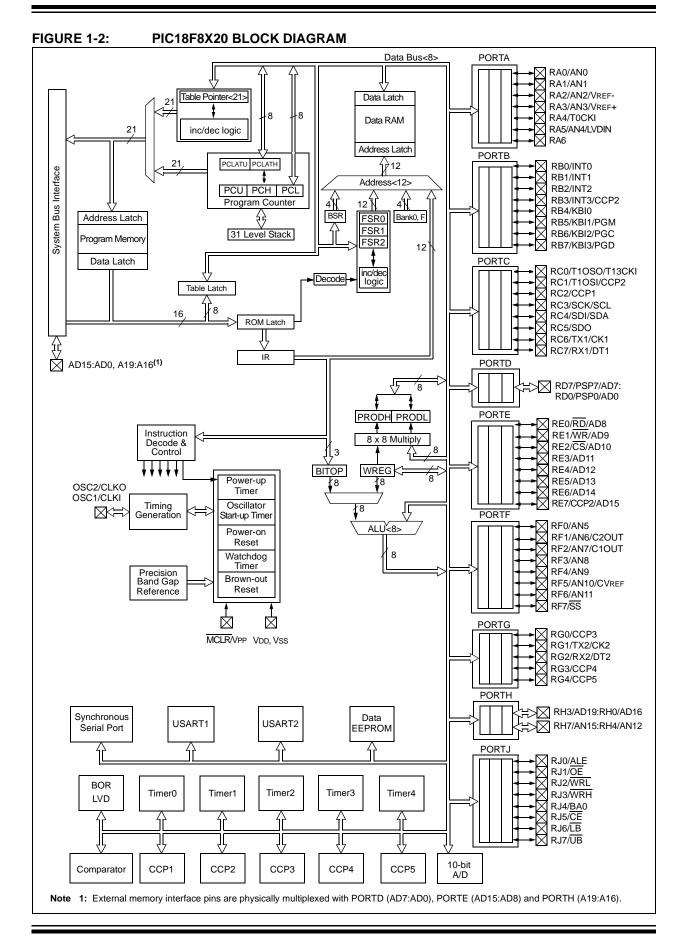
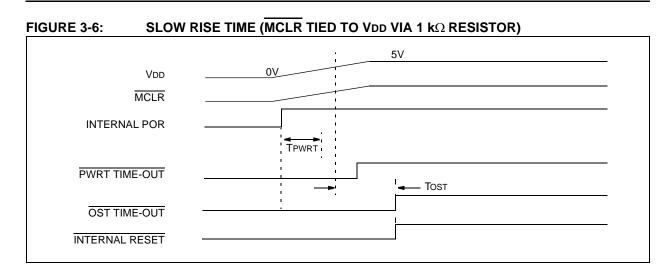


Welcome to E-XFL.COM

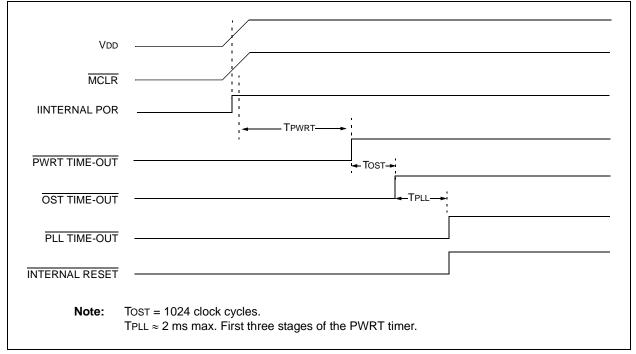
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

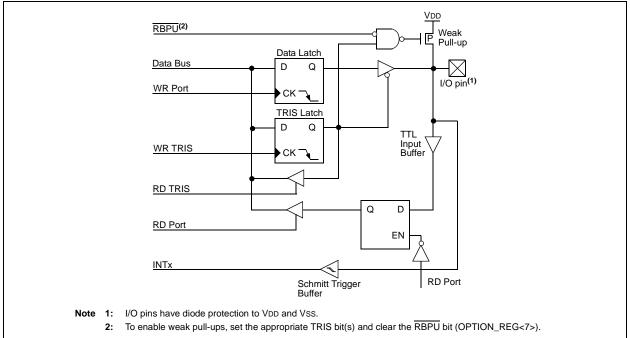

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.75K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6720-e-pt


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



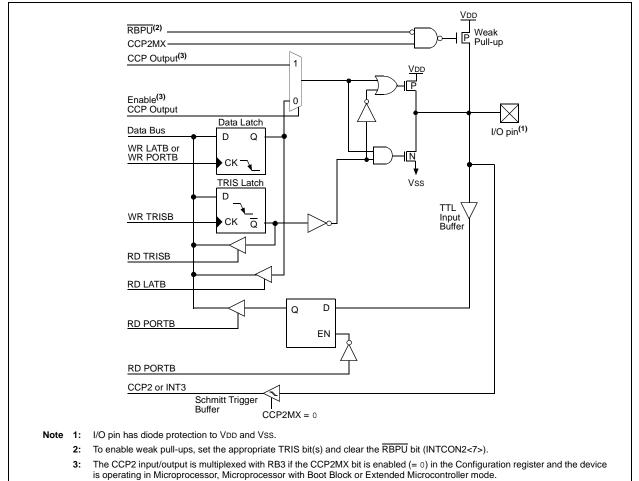

FIGURE 3-7:TIME-OUT SEQUENCE ON POR W/PLL ENABLED
(MCLR TIED TO VDD VIA 1 k Ω RESISTOR)

FIGURE 10-6: BLOCK DIAGRAM OF RB2:RB0 PINS

FIGURE 10-7: BLOCK DIAGRAM OF RB3 PIN

TABLE 10-3. PU											
Name	Bit#	Buffer	Function								
RB0/INT0	bit 0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input 0. Internal software programmable weak pull-up.								
RB1/INT1	bit 1	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input 1. Internal software programmable weak pull-up.								
RB2/INT2	bit 2	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input 2. Internal software programmable weak pull-up.								
RB3/INT3/CCP2 ⁽³⁾	bit 3	TTL/ST ⁽⁴⁾	Input/output pin or external interrupt input 3. Capture2 input/Compare2 output/PWM output (when CCP2MX configuration bit is enabled, all PIC18F8X20 operating modes except Microcontroller mode). Internal software programmable weak pull-up.								
RB4/KBI0	bit 4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.								
RB5/KBI1/PGM	bit 5	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Low-voltage ICSP enable pin.								
RB6/KBI2/PGC	bit 6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.								
RB7/KBI3/PGD	bit 7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.								

TABLE 10-3 PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

- 2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
- 3: RC1 is the alternate assignment for CCP2 when CCP2MX is not set (all operating modes except Microcontroller mode).
- 4: This buffer is a Schmitt Trigger input when configured as the CCP2 input.

INT2IE

TADLL	TABLE 10-4. SUMMART OF REGISTERS ASSOCIATED WITH FORTB												
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets			
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu			
LATB	LATB Data	a Output Re		xxxx xxxx	uuuu uuuu								
TRISB	PORTB D	ata Directior	n Register						1111 1111	1111 1111			
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 0000	0000 0000			
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	1111 1111	1111 1111			

INT1IE

INT3IF

INT2IF

INT1IF

TABLE 10-1. SUMMARY OF REGISTERS ASSOCIATED WITH PORTR

INT3IE x = unknown, u = unchanged. Shaded cells are not used by PORTB. Legend:

INTCON3

INT2IP

INT1IP

1100 0000

1100 0000

Name	Bit#	Buffer Type	Function
RD0/PSP0/AD0	bit 0	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 0 or address/data bus bit 0.
RD1/PSP1/AD1	bit 1	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 1 or address/data bus bit 1.
RD2/PSP2/AD2	bit 2	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 2 or address/data bus bit 2.
RD3/PSP3/AD3	bit 3	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 3 or address/data bus bit 3.
RD4/PSP4/AD4	bit 4	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 4 or address/data bus bit 4.
RD5/PSP5/AD5	bit 5	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 5 or address/data bus bit 5.
RD6/PSP6/AD6	bit 6	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 6 or address/data bus bit 6.
RD7/PSP7/AD7	bit 7	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 7 or address/data bus bit 7.

TABLE 10-7:PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

WAIT1

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus or Parallel Slave Port mode.

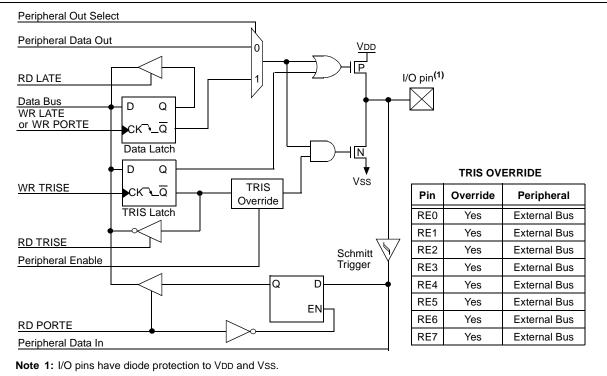
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
LATD	LATD Da	ata Outp		xxxx xxxx	uuuu uuuu					
TRISD	PORTD	Data Dir		1111 1111	1111 1111					
PSPCON	IBF	OBF	IBOV	PSPMODE	_	_	_	_	0000	0000

TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

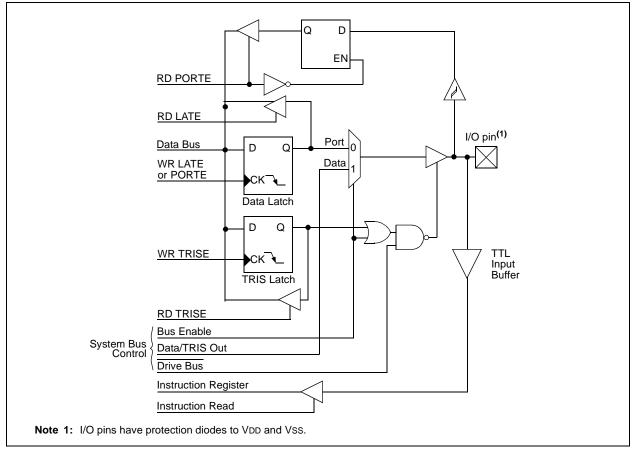
WAIT0

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

WM1


WM0

0-00 --00


0-00 --00

MEMCON EBDIS

FIGURE 10-11: PORTE BLOCK DIAGRAM IN I/O MODE

FIGURE 10-12: PORTE BLOCK DIAGRAM IN SYSTEM BUS MODE

© 2003-2013 Microchip Technology Inc.

EXAMPLE	12-1:	IMPLEMENTIN	IG A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE
RTCinit			
	MOVLW	0x80	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T10SC	; Asynchronous operation, external oscillator
	CLRF	secs	; Initialize timekeeping registers
	CLRF	mins	;
	MOVLW	.12	
	MOVWF	hours	
	BSF	PIE1, TMR1IE	; Enable Timer1 interrupt
	RETURN		
RTCisr			
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	
	INCF	secs, F	; Increment seconds
	MOVLW	.59	; 60 seconds elapsed?
	CPFSGT		
	RETURN		; No, done
	CLRF	secs	; Clear seconds
	INCF	mins, F	; Increment minutes
	MOVLW	.59	; 60 minutes elapsed?
	CPFSGT		
	RETURN		; No, done
	CLRF	mins	; clear minutes
	INCF	hours, F	; Increment hours
	MOVLW	.23	; 24 hours elapsed?
	CPFSGT		
	RETURN		; No, done
	MOVLW	.01	; Reset hours to 1
	MOVWF	hours	
	RETURN		; Done
J			

EXAMPLE 12-1: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,			e on other sets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000	0000	0000	0000
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0111	1111	0111	1111
TMR1L	Holding Reg	gister for the	Least Signi	ficant Byte o	of the 16-bit	TMR1 Regi	ster		xxxx	xxxx	uuuu	uuuu
TMR1H	Holding Reg	gister for the	Most Signif	icant Byte o	f the 16-bit T	MR1 Regis	ster		xxxx	xxxx	uuuu	uuuu
T1CON	RD16	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00	0000	u-uu	uuuu

 $\label{eq:logend: Legend: Legend: u = unchanged, -= unimplemented, read as `0`. Shaded cells are not used by the Timer1 module.$

16.0 CAPTURE/COMPARE/PWM (CCP) MODULES

The PIC18FXX20 devices all have five CCP (Capture/ Compare/PWM) modules. Each module contains a 16-bit register, which can operate as a 16-bit Capture register, a 16-bit Compare register or a Pulse Width Modulation (PWM) Master/Slave Duty Cycle register. Table 16-1 shows the timer resources of the CCP module modes.

The operation of all CCP modules are identical, with the exception of the special event trigger present on CCP1 and CCP2. For the sake of clarity, CCP module operation in the following sections is described with respect to CCP1. The descriptions can be applied (with the exception of the special event triggers) to any of the modules.

Note: Throughout this section, references to register and bit names that may be associated with a specific CCP module are referred to generically by the use of 'x' or 'y' in place of the specific module number. Thus, "CCPxCON" might refer to the control register for CCP1, CCP2, CCP3, CCP4 or CCP5.

REGISTER 16-1: CCPxCON REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 DCxB1:DCxB0: PWM Duty Cycle bit 1 and bit 0 for CCP Module x
 - Capture mode:
 - Unused.
 - Compare mode: Unused.

 - PWM mode:

These bits are the two Least Significant bits (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight Most Significant bits (DCx9:DCx2) of the duty cycle are found in CCPRxL.

bit 3-0 CCPxM3:CCPxM0: CCP Module x Mode Select bits

- 0000 = Capture/Compare/PWM disabled (resets CCPx module)
- 0001 = Reserved
- 0010 = Compare mode, toggle output on match (CCPxIF bit is set)
- 0011 = Reserved
- 0100 = Capture mode, every falling edge
- 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode, Initialize CCP pin Low; on compare match, force CCP pin High (CCPIF bit is set)
- 1001 = Compare mode, Initialize CCP pin High; on compare match, force CCP pin Low (CCPIF bit is set)
- 1010 = Compare mode, Generate software interrupt on compare match (CCPIF bit is set, (CCP pin is unaffected)
- 1011 = Compare mode, trigger special event (CCPIF bit is set):
 - For CCP1 and CCP2:
 - Timer1 or Timer3 is reset on event.
 - For all other modules:
 - CCPx pin is unaffected and is configured as an I/O port
 - (same as CCPxM<3:0> = 1010, above).
- 11xx = PWM mode

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

EQUATION 16-3:

PWM Resolution (max) = $\frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)}$

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

16.4.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 16-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

bits

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	$14 \rightarrow 10$	$12 \rightarrow 10$	10	8	7	6.58

TABLE 16-4: REGISTERS ASSOCIATED WITH PWM, TIMER2 AND TIMER4

Name	Bit 7	Bit 6 Bit 5		Bit 4 Bit 3		Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 0000	0000 0000
RCON	IPEN	_	_	RI	TO	PD	POR	BOR	01 11qq	0q qquu
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0111 1111	0111 1111
PIR2	_	CMIE		EEIE	BCLIF	LVDIF	TMR3IF	CCP2IF	-0-0 0000	0 0000
PIE2	_	CMIF		EEIF	BCLIE	LVDIE	TMR3IE	CCP2IE	-0-0 0000	0 0000
IPR2	_	CMIP		EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	-1-1 1111	1 1111
PIR3	_	_	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	00 0000	00 0000
PIE3		_	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	00 0000	00 0000
IPR3		_	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	11 1111	11 1111
TMR2	Timer2 Mo	dule Registe	r						0000 0000	0000 0000
PR2	Timer2 Mo	dule Period I	Register						1111 1111	1111 1111
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	uuuu uuuu
TMR4	Timer4 Re	gister							0000 0000	uuuu uuuu
PR4	Timer4 Per	riod Register							1111 1111	uuuu uuuu
T4CON	_	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	-000 0000	uuuu uuuu
CCPRxL ⁽¹⁾	Capture/Co	ompare/PWN	I Register x	(LSB)					xxxx xxxx	uuuu uuuu
CCPRxH ⁽¹⁾	Capture/Co	ompare/PWN	I Register x	(MSB)					xxxx xxxx	uuuu uuuu
CCPxCON ⁽¹⁾	—	_	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM, Timer2, or Timer4.
 Note 1: Generic term for all of the identical registers of this name for all CCP modules, where 'x' identifies the individual module (CCP1 through CCP5). Bit assignments and Reset values for all registers of the same generic name are identical.

17.4.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

The Baud Rate Generator used for the SPI mode operation is used to set the SCL clock frequency for either 100 kHz, 400 kHz or 1 MHz I²C operation. See **Section 17.4.7 "Baud Rate Generator"**, for more information.

A typical transmit sequence would go as follows:

- 1. The user generates a Start condition by setting the Start enable bit, SEN (SSPCON2<0>).
- 2. SSPIF is set. The MSSP module will wait the required start time before any other operation takes place.
- 3. The user loads the SSPBUF with the slave address to transmit.
- 4. Address is shifted out the SDA pin until all 8 bits are transmitted.
- 5. The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 7. The user loads the SSPBUF with eight bits of data.
- 8. Data is shifted out the SDA pin until all 8 bits are transmitted.
- The MSSP module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- 10. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- 11. The user generates a Stop condition by setting the Stop enable bit PEN (SSPCON2<2>).
- 12. Interrupt is generated once the Stop condition is complete.

18.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the TXx pin (RC6/TX1/CK1 or RG1/TX2/CK2), instead of being supplied internally in Master mode. TRISC<6> must be set for this mode. This allows the device to transfer or receive data while in Sleep mode. Slave mode is entered by clearing bit CSRC (TXSTAx<7>).

18.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXxIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREGx register will transfer the second word to the TSR and flag bit TXxIF will now be set.
- e) If enable bit TXxIE is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, set enable bit TXxIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 0000	0000 0000
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0111 1111	0111 1111
PIR3	_	_	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	00 0000	00 0000
PIE3	_		RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	00 0000	00 0000
IPR3	_	_	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	11 1111	11 1111
RCSTAx ⁽¹⁾	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
TXREGx ⁽¹⁾	USART Tra	ansmit Reg	gister						0000 0000	0000 0000
TXSTAx ⁽¹⁾	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRGx ⁽¹⁾	Baud Rate	Generato	r Register						0000 0000	0000 0000

TABLE 18-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: Register names generically refer to both of the identically named registers for the two USART modules, where 'x' indicates the particular module. Bit names and Reset values are identical between modules.

19.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 19-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

Note:	When	the	conversion	is	started,	the
	holding	g capa	acitor is disco	nne	ected from	the
	input p	in.				

To calculate the minimum acquisition time, Equation 19-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution. Example 19-1 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	120 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$5V \rightarrow Rss = 7 \ k\Omega$
Temperature	=	50°C (system max.)
VHOLD	=	0V @ time = 0

Note: When using external voltage references with the A/D converter, the source impedance of the external voltage references must be less than 20Ω to obtain the A/D performance specified in parameters A01-A06. Higher reference source impedances will increase both offset and gain errors. Resistive voltage dividers will not provide a sufficiently low source impedance.

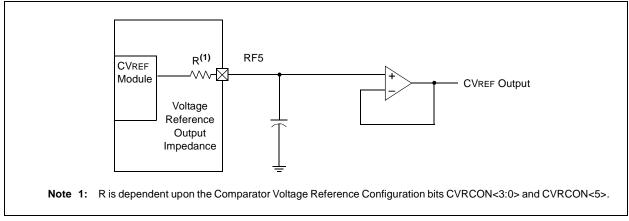
To maintain the best possible performance in A/D conversions, external VREF inputs should be buffered with an operational amplifier or other low output impedance circuit.

If deviating from the operating conditions specified for parameters A03-A06, the effect of parameter A50 (VREF input current) must be considered.

EQUATION 19-1: ACQUISITION TIME

TACQ	=	Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
------	---	---

= TAMP + TC + TCOFF


EQUATION 19-2: A/D MINIMUM CHARGING TIME

VHOLD) =	$(\text{VREF} - (\text{VREF}/2048)) \bullet (1 - e^{(-\text{Tc/Chold}(\text{Ric} + \text{Rss} + \text{Rs}))})$
or		
or TC	=	$-(120 \text{ pF})(1 \text{ k}\Omega + \text{Rss} + \text{Rs}) \ln(1/2047)$

EXAMPLE 19-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
Tempera	ature c	coefficient is only required for temperatures $> 25^{\circ}$ C.
TACQ	=	$2 \mu s + TC + [(Temp - 25^{\circ}C)(0.05 \mu s/^{\circ}C)]$
Тс	=	-CHOLD (RIC + RSS + RS) $\ln(1/2047)$ -120 pF (1 k Ω + 7 k Ω + 2.5 k Ω) $\ln(0.0004885)$ -120 pF (10.5 k Ω) $\ln(0.0004885)$ -1.26 μ s (-7.6241) 9.61 μ s
TACQ	=	2 μs + 9.61 μs + [(50°C – 25°C)(0.05 μs/°C)] 11.61 μs + 1.25 μs 12.86 μs

FIGURE 21-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000	0000 0000
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used with the comparator voltage reference.

BTG	Bit Toggle	e f		BOV	Branch if	Overflow			
Syntax:	[label] BTG f,b[,a]			Syntax:	[<i>label</i>] B	[<i>label</i>] BOV n			
Operands:	$0 \leq f \leq 255$			Operands:	-128 ≤ n ≤	127			
	0 ≤ b < 7 a ∈ [0,1]			Operation:	if Overflov (PC) + 2 +	v bit is '1' - 2n → PC			
Operation:	$(f < b >) \rightarrow f$			Status Affected:	None				
Status Affected:	None			Encoding:	1110	0100 nn	nn nnnn		
Encoding:	0111	bbba f	fff ffff	Description:	If the Ove	rflow bit is '1	' then the		
	escription: Bit 'b' in data memory location 'f' is inverted. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).			program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.					
Words:	1			Words:	1		•		
Cycles:	1								
Q Cycle Activity:				Cycles:	1(2)				
Q1	Q2	Q3	Q4	Q Cycle Activity If Jump:					
Decode	Read register 'f'	Process Data	Write register 'f'	Q1	Q2	Q3	Q4		
Example:	BTG F	PORTC, 4,	0	Decode	Read literal 'n'	Process Data	Write to PC		
Before Instru				No	No	No	No		
PORTC		101 [0x75]		operation	operation	operation	operation		
After Instruct	ion:			If No Jump: Q1	Q2	Q3	Q4		
PORTC	= 0110 0	101 [0x65]		Decode	Read literal	Process	No		
					'n'	Data	operation		
				Example:	HERE	BOV Jump)		
				Before Instru	uction				

PC

After Instruction

If Overflow = PC = If Overflow = PC =

=

1;

address (HERE)

address (Jump) 0; address (HERE+2)

© 2003-2013 Microchip	Technology Inc.
-----------------------	-----------------

26.2 DC Characteristics: Power-Down and Supply Current PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended) PIC18LF6520/8520/6620/8620/6720/8720 (Industrial) (Continued)

PIC18LF6520/8520/6620/8620/6720/8720 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
PIC18F65 (Indu	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Device	Тур	Max	Units		Conditio	ons			
	Supply Current (IDD) ^(2,3)									
	PIC18FX620, PIC18FX720	9.3	15	mA	-40°C					
		9.5	15	mA	+25°C	VDD = 4.2V				
		10	15	mA	+85°C		Fosc = 25 MHz,			
	PIC18FX620, PIC18FX720	11.8	20	mA	-40°C		EC oscillator			
		12	20	mA	+25°C	VDD = 5.0V				
		12	20	mA	+85°C					
	PIC18FX520	16	20	mA	-40°C					
		16	20	mA	+25°C	VDD = 4.2V				
		16	20	mA	+85°C		Fosc = 40 MHz,			
	PIC18FX520	19	25	mA	-40°C		EC oscillator			
		19	25	mA	+25°C	VDD = 5.0V				
		19	25	mA	+85°C					
D014	PIC18FX620/X720	15	55	μA	-40°C to +85°C	VDD = 2.0V	Fosc = 32 kHz, Timer1 as clock			
	PIC18LF8520	13	18	μA	-40°C to +85°C	VDD = 2.0V				
		20	35	μΑ	-40°C to +85°C	VDD = 3.0V	Fosc = 32 kHz, Timer1 as clock			
		50	85	μΑ	-40°C to +85°C	VDD = 5.0V				
	PIC18FXX20	—	200	μΑ	-40°C to +85°C	VDD = 4.2V	Fosc = 32 kHz,			
		_	250	μA	-40°C to +125°C	VDD = 4.2V	Timer1 as clock			

Legend: Shading of rows is to assist in readability of the table.

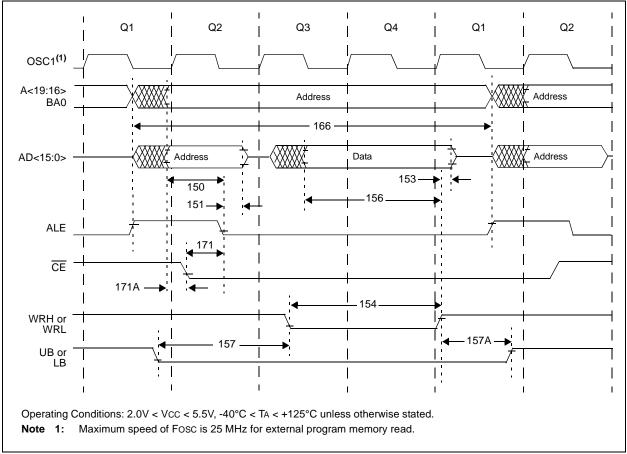
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

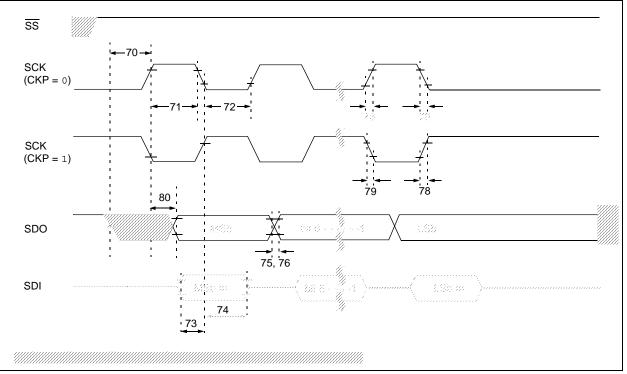
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.


3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

Param No.	Symbol	Characteristics	Min	Тур	Max	Units
150	TADV2ALL	Address Out Valid to ALE \downarrow (address setup time)	0.25 Tcy – 10		—	ns
151	TalL2adl	ALE \downarrow to Address Out Invalid (address hold time)	5		—	ns
155	TALL20EL	ALE \downarrow to $\overline{OE} \downarrow$	10	0.125 TCY	—	ns
160	TADZ2OEL	AD high-Z to $\overline{OE} \downarrow$ (bus release to \overline{OE})	0		—	ns
161	TOEH2ADD	OE ↑ to AD Driven	0.125 Tcy – 5		—	ns
162	TADV20EH	LS Data Valid before \overline{OE} \uparrow (data setup time)	20		—	ns
163	TOEH2ADL	OE ↑ to Data In Invalid (data hold time)	0		—	ns
164	TALH2ALL	ALE Pulse Width	—	0.25 TCY	—	ns
165	Toel2oeH	OE Pulse Width	0.5 Tcy – 5	0.5 TCY	_	ns
166	TalH2alH	ALE \uparrow to ALE \uparrow (cycle time)	—	Тсү	—	ns
167	TACC	Address Valid to Data Valid	0.75 Tcy – 25		—	ns
168	Toe	$\overline{OE}\downarrow$ to Data Valid			0.5 Tcy – 25	ns
169	TALL20EH	ALE ↓ to OE ↑	0.625 Tcy - 10		0.625 TCY + 10	ns
171	TALH2CSL	Chip Enable Active to ALE \downarrow	—	-	10	ns
171A	TUBL20EH	AD Valid to Chip Enable Active	0.25 Tcy – 20		_	ns

PROGRAM MEMORY WRITE TIMING DIAGRAM



© 2003-2013 Microchip Technology Inc.

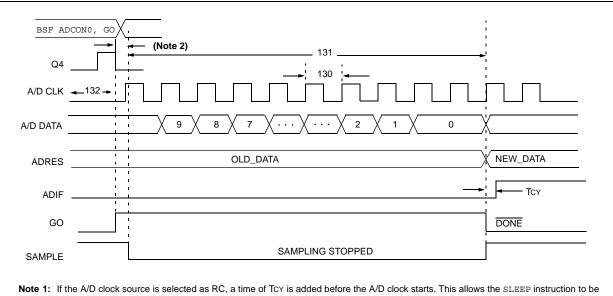
Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
62	TdtV2wrH	Data In Valid before $\overline{WR} \uparrow or \overline{C}$ (setup time)	20 25	_	ns ns	Extended Temp. range	
63	TwrH2dtl	\overline{WR} \uparrow or \overline{CS} \uparrow to Data–In	PIC18FXX20	20	_	ns	
		Invalid (hold time)	PIC18LFXX20	35	_	ns	VDD = 2.0V
64	TrdL2dtV	$\overline{RD} \downarrow and \overline{CS} \downarrow to Data-Out V$	alid	_	80	ns	
				_	90	ns	Extended Temp. range
65	TrdH2dtI	\overline{RD} \uparrow or $\overline{CS} \downarrow$ to Data–Out Inv	alid	10	30	ns	
66	TibfINH	Inhibit of the IBF flag bit being WR \uparrow or CS \uparrow	cleared from		3 TCY		

TABLE 26-14: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F8X20)

FIGURE 26-16: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

TABLE 26-25: A/D CONVERTER CHARACTERISTICS: PIC18FXX20 (INDUSTRIAL, EXTENDED) PIC18LFXX20 (INDUSTRIAL) PIC18LFXX20 (INDUSTRIAL)

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	—	_	10	bit	
A03	EIL	Integral Linearity Error	—	_	<±1	LSb	Vref = Vdd = 5.0V
A04	Edl	Differential Linearity Error	—	_	<±1	LSb	Vref = Vdd = 5.0V
A05	EG	Gain Error	—	_	<±1	LSb	Vref = Vdd = 5.0V
A06	EOFF	Offset Error	—	_	<±1.5	LSb	Vref = Vdd = 5.0V
A10	—	Monotonicity	gu	aranteed	j(2)		$VSS \leq VAIN \leq VREF$
A20 A20A	Vref	Reference Voltage (VREFH – VREFL)	1.8V 3V	_		V V	Vdd < 3.0V Vdd ≥ 3.0V
A21	Vrefh	Reference Voltage High	AVss	_	AVDD + 0.3V	V	
A22	Vrefl	Reference Voltage Low	AVss - 0.3V ⁽⁵⁾		Vrefh	V	
A25	VAIN	Analog Input Voltage	AVss - 0.3V ⁽⁵⁾		AVDD + 0.3V ⁽⁵⁾	V	VDD ≥ 2.5V (Note 3)
A30	ZAIN	Recommended Impedance of Analog Voltage Source	—	—	2.5	kΩ	(Note 4)
A50	IREF	VREF Input Current (Note 1)	—	_	5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.


Note 1: Vss \leq Vain \leq Vref

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: For VDD < 2.5V, VAIN should be limited to <.5 VDD.

4: Maximum allowed impedance for analog voltage source is 10 kΩ. This requires higher acquisition times.

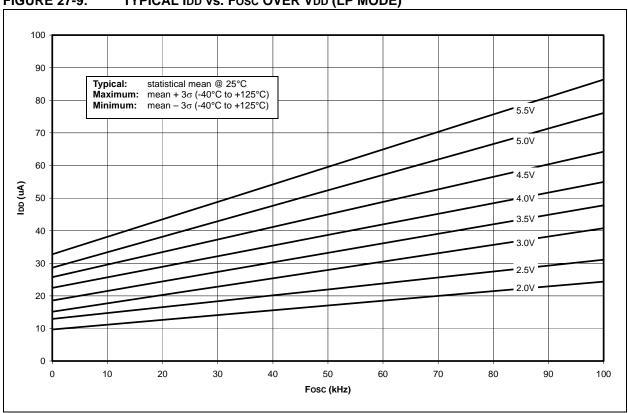

5: IVDD – AVDDI must be <3.0V and IAVSS – VSSI must be <0.3V.

FIGURE 26-26: A/D CONVERSION TIMING

Note 1: If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.

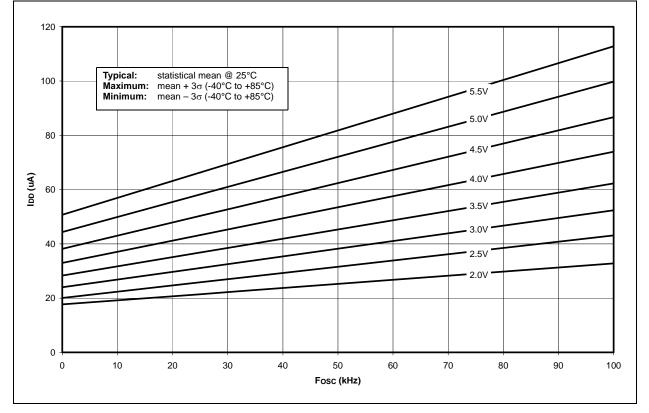


FIGURE 27-9: TYPICAL IDD vs. Fosc OVER VDD (LP MODE)

with PLL)27
Transition Between Timer1 and OSC1 (HS, XT, LP) . 26
Transition Between Timer1 and OSC1 (RC, EC) 27
Transition from OSC1 to Timer1 Oscillator
USART Asynchronous Reception
USART Asynchronous Transmission
USART Asynchronous Transmission (Back to Back)
205
USART Synchronous Receive (Master/Slave) 337
USART SynchronousTransmission (Master/Slave) . 337
Wake-up from Sleep via Interrupt 253
TRISE Register
PSPMODE Bit 111, 128
TSTFSZ
Two-Word Instructions
Example Cases 46
TXSTA Register
BRGH Bit

Universal Synchronous Asynchronous Receiver Transmitter.

U

See USART	
USART	
Asynchronous Mode	
Associated Registers, Receive	. 207
Associated Registers, Transmit	
Receiver	
Setting up 9-bit Mode with Address Detect	. 206
Transmitter	
Baud Rate Generator (BRG)	. 200
Associated Registers	
Baud Rate Error, Calculating	
Baud Rate Formula	
Baud Rates for Asynchronous Mode (BRGH = 202	:0).
Baud Rates for Asynchronous Mode (BRGH = 203	:1).
Baud Rates for Synchronous Mode	. 201
High Baud Rate Select (BRGH Bit)	. 200
Sampling	. 200
Serial Port Enable (SPEN Bit)	. 197
Synchronous Master Mode	. 208
Associated Registers, Reception	
Associated Registers, Transmit	
Reception	.210
Transmission	
Synchronous Slave Mode	
Associated Registers, Receive	
Associated Registers, Transmit	
Reception	
Transmission	
USART Synchronous Receive Requirements	
USART Synchronous Transmission Requirements	. 337
V	
Voltage Reference Specifications	. 315
W	
Wake-up from Sleep239	, 252
Using Interrupts	
Watchdog Timer (WDT)239	
Associated Registers	
Control Register	. 250
Postscaler	
Programming Considerations	. 250

Time-out Period	250
WCOL	185
WCOL Status Flag	. 185, 186, 187, 190
WDT Postscaler	250
WWW Address	375
WWW, On-Line Support	5
х	
XORLW	299
XORWF	300