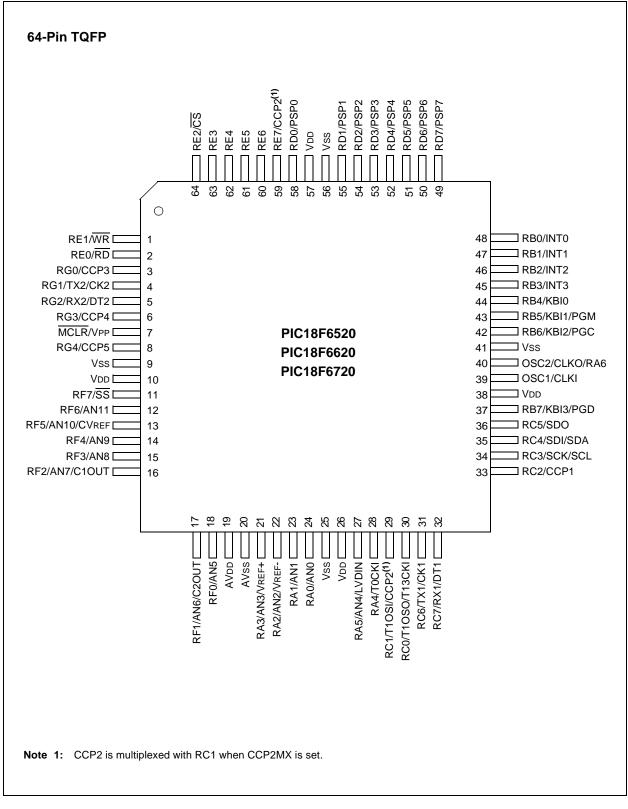


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.75K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6620t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Name	Pin N	umber	Pin	Buffer	Description	
Pin Name	PIC18F6X20	PIC18F8X20	Туре	Туре	Description	
					PORTC is a bidirectional I/O port.	
RC0/T1OSO/T13CKI	30	36				
RC0			I/O	ST	Digital I/O.	
T1OSO			0	—	Timer1 oscillator output.	
T13CKI			I	ST	Timer1/Timer3 external clock input.	
RC1/T1OSI/CCP2	29	35				
RC1			I/O	ST	Digital I/O.	
T1OSI			I	CMOS	Timer1 oscillator input.	
CCP2 ⁽²⁾			I/O	ST	Capture2 input/Compare2 output/	
					PWM2 output.	
RC2/CCP1	33	43				
RC2			I/O	ST	Digital I/O.	
CCP1			I/O	ST	Capture1 input/Compare1 output/	
					PWM1 output.	
RC3/SCK/SCL	34	44				
RC3			I/O	ST	Digital I/O.	
SCK			I/O	ST	Synchronous serial clock input/outpu	
					for SPI mode.	
SCL			I/O	ST	Synchronous serial clock input/output for I ² C mode.	
RC4/SDI/SDA	35	45				
RC4		45	I/O	ST	Digital I/O.	
SDI			"/C	ST	SPI data in.	
SDA			I/O	ST	I^2C data I/O.	
RC5/SDO	36	46	., C	•		
RC5/SDO RC5	30	40	I/O	ST	Digital I/O.	
SDO			0		SPI data out.	
		07	Ŭ			
RC6/TX1/CK1	31	37	1/0	ст		
RC6 TX1			1/O O	ST	Digital I/O. USART 1 asynchronous transmit.	
CK1			1/0	ST	USART 1 synchronous clock	
ONT			1/0	51	(see RX1/DT1).	
	22	20				
RC7/RX1/DT1	32	38	I/O	ST	Digital I/O	
RC7 RX1				ST	Digital I/O. USART 1 asynchronous receive.	
DT1			I/O	ST	USART 1 synchronous data	
			",0		(see TX1/CK1).	
Legend: TTL = TTL	compatible inp	L		CMOS -	= CMOS compatible input or output	
	mitt Trigger inp		evels		= Analog input	
				•		
I = Inpu P = Pow	it ver			O = OD =	 Analog input Output Open-Drain (no P diode to VE (all operating modes except 	

TABLE 1-2: PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except Microcontroller).

2: Default assignment when CCP2MX is set.

3: External memory interface functions are only available on PIC18F8X20 devices.

4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is multiplexed with either RB3 or RC1.

5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.

6: AVDD must be connected to a positive supply and AVss must be connected to a ground reference for proper operation of the part in user or ICSP modes. See parameter D001A for details.

2.6.1 SYSTEM CLOCK SWITCH BIT

The system clock source switching is performed under software control. The system clock switch bit, SCS (OSCCON<0>), controls the clock switching. When the SCS bit is '0', the system clock source comes from the main oscillator that is selected by the FOSC configuration bits in Configuration Register 1H. When the SCS bit is set, the system clock source will come from the Timer1 oscillator. The SCS bit is cleared on all forms of Reset. Note: The Timer1 oscillator must be enabled and operating to switch the system clock source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 Control register (T1CON). If the Timer1 oscillator is not enabled, then any write to the SCS bit will be ignored (SCS bit forced cleared) and the main oscillator will continue to be the system clock source.

REGISTER 2-1: OSCCON REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-1
—	—	—	—	_	_	—	SCS
bit 7							bit 0

bit 7-1 Unimplemented: Read as '0'

bit 0 SCS: System Clock Switch bit

When OSCSEN Configuration bit = 0 and T1OSCEN bit is set:

1 = Switch to Timer1 oscillator/clock pin

0 = Use primary oscillator/clock input pin

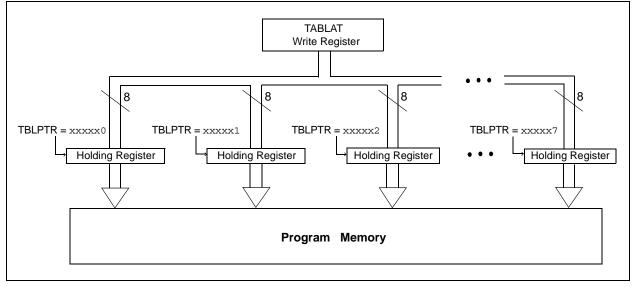
When OSCSEN and T1OSCEN are in other states:

Bit is forced clear.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.5 Writing to Flash Program Memory

The minimum programming block is 4 words or 8 bytes. Word or byte programming is not supported.


Table writes are used internally to load the holding registers needed to program the Flash memory. There are 8 holding registers used by the table writes for programming.

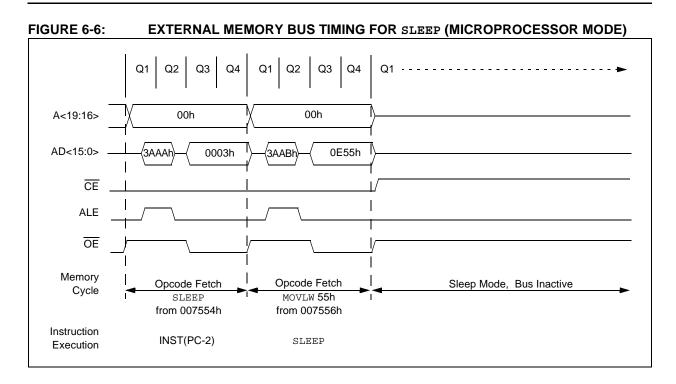
Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction has to be executed 8 times for each programming operation. All of the table write operations will essentially be short writes, because only the holding registers are written. At the end of updating 8 registers, the EECON1 register must be written to, to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device for byte or word operations.

FIGURE 5-5: TABLE WRITES TO FLASH PROGRAM MEMORY

5.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

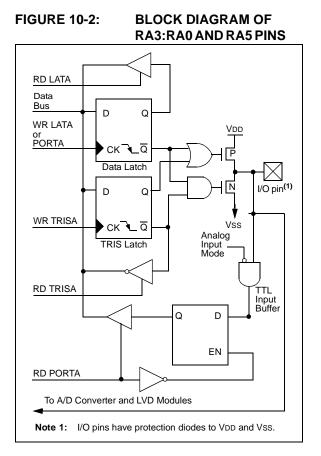

The sequence of events for programming an internal program memory location should be:

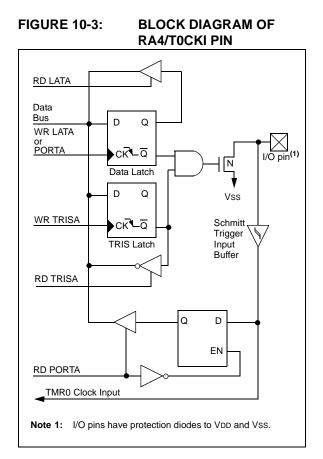
- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer with address being erased.
- 4. Do the row erase procedure.
- 5. Load Table Pointer with address of first byte being written.
- 6. Write the first 8 bytes into the holding registers with auto-increment.
- 7. Set the EECON1 register for the write operation:
 - set EEPGD bit to point to program memory
 clear the CFGS bit to access program memory
 - set WREN to enable byte writes
- 8. Disable interrupts.

- 9. Write 55h to EECON2.
- 10. Write AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Execute a NOP.
- 14. Re-enable interrupts.
- 15. Repeat steps 6-14 seven times, to write 64 bytes.
- 16. Verify the memory (table read).

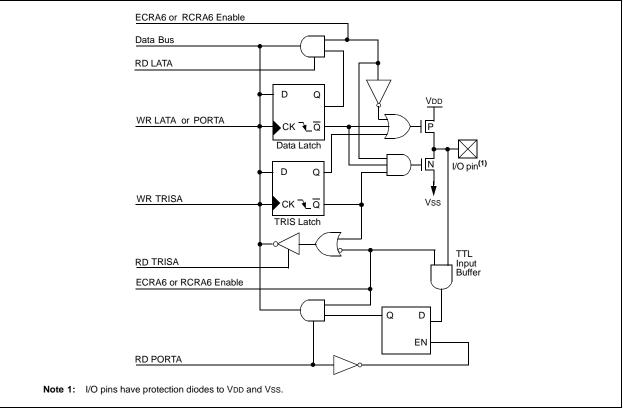
This procedure will require about 18 ms to update one row of 64 bytes of memory. An example of the required code is given in Example 5-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the eight bytes in the holding register.


9.3 **PIE Registers**


The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Enable registers (PIE1, PIE2 and PIE3). When the IPEN bit (RCON<7>) is '0', the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 9-7:	PIE1: PER	IPHERAL	INTERRU	PT ENABL	E REGIST	ER 1							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	PSPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE					
	bit 7	bit 7											
						(4)							
bit 7				Vrite Interrup	ot Enable bit	(1)							
			ead/write int ead/write int										
bit 6	ADIE: A/D	Converter I	nterrupt Ena	ble bit									
		s the A/D in	-										
		s the A/D in											
bit 5			ive Interrupt										
			T1 receive in T1 receive i	•									
bit 4	TX1IE: US	ART1 Trans	mit Interrupt	t Enable bit									
			T1 transmit	•									
	0 = Disable	s the USAR	T1 transmit	interrupt									
bit 3		•		I Port Interru	ipt Enable b	it							
		s the MSSP s the MSSF	•										
bit 2			pt Enable bi	t									
5112		s the CCP1		·									
		s the CCP1											
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inte	rrupt Enable	bit								
			to PR2 mat	•									
	0 = Disable	s the TMR2	to PR2 mat	tch interrupt									
bit 0			ow Interrupt										
			overflow int	•									
	0 = Disable	s the IMR1	overflow in	terrupt									


Note 1: Enabled only in Microcontroller mode for PIC18F8X20 devices.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 10-4: BLOCK DIAGRAM OF RA6 PIN (WHEN ENABLED AS I/O)

Name	Bit#	Buffer Type	Function
RD0/PSP0/AD0	bit 0	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 0 or address/data bus bit 0.
RD1/PSP1/AD1	bit 1	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 1 or address/data bus bit 1.
RD2/PSP2/AD2	bit 2	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 2 or address/data bus bit 2.
RD3/PSP3/AD3	bit 3	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 3 or address/data bus bit 3.
RD4/PSP4/AD4	bit 4	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 4 or address/data bus bit 4.
RD5/PSP5/AD5	bit 5	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 5 or address/data bus bit 5.
RD6/PSP6/AD6	bit 6	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 6 or address/data bus bit 6.
RD7/PSP7/AD7	bit 7	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 7 or address/data bus bit 7.

TABLE 10-7:PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

WAIT1

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus or Parallel Slave Port mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
LATD	LATD Da	ata Outp	ut Registe	er					xxxx xxxx	uuuu uuuu
TRISD	PORTD	Data Dir	ection Re	gister					1111 1111	1111 1111
PSPCON	IBF	OBF	IBOV	PSPMODE	_	_	_	_	0000	0000

TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

WAIT0

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

WM1

WM0

0-00 --00

0-00 --00

MEMCON EBDIS

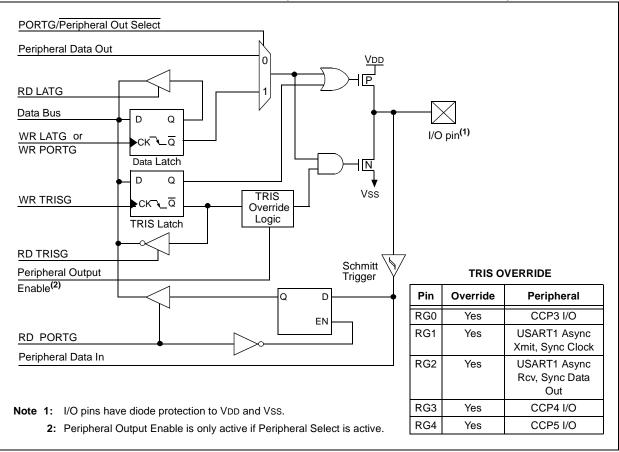
10.7 PORTG, TRISG and LATG Registers

PORTG is a 5-bit wide, bidirectional port. The corresponding data direction register is TRISG. Setting a TRISG bit (= 1) will make the corresponding PORTG pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISG bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

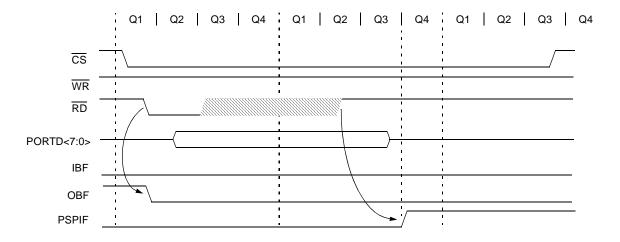
The Data Latch register (LATG) is also memory mapped. Read-modify-write operations on the LATG register, read and write the latched output value for PORTG.

PORTG is multiplexed with both CCP and USART functions (Table 10-13). PORTG pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTG pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.


Note:	On a Power-on Reset, these pins are
	configured as digital inputs.

The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.


EXAMPLE 10-7: INITIALIZING PORTG

CLRF	PORTG	; Initialize PORTG by ; clearing output
		; data latches
CLRF	LATG	; Alternate method
		; to clear output
		; data latches
MOVLW	0x04	; Value used to
		; initialize data
		; direction
MOVWF	TRISG	; Set RG1:RG0 as outputs
		; RG2 as input
		; RG4:RG3 as inputs

FIGURE 10-16: PORTG BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

FIGURE 10-25: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 10-19: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTD	Port Data	Latch whe	n written; F	Port pins when	read				xxxx xxxx	uuuu uuuu
LATD	LATD Data	a Output b	its						xxxx xxxx	uuuu uuuu
TRISD	PORTD D	ata Directi	on bits						1111 1111	1111 1111
PORTE	-	—	-	—	—	Read POR Write POR	RTE pin/ RTE Data La	itch	0000 0000	0000 0000
LATE	—	—	_	_	—	LATE Data	a Output bits	3	xxxx xxxx	uuuu uuuu
TRISE	_	_	_	_	—	PORTE Da	ata Directio	n bits	1111 1111	1111 1111
PSPCON	IBF	OBF	IBOV	PSPMODE	—	—	—	—	0000	0000
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IF	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 0000	0000 0000
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	CCP1IF TMR2IF TMR1IF		0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	E CCP1IE TMR2IE TMR1IE		0000 0000	0000 0000	
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0111 1111	0111 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

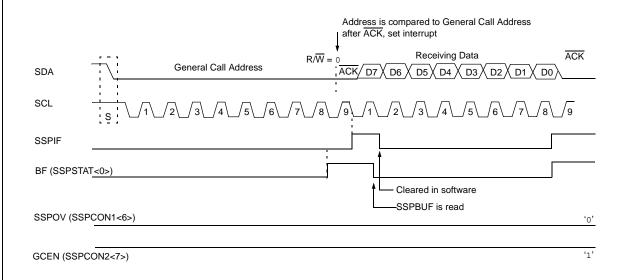
Note 1: Enabled only in Microcontroller mode for PIC18F8X20 devices.

NOTES:

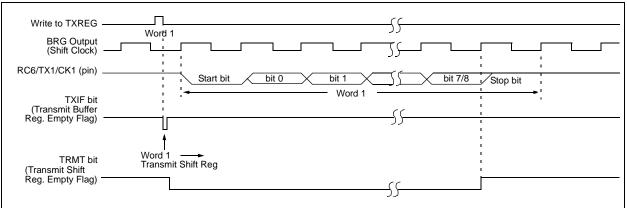
17.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address, which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.

The general call address is one of eight addresses reserved for specific purposes by the I²C protocol. It consists of all '0's with R/W = 0.


The general call address is recognized when the General Call Enable bit (GCEN) is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware.

If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.


When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-bit Address mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 17-15).

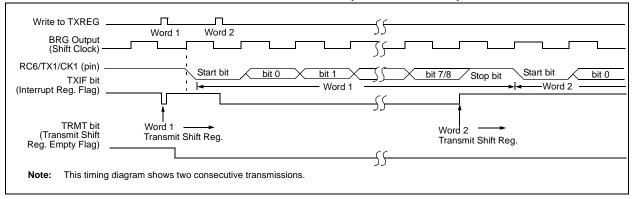


FIGURE 18-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 0000	0000 0000
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0111 1111	0111 1111
PIR3	_	—	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	00 0000	00 0000
PIE3	_	_	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	00 0000	00 0000
IPR3	_	—	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	11 1111	11 1111
RCSTAx ⁽¹⁾	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
TXREGx ⁽¹⁾	USART Tran	smit Register							0000 0000	0000 0000
TXSTAx ⁽¹⁾	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRGx ⁽¹⁾	Baud Rate G	Senerator Reg	gister						0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.
 Note 1: Register names generically refer to both of the identically named registers for the two USART modules, where 'x' indicates the particular module. Bit names and Reset values are identical between modules.

NOTES:

23.4.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits external writes to data EEPROM. The CPU can continue to read and write data EEPROM, regardless of the protection bit settings.

23.4.3 CONFIGURATION REGISTER PROTECTION

The configuration registers can be write-protected. The WRTC bit controls protection of the configuration registers. In user mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer.

23.5 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are accessible during normal execution through the TBLRD and TBLWT instructions or during program/verify. The ID locations can be read when the device is code-protected.

23.6 In-Circuit Serial Programming

PIC18FX520/X620/X720 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

Note:	When	performing	In-Circuit	Serial
	Progran	nming, verify	that power	is con-
	nected	to all VDD ar	nd AVDD pins	of the
	microco	ntroller and th	nat all Vss an	d AVss
	pins are	grounded.		

23.7 In-Circuit Debugger

When the DEBUG bit in the CONFIG4L Configuration register is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 23-4 shows which features are consumed by the background debugger.

TABLE 23-4: DEBUGGER RESOURCES

I/O pins	RB6, RB7
Stack	2 levels
Program Memory	Last 576 bytes
Data Memory	Last 10 bytes

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, GND, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

23.8 Low-Voltage ICSP Programming

The LVP bit in the CONFIG4L Configuration register enables Low-Voltage ICSP Programming. This mode allows the microcontroller to be programmed via ICSP using a VDD source in the operating voltage range. This only means that VPP does not have to be brought to VIHH, but can instead be left at the normal operating voltage. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. During programming, VDD is applied to the MCLR/VPP pin. To enter Programming mode, VDD must be applied to the RB5/PGM pin, provided the LVP bit is set. The LVP bit defaults to a '1' from the factory.

- Note 1: The High-Voltage Programming mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: While in Low-Voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O pin and should be held low during normal operation.
 - 3: When using Low-Voltage ICSP Programming (LVP) and the pull-ups on PORTB are enabled, bit 5 in the TRISB register must be cleared to disable the pull-up on RB5 and ensure the proper operation of the device.

If Low-Voltage Programming mode is not used, the LVP bit can be programmed to a '0' and RB5/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed when programming is entered with VIHH on MCLR/VPP.

It should be noted that once the LVP bit is programmed to '0', only the High-Voltage Programming mode is available and only High-Voltage Programming mode can be used to program the device.

When using Low-Voltage ICSP Programming, the part must be supplied 4.5V to 5.5V if a bulk erase will be executed. This includes reprogramming of the codeprotect bits from an on state to an off state. For all other cases of Low-Voltage ICSP, the part may be programmed at the normal operating voltage. This means unique user IDs or user code can be reprogrammed or added.

BNOV	Branch if Not Overflow		w	BNZ		Branch if	Branch if Not Zero			
Syntax:	[label] B	NOV n		Synt	ax:	[<i>label</i>] B	NZ n			
Operands:	-128 ≤ n ≤	127		Ope	rands:	-128 ≤ n ≤	$\textbf{-128} \leq n \leq 127$			
Operation:	if Overflow bit is '0' (PC) + 2 + 2n \rightarrow PC		Ope	Operation:		is '0' · 2n → PC				
Status Affected:	None		Statu	us Affected:	None					
Encoding:	1110	0101 nn:	nn nnnn	Enco	oding:	1110	0001 nn	nn nnnn		
Description:	program w The 2's co added to tl have incre instruction PC+2+2n.	mplement no he PC. Sinc mented to fe	umber '2n' is e the PC will etch the next dress will be ction is then	Desc	cription:	program w The 2's co added to t have incre instruction PC+2+2n.	mplement n he PC. Sinc mented to fe	umber '2n' is the PC will etch the next ldress will be ction is then		
Words:	1			Word	ds:	1				
Cycles:	1(2)			Cycl	es:	1(2)				
Q Cycle Activity: If Jump:					ycle Activity	:				
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4		
Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC		
No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operation		
If No Jump:				If N	o Jump:					
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4		
Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation		
Example: Before Instru PC After Instruct If Overflov PC If Overflov	= add ion w = 0; = add	BNOV Jump dress (HERE dress (Jump)		nple: Before Instru PC After Instruc If Zero PC If Zero	= ado tion = 0;	BNZ Jump dress (HERE) dress (Jump)			

MOVLB

MOVFF	Move f to	o f				
Syntax:	[label]	MOVFF	f _s ,f _d			
Operands:	$\begin{array}{l} 0 \leq f_s \leq 4095 \\ 0 \leq f_d \leq 4095 \end{array}$					
Operation:	$(f_s) \to f_d$					
Status Affected:	None					
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d		
	are move 'f _d '. Locat anywhere space (00 of destina anywhere Either sou W (a use MOVFF is transferrin to a perip transmit b The MOVE the PCL, the destina	tion of sc in the 4 20h to FF ation 'f _d ' (in form 00 urce or d ful specia particula heral reg puffer or FF instru TOSU, T	ource 'f _s ' of 096-byte Fh) and can also 00h to FF lestination al situation arity usefut a memory gister (suc an I/O po ction can 'OSH or '	can be data location be Fh. n can be on). I for location ch as the ort). not use		
Words:	2					
Cycles:	2 (3)					
Q Cycle Activity:						
Q1	Q2	Q3	3	Q4		

Q1	Q1 Q2 Q3		Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation, No dummy read	No operation	Write register 'f' (dest)

REG1, REG2

Example: MOVFF

Before Instruction				
REG1	=	0x33		
REG2	=	0x11		
After Instruction				
REG1	=	0x33,		
REG2	=	0x33		

Synt	ax:	[label]	MOVLB	k			
Operands:		$0 \le k \le 25$	$0 \le k \le 255$				
Ope	ration:	$k \rightarrow BSR$					
Statu	us Affected:	None					
Enco	oding:	0000	0001	kk}	ck	kkkk	
Description: The 8-bit I the Bank S							
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3			Q4	
	Decode	Read literal 'k'	Proce Data		lite	Write ral 'k' to BSR	

Move literal to low nibble in BSR

Example: MOVLB 5

=		
Before Instruction		
BSR register	=	0x02
After Instruction		
BSR register	=	0x05

26.2 DC Characteristics: Power-Down and Supply Current PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended) PIC18LF6520/8520/6620/8620/6720/8720 (Industrial) (Continued)

PIC18LF((Indu	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
	520/8520/6620/8620/6720/8720 strial, Extended)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Device	Typ Max Units Conditions				ons		
	Supply Current (IDD) ^(2,3)							
	PIC18LFXX20	165	350	μΑ	-40°C			
		165	350	μΑ	+25°C	VDD = 2.0V		
		170	350	μΑ	+85°C			
	PIC18LFXX20	360	750	μΑ	-40°C	Vdd = 3.0V		
		340	750	μΑ	+25°C		Fosc = 1 MHz, EC oscillator	
		300	750	μΑ	+85°C		20 000	
	All devices	800	1700	μΑ	-40°C			
		730	1700	μΑ	+25°C	VDD = 5.0V		
		700	1700	μΑ	+85°C			
	PIC18LFXX20	600	1200	μΑ	-40°C			
		600	1200	μΑ	+25°C	VDD = 2.0V		
		640	1300	μΑ	+85°C			
	PIC18LFXX20	1000	2500	μΑ	-40°C			
		1000	2500	μΑ	+25°C	VDD = 3.0V	Fosc = 4 MHz, EC oscillator	
		1000	2500	μΑ	+85°C			
	All devices	2.2	5.0	mA	-40°C			
		2.1	5.0	mA	+25°C	VDD = 5.0V		
		2.0	5.0	mA	+85°C			

Legend: Shading of rows is to assist in readability of the table.

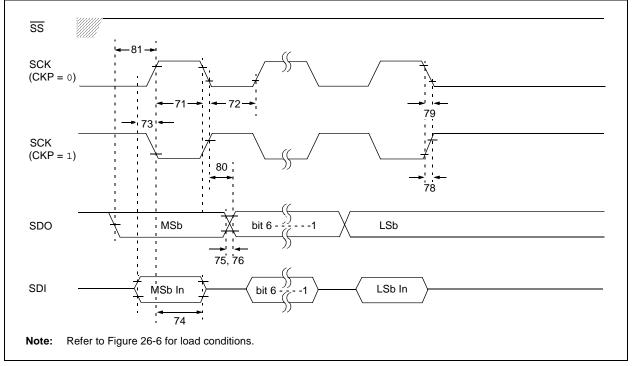
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

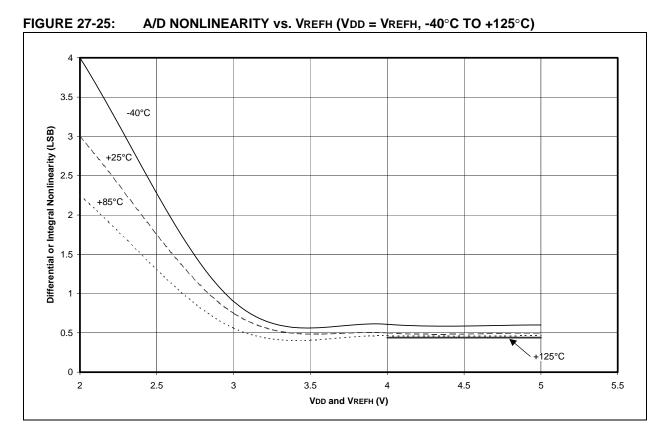
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

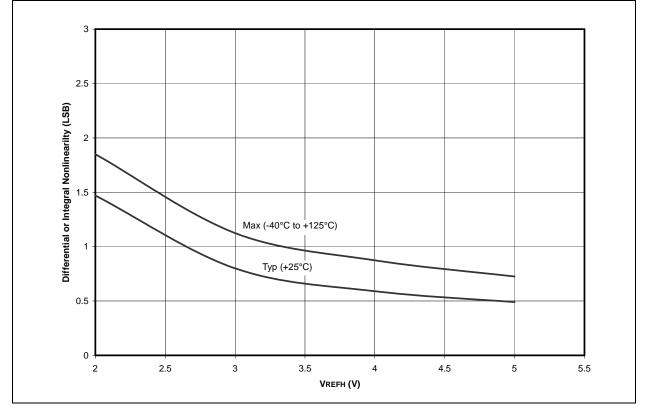
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

- $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.
- **3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.


Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү		ns	
71	TscH	SCK Input High Time	Continuous	1.25 TCY + 30	_	ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 TCY + 30	_	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TDIV2SCH, TDIV2SCL	Setup Time of SDI Data Input to SCK Edge		100	_	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2		1.5 Tcy + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		100	_	ns	
75	TDOR	SDO Data Output Rise Time	PIC18FXX20	—	25	ns	
			PIC18LFXX20	—	45	ns	VDD = 2.0V
76	TDOF	SDO Data Output Fall Time		—	25	ns	
78	TscR	SCK Output Rise Time	PIC18FXX20	—	25	ns	
		(Master mode)	PIC18LFXX20	—	45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time (Master mode)		—	25	ns	
80	TscH2doV,	SDO Data Output Valid after SCK	PIC18FXX20	—	50	ns	
	TscL2doV	Edge	PIC18LFXX20	—	100	ns	VDD = 2.0V


TABLE 26-15:	EXAMPLE SPI MODE REQUIREMENTS	(MASTER MODE. CKE = 0)


Note 1: Requires the use of Parameter #73A.


2: Only if Parameter #71A and #72A are used.

© 2003-2013 Microchip Technology Inc.