9 5971226222382458
Summary Table262INT Interrupt (RB0/INT). See Interrupt SourcesINTCON Registers89Inter-Integrated Circuit. See I²CInternet Address375Interrupt Sources239A/D Conversion Complete217Capture Complete (CCP)151Compare Complete (CCP)152INTO102Interrupt-on-Change (RB7:RB4)106PORTB, Interrupt-on-Change102TMR0102TMR0 Overflow133TMR1 Overflow135, 138TMR2 to PR2 Match (PWM)141, 154TMR3 Overflow143, 145TMR4 to PR4 Match148TMR4 to PR4 Match (PWM)147	2 9 59712262223824587
Summary Table 262 INT Interrupt (RB0/INT). See Interrupt Sources 89 INTCON Registers 89 Inter-Integrated Circuit. See I ² C 375 Interrupt Sources 239 A/D Conversion Complete 217 Capture Complete (CCP) 151 Compare Complete (CCP) 152 INTO 102 Interrupt-on-Change (RB7:RB4) 106 PORTB, Interrupt-on-Change 102 TMR0 102 TMR0 102 TMR0 Overflow 133 TMR1 Overflow 135, 138 TMR2 to PR2 Match (PWM) 141, 154 TMR3 Overflow 143, 145 TMR4 to PR4 Match 148 TMR4 to PR4 Match (PWM) 147 Interrupts 87	2 9 597122622238245877
Summary Table262INT Interrupt (RB0/INT). See Interrupt SourcesINTCON Registers89Inter-Integrated Circuit. See I ² CInternet Address375Interrupt Sources239A/D Conversion Complete217Capture Complete (CCP)151Compare Complete (CCP)152INTO102Interrupt-on-Change (RB7:RB4)106PORTB, Interrupt-on-Change102TMR0102TMR0 Overflow133TMR1 Overflow135, 138TMR2 to PR2 Match (PWM)141, 154TMR3 Overflow143, 145TMR4 to PR4 Match (PWM)147Interrupts87Control Registers89	2 9 5971226222382458779
Summary Table262INT Interrupt (RB0/INT). See Interrupt SourcesINTCON Registers89Inter-Integrated Circuit. See I ² CInternet Address375Interrupt Sources239A/D Conversion Complete217Capture Complete (CCP)151Compare Complete (CCP)152INTO102Interrupt-on-Change (RB7:RB4)106PORTB, Interrupt-on-Change102TMR0102TMR0 Overflow133TMR1 Overflow135, 138TMR2 to PR2 Match (PWM)141, 154TMR3 Overflow143, 145TMR4 to PR4 Match (PWM)147Interrupts87Control Registers85Enable Registers95	2 9 59712262223824587795
Summary Table262INT Interrupt (RB0/INT). See Interrupt SourcesINTCON Registers89Inter-Integrated Circuit. See I²CInterrupt Sources236A/D Conversion Complete217Capture Complete (CCP)151Compare Complete (CCP)152INTO102Interrupt-on-Change (RB7:RB4)106PORTB, Interrupt-on-Change102TMR0102TMR0 Overflow133TMR1 Overflow135TMR2 to PR2 Match142TMR4 to PR4 Match144TMR4 to PR4 Match (PWM)141, 144TMR4 to PR4 Match (PWM)147Interrupts87Control Registers89Flag Registers92Flag Registers92	2 9 597122622238245877952
Summary Table262INT Interrupt (RB0/INT). See Interrupt SourcesINTCON Registers89Inter-Integrated Circuit. See I²CInternet Address375Interrupt Sources236A/D Conversion Complete217Capture Complete (CCP)151Compare Complete (CCP)152INTO102Interrupt-on-Change (RB7:RB4)106PORTB, Interrupt-on-Change102TMR0102TMR0 Overflow133TMR1 Overflow135TMR2 to PR2 Match142TMR4 to PR4 Match144TMR4 to PR4 Match (PWM)141, 154TMR4 to PR4 Match (PWM)147Interrupts87Control Registers95Flag Registers92Logic88	2 9 5971226222382458779528
Summary Table262INT Interrupt (RB0/INT). See Interrupt SourcesINTCON Registers89Inter-Integrated Circuit. See I²CInternet Address375Interrupt Sources236A/D Conversion Complete217Capture Complete (CCP)151Compare Complete (CCP)152INTO102Interrupt-on-Change (RB7:RB4)106PORTB, Interrupt-on-Change102TMR0102TMR0 Overflow133TMR1 Overflow135TMR2 to PR2 Match142TMR3 Overflow143, 145TMR4 to PR4 Match146TMR4 to PR4 Match (PWM)147Interrupts87Control Registers89Enable Registers95Flag Registers92Logic86Priority Registers96	2 9 59712262223824587795288
Summary Table262INT Interrupt (RB0/INT). See Interrupt SourcesINTCON Registers89Inter-Integrated Circuit. See I²CInternet Address375Interrupt Sources236A/D Conversion Complete217Capture Complete (CCP)151Compare Complete (CCP)152INTO102Interrupt-on-Change (RB7:RB4)106PORTB, Interrupt-on-Change102TMR0102TMR0 Overflow133TMR1 Overflow135TMR2 to PR2 Match (PWM)141, 154TMR4 to PR4 Match148TMR4 to PR4 Match (PWM)147Interrupts87Control Registers89Enable Registers95Flag Registers95Reset Control Registers96Reset Control Registers97Control Registers96Reset Control Registers97Logic88Priority Registers96Reset Control Registers97Logic88Priority Registers98Reset Control Registers97Logic88Priority Registers98Reset Control Registers97Logic88Logic88	2 9 597122622238245877952881
Summary Table262INT Interrupt (RB0/INT). See Interrupt SourcesINTCON Registers89Inter-Integrated Circuit. See I²CInternet Address375Interrupt Sources236A/D Conversion Complete217Capture Complete (CCP)151Compare Complete (CCP)152INTO102Interrupt-on-Change (RB7:RB4)106PORTB, Interrupt-on-Change102TMR0102TMR0 Overflow133TMR1 Overflow135TMR2 to PR2 Match (PWM)141, 154TMR4 to PR4 Match148TMR4 to PR4 Match (PWM)147Interrupts87Control Registers95Flag Registers95Flag Registers96Reset Control Registers97LORLW282	2 9 5971226222382458779528812
Summary Table262INT Interrupt (RB0/INT). See Interrupt SourcesINTCON Registers89Inter-Integrated Circuit. See I²CInternet Address375Interrupt Sources236A/D Conversion Complete217Capture Complete (CCP)151Compare Complete (CCP)152INTO102Interrupt-on-Change (RB7:RB4)106PORTB, Interrupt-on-Change102TMR0102TMR0 Overflow133TMR1 Overflow135TMR2 to PR2 Match142TMR3 Overflow143TMR4 to PR4 Match144TMR4 to PR4 Match (PWM)147Interrupts87Control Registers95Flag Registers95Flag Registers95Reset Control Registers96Reset Control Registers97LORLW282LORWF282LORWF282	2 9 59712262223824587795288122
Summary Table262INT Interrupt (RB0/INT). See Interrupt SourcesINTCON Registers89Inter-Integrated Circuit. See I²CInternet Address375Interrupt Sources236A/D Conversion Complete217Capture Complete (CCP)151Compare Complete (CCP)152INTO102Interrupt-on-Change (RB7:RB4)106PORTB, Interrupt-on-Change102TMR0102TMR0 Overflow133TMR1 Overflow135TMR2 to PR2 Match (PWM)141, 154TMR4 to PR4 Match148TMR4 to PR4 Match (PWM)147Interrupts87Control Registers95Flag Registers95Flag Registers96Reset Control Registers97LORLW282	2 9 59712262223824587795288122

Κ

Key Features

Easy Migration	7
Expanded Memory	
External Memory Interface	7
Other Special Features	7

L

LFSR	283
Low-Voltage Detect	233
Characteristics	316
Converter Characteristics	316
Effects of a Reset	
Operation	236
Current Consumption	237
During Sleep	237
Reference Voltage Set Point	237
Typical Application	233
Low-Voltage ICSP Programming	257
LVD. See Low-Voltage Detect	233

Μ

Master SSP (MSSP) Module	
Overview	
Master SSP I ² C Bus Data Requirements	336
Master SSP I ² C Bus Start/Stop Bits Requirements	335
Master Synchronous Serial Port (MSSP). See MSSP.	
Master Synchronous Serial Port. See MSSP	
Memory Organization	
Data Memory	47
Memory Programming Requirements	
Microchip Internet Web Site	
Microcontroller Mode	
Microprocessor Mode	
Microprocessor with Boot Block Mode	
Migration from High-End to Enhanced Devices	
Migration from Mid-Range to Enhanced Devices	
MOVF	
MOVFF	
MOVLB	
MOVLW	285
MOVWF	285
MPLAB ASM30 Assembler, Linker, Librarian	302
MPLAB Integrated Development Environment Software .	
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	302
MSSP	
ACK Pulse 170,	171
Clock Stretching	
10-bit Slave Receive Mode (SEN = 1)	176
10-bit Slave Transmit Mode	176
7-bit Slave Receive Mode (SEN = 1)	176
7-bit Slave Transmit Mode	
Clock Synchronization and the CKP bit	
Control Registers (general)	157
Enabling SPI I/O	
I ² C Mode	
Acknowledge Sequence Timing	
Baud Rate Generator	183
Bus Collision	
During a Repeated Start Condition	194
Bus Collision During a Start Condition	192
Bus Collision During a Stop Condition	195
Clock Arbitration	184
Effect of a Reset	191
I ² C Clock Rate w/BRG	183
Master Mode	181
Reception	187