

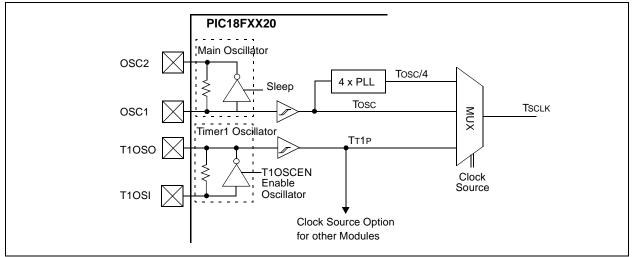
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details					
Product Status	Active				
Core Processor	PIC				
Core Size	8-Bit				
Speed	25MHz				
Connectivity	I ² C, SPI, UART/USART				
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT				
Number of I/O	52				
Program Memory Size	128KB (64K x 16)				
Program Memory Type	FLASH				
EEPROM Size	1K x 8				
RAM Size	3.75K x 8				
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V				
Data Converters	A/D 12x10b				
Oscillator Type	External				
Operating Temperature	-40°C ~ 85°C (TA)				
Mounting Type	Surface Mount				
Package / Case	64-TQFP				
Supplier Device Package	64-TQFP (10x10)				
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6720-i-pt				

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.6 Oscillator Switching Feature

The PIC18FXX20 devices include a feature that allows the system clock source to be switched from the main oscillator to an alternate low-frequency clock source. For the PIC18FXX20 devices, this alternate clock source is the Timer1 oscillator. If a low-frequency crystal (32 kHz, for example) has been attached to the Timer1 oscillator pins and the Timer1 oscillator has been enabled, the device can switch to a low-power execution mode. Figure 2-7 shows a block diagram of the system clock sources. The clock switching feature is enabled by programming the Oscillator Switching Enable (OSCSEN) bit in Configuration Register 1H to a '0'. Clock switching is disabled in an erased device. See Section 12.0 "Timer1 Module" for further details of the Timer1 oscillator. See Section 23.0 "Special Features of the CPU" for Configuration register details.

FIGURE 2-7: DEVICE CLOCK SOURCES

4.3 Fast Register Stack

A "fast interrupt return" option is available for interrupts. A Fast Register Stack is provided for the Status, WREG and BSR registers and is only one in depth. The stack is not readable or writable and is loaded with the current value of the corresponding register when the processor vectors for an interrupt. The values in the registers are then loaded back into the working registers, if the FAST RETURN instruction is used to return from the interrupt.

A low or high priority interrupt source will push values into the stack registers. If both low and high priority interrupts are enabled, the stack registers cannot be used reliably for low priority interrupts. If a high priority interrupt occurs while servicing a low priority interrupt, the stack register values stored by the low priority interrupt will be overwritten.

If high priority interrupts are not disabled during low priority interrupts, users must save the key registers in software during a low priority interrupt.

If no interrupts are used, the fast register stack can be used to restore the Status, WREG and BSR registers at the end of a subroutine call. To use the fast register stack for a subroutine call, a FAST CALL instruction must be executed.

Example 4-1 shows a source code example that uses the fast register stack.

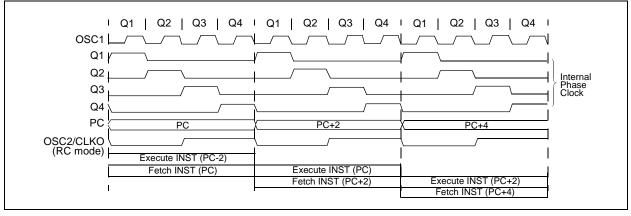
EXAMPLE 4-1: FAST REGISTER STACK CODE EXAMPLE

CALL SUB1, FAST	;STATUS, WREG, BSR ;SAVED IN FAST REGISTER ;STACK
SUB1	
RETURN FAST	;RESTORE VALUES SAVED ;IN FAST REGISTER STACK

FIGURE 4-4: CLOCK/INSTRUCTION CYCLE

4.4 PCL, PCLATH and PCLATU

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide. The low byte is called the PCL register; this register is readable and writable. The high byte is called the PCH register. This register contains the PC<15:8> bits and is not directly readable or writable; updates to the PCH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable; updates to the PCH register. The upper byte is called PCU. This register contains the PC<20:16> bits and is not directly readable or writable; updates to the PCU register may be performed through the PCLATU register.


The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the LSB of the PCL is fixed to a value of '0'. The PC increments by 2 to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

The contents of PCLATH and PCLATU will be transferred to the program counter by an operation that writes PCL. Similarly, the upper two bytes of the program counter will be transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 4.8.1** "**Computed GOTO**").

4.5 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 4-4.

4.7.1 TWO-WORD INSTRUCTIONS

The PIC18FXX20 devices have four two-word instructions: MOVFF, CALL, GOTO and LFSR. The second word of these instructions has the 4 MSBs set to '1's and is a special kind of NOP instruction. The lower 12 bits of the second word contain data to be used by the instruction. If the first word of the instruction is executed, the data in the second word is accessed. If the second word of the instruction is executed by itself (first word was skipped), it will execute as a NOP. This action is necessary when the two-word instruction is preceded by a conditional instruction that changes the PC. A program example that demonstrates this concept is shown in Example 4-3. Refer to **Section 24.0 "Instruction Set Summary"** for further details of the instruction set.

EXAMPLE 4-3:	TWO-WORD INSTRUCTIONS

CASE	1:									
Object	Code			Source Co	Source Code					
0110	0110	0000	0000	TSTFSZ	REG1	; is RAM location 0?				
1100	0001	0010	0011	MOVFF	REG1, REG2	; No, execute 2-word instruction				
1111	0100	0101	0110			; 2nd operand holds address of REG2				
0010	0100	0000	0000	ADDWF	REG3	; continue code				
CASE	2:									
Object	Code			Source Code						
0110	0110	0000	0000	TSTFSZ	REG1	; is RAM location 0?				
1100	0001	0010	0011	MOVFF	REG1, REG2	; Yes				
1111	0100	0101	0110			; 2nd operand becomes NOP				
0010	0100	0000	0000	ADDWF	REG3	; continue code				

4.8 Look-up Tables

Look-up tables are implemented two ways. These are:

- Computed GOTO
- Table Reads

4.8.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL).

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW 0xnn instructions. WREG is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW 0xnn instructions, that returns the value 0xnn to the calling function.

The offset value (value in WREG) specifies the number of bytes that the program counter should advance.

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

4.8.2 TABLE READS/TABLE WRITES

A better method of storing data in program memory allows 2 bytes of data to be stored in each instruction location.

Look-up table data may be stored 2 bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) specifies the byte address and the Table Latch (TABLAT) contains the data that is read from, or written to program memory. Data is transferred to/from program memory, one byte at a time.

A description of the table read/table write operation is shown in **Section 5.0 "Flash Program Memory"**.

5.2.2 TABLAT – TABLE LATCH REGISTER

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch is used to hold 8-bit data during data transfers between program memory and data RAM.

5.2.3 TBLPTR – TABLE POINTER REGISTER

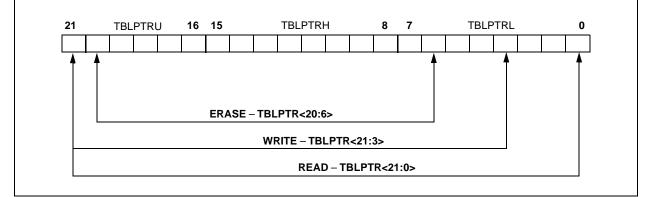
The Table Pointer (TBLPTR) addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the User ID and the configuration bits.

The Table Pointer, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways, based on the table operation. These operations are shown in Table 5-1. These operations on the TBLPTR only affect the low-order 21 bits.

5.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the Table Pointer determine which byte is read from program memory into TABLAT.


When a TBLWT is executed, the three LSbs of the Table Pointer (TBLPTR<2:0>) determine which of the eight program memory holding registers is written to. When the timed write to program memory (long write) begins, the 19 MSbs of the Table Pointer, TBLPTR (TBLPTR<21:3>), will determine which program memory block of 8 bytes is written to. For more detail, see Section 5.5 "Writing to Flash Program Memory".

When an erase of program memory is executed, the 16 MSbs of the Table Pointer (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 5-3 describes the relevant boundaries of TBLPTR based on Flash program memory operations.

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 5-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

6.0 EXTERNAL MEMORY **INTERFACE**

Note:	The	External	Me	mory	Interface	is	not
	imple devic		on	PIC1	8F6X20	(64-	·pin)

The External Memory Interface is a feature of the PIC18F8X20 devices that allows the controller to access external memory devices (such as Flash, EPROM, SRAM, etc.) as program or data memory.

The physical implementation of the interface uses 27 pins. These pins are reserved for external address/data bus functions; they are multiplexed with I/O port pins on four ports. Three I/O ports are multiplexed with the address/data bus, while the fourth port is multiplexed with the bus control signals. The I/O port functions are enabled when the EBDIS bit in the MEMCON register is set (see Register 6-1). A list of the multiplexed pins and their functions is provided in Table 6-1.

As implemented in the PIC18F8X20 devices, the interface operates in a similar manner to the external memory interface introduced on PIC18C601/801 microcontrollers. The most notable difference is that the interface on PIC18F8X20 devices only operates in 16-bit modes. The 8-bit mode is not supported.

For a more complete discussion of the operating modes that use the external memory interface, refer to Section 4.1.1 "PIC18F8X20 Program Memory Modes".

R/W-0

U-0

R/W-0

6.1 **Program Memory Modes and the External Memory Interface**

As previously noted, PIC18F8X20 controllers are capable of operating in any one of four program memory modes, using combinations of on-chip and external program memory. The functions of the multiplexed port pins depend on the program memory mode selected, as well as the setting of the EBDIS bit.

In Microprocessor Mode, the external bus is always active and the port pins have only the external bus function.

In Microcontroller Mode, the bus is not active and the pins have their port functions only. Writes to the MEMCOM register are not permitted.

In Microprocessor with Boot Block or Extended Microcontroller Mode, the external program memory bus shares I/O port functions on the pins. When the device is fetching or doing table read/table write operations on the external program memory space, the pins will have the external bus function. If the device is fetching and accessing internal program memory locations only, the EBDIS control bit will change the pins from external memory to I/O port functions. When EBDIS = 0, the pins function as the external bus. When EBDIS = 1, the pins function as I/O ports.

Note: Maximum Fosc for the PIC18FX520 is limited to 25 MHz when using the external memory interface.

R/W-0

R/W-0

U-0

	EBDIS	—	WAIT1	WAIT0	—	—	WM1	WM0	
	bit7	L	I	1		I		bit0	
bit 7	EBDIS: Ex	EBDIS: External Bus Disable bit							
		 1 = External system bus disabled, all external bus drivers are mapped as I/O ports 0 = External system bus enabled and I/O ports are disabled 							
bit 6	Unimplem	Unimplemented: Read as '0'							
bit 5-4	WAIT<1:0>: Table Reads and Writes Bus Cycle Wait Count bits 11 = Table reads and writes will wait 0 TcY 10 = Table reads and writes will wait 1 TcY 01 = Table reads and writes will wait 2 TcY 00 = Table reads and writes will wait 3 TcY								
bit 3-2	Unimplemented: Read as '0'								
bit 1-0	WM<1:0>: TBLWRT Operation with 16-bit Bus bits								
	 1x = Word Write mode: TABLAT<0> and TABLAT<1> word output, WRH active when TABLAT<1> written 01 = Byte Select mode: TABLAT data copied on both MSB and LSB, WRH and (UB or LB) will activate 								
	00 = Byte Write mode: TABLAT data copied on both MSB and LSB, WRH or WRL will activate								
	Legend:								
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	nplemented	bit, read as	'0'	
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown	

R/W-0

U-0

REGISTER 6-1: MEMCON REGISTER

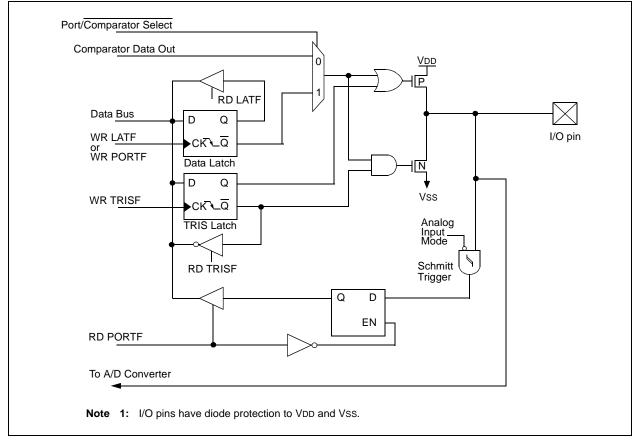
REGISTER 7-1:	EECON1 F	REGISTER	(ADDRES	S FA6h)				
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD
	bit 7							bit 0
bit 7		-			ry Select bit			
		s Flash prog s data EEPR						
bit 6		•			guration Sel	lect bit		
		s configurati s Flash prog						
bit 5	Unimplem	ented: Read	as '0'					
bit 4		sh Row Eras						
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write only 						hand	
bit 3	WRERR: Flash Program/Data EEPROM Error Flag bit							
	 1 = A write operation is prematurely terminated (any MCLR or any WDT Reset during self-timed programming in normal operation) 0 = The write operation completed 							ation)
	Note: When a WRERR occurs, the EEPGD or FREE bits are not cleared. This allows tracing of the error condition.							
bit 2	WREN: Fla	ish Program	/Data EEPR	OM Write E	nable bit			
		write cycles write cycles	•	•				
bit 1	WR: Write	Control bit						
	 1 = Initiates a data EEPROM erase/write cycle, or a program memory erase cycle or write cycle. (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle to the EEPROM is complete 							
bit 0	RD: Read	Control bit						
	can on		ot cleared) ir	n software. F	ne cycle. RD RD bit canno			
	Legend:							
	P - Roodo	hla hit	$\lambda \Lambda I = \lambda \Lambda I$	ritable bit		nlomontod	hit road as	·^'

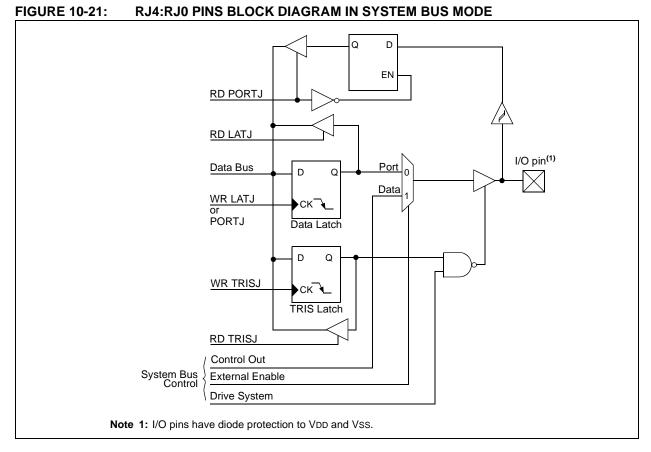
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

10.6 PORTF, LATF and TRISF Registers

PORTF is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISF. Setting a TRISF bit (= 1) will make the corresponding PORTF pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISF bit (= 0) will make the corresponding PORTF pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATF register, read and write the latched output value for PORTF.


PORTF is multiplexed with several analog peripheral functions, including the A/D converter inputs and comparator inputs, outputs and voltage reference.


- Note 1: On a Power-on Reset, the RF6:RF0 pins are configured as inputs and read as '0'.
 - **2:** To configure PORTF as digital I/O, turn off comparators and set ADCON1 value.

EXAMPLE 10-6: INITIALIZING PORTF

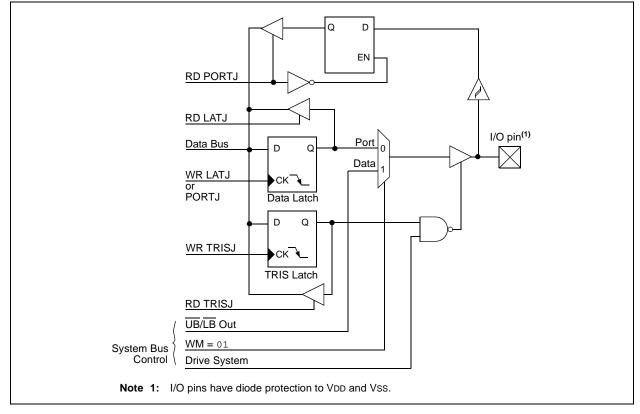
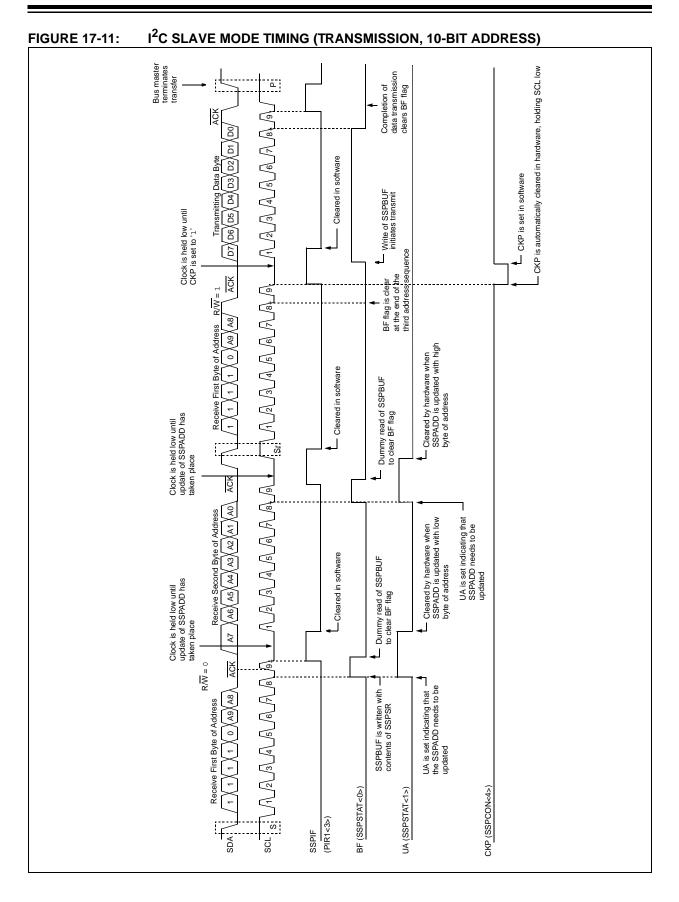

CLRF	PORTF	; Initialize PORTF by
		; clearing output
		; data latches
CLRF	LATF	; Alternate method
		; to clear output
		; data latches
MOVLW	0x07	;
MOVWF	CMCON	; Turn off comparators
MOVLW	0x0F	i
MOVWF	ADCON1	; Set PORTF as digital I/O
MOVLW	0xCF	; Value used to
		; initialize data
		; direction
MOVWF	TRISF	; Set RF3:RF0 as inputs
		; RF5:RF4 as outputs
		; RF7:RF6 as inputs

FIGURE 10-13: PORTF RF1/AN6/C2OUT, RF2/AN7/C1OUT PINS BLOCK DIAGRAM

FIGURE 10-22: RJ7:RJ6 PINS BLOCK DIAGRAM IN SYSTEM BUS MODE

Name	Bit#	Buffer Type	Function
RJ0/ALE	bit 0	ST	Input/output port pin or address latch enable control for external memory interface.
RJ1/OE	bit 1	ST	Input/output port pin or output enable control for external memory interface.
RJ2/WRL	bit 2	ST	Input/output port pin or write low byte control for external memory interface.
RJ3/WRH	bit 3	ST	Input/output port pin or write high byte control for external memory interface.
RJ4/BA0	bit 4	ST	Input/output port pin or byte address 0 control for external memory interface.
RJ5/CE	bit 5	ST	Input/output port pin or chip enable control for external memory interface.
RJ6/LB	bit 6	ST	Input/output port pin or lower byte select control for external memory interface.
RJ7/UB	bit 7	ST	Input/output port pin or upper byte select control for external memory interface.


TABLE 10-17: PORTJ FUNCTIONS

Legend: ST = Schmitt Trigger input

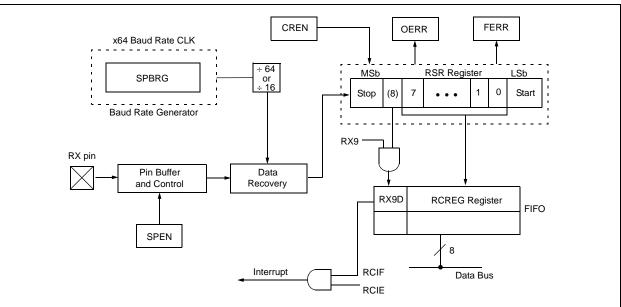
TABLE 10-18: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTJ	Read PORTJ pin/Write PORTJ Data Latch					xxxx xxxx	uuuu uuuu			
LATJ	LATJ Data Output Register				xxxx xxxx	uuuu uuuu				
TRISJ	Data Dir	ection Co	ntrol Regi	ster for P	ORTJ				1111 1111	1111 1111

Legend: x = unknown, u = unchanged

18.2.2 USART ASYNCHRONOUS RECEIVER

The USART receiver block diagram is shown in Figure 18-4. The data is received on the pin (RC7/RX1/DT1 or RG2/RX2/DT2) and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.


To set up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH (Section 18.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, set enable bit RCxIE.
- 4. If 9-bit reception is desired, set bit RX9.
- 5. Enable the reception by setting bit CREN.
- 6. Flag bit RCxIF will be set when reception is complete and an interrupt will be generated if enable bit RCxIE was set.
- 7. Read the RCSTAx register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

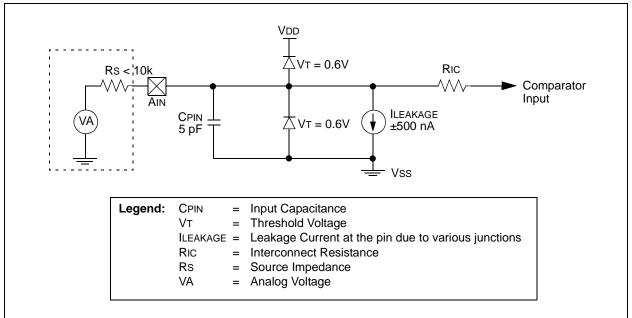
18.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

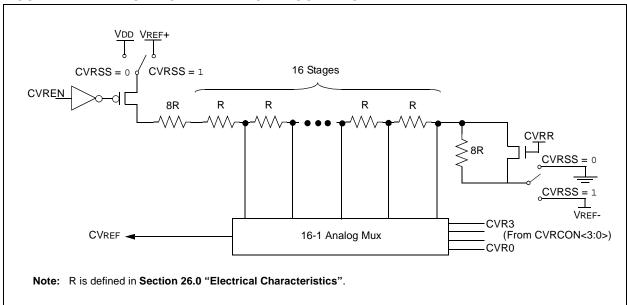
- 1. Initialize the SPBRGx register for the appropriate baud rate. If a high-speed baud rate is required, set the BRGH bit.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCxIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCxIE and GIE bits are set.
- 8. Read the RCSTAx register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREGx to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

FIGURE 18-4: USART RECEIVE BLOCK DIAGRAM

20.7 Comparator Operation During Sleep


When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional, if enabled. This interrupt will wake-up the device from Sleep mode, when enabled. While the comparator is powered up, higher Sleep currents than shown in the power-down current specification will occur. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM<2:0> = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

20.8 Effects of a Reset


A device Reset forces the CMCON register to its Reset state, causing the comparator module to be in the Comparator Reset mode, CM<2:0> = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at Reset time. The comparators will be powered down during the Reset interval.

20.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 20-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

FIGURE 20-4: COMPARATOR ANALOG INPUT MODEL

FIGURE 21-1: VOLTAGE REFERENCE BLOCK DIAGRAM

21.2 Voltage Reference Accuracy/Error

The full range of voltage reference cannot be realized due to the construction of the module. The transistors on the top and bottom of the resistor ladder network (Figure 21-1) keep CVREF from approaching the reference source rails. The voltage reference is derived from the reference source; therefore, the CVREF output changes with fluctuations in that source. The tested absolute accuracy of the voltage reference can be found in **Section 26.0 "Electrical Characteristics"**.

21.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the CVRCON register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

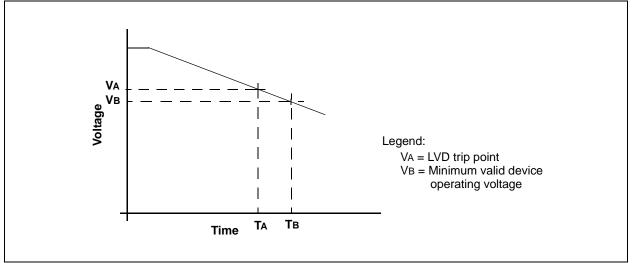
21.4 Effects of a Reset

A device Reset disables the voltage reference by clearing bit CVREN (CVRCON<7>). This Reset also disconnects the reference from the RA2 pin by clearing bit CVROE (CVRCON<6>) and selects the high-voltage range by clearing bit CVRR (CVRCON<5>). The VRSS value select bits, CVRCON<3:0>, are also cleared.

21.5 Connection Considerations

The voltage reference module operates independently of the comparator module. The output of the reference generator may be connected to the RF5 pin if the TRISF<5> bit is set and the CVROE bit is set. Enabling the voltage reference output onto the RF5 pin, configured as a digital input, will increase current consumption. Connecting RF5 as a digital output with VRSS enabled will also increase current consumption.


The RF5 pin can be used as a simple D/A output with limited drive capability. Due to the limited current drive capability, a buffer must be used on the voltage reference output for external connections to VREF. Figure 21-2 shows an example buffering technique.


22.0 LOW-VOLTAGE DETECT

In many applications, the ability to determine if the device voltage (VDD) is below a specified voltage level is a desirable feature. A window of operation for the application can be created, where the application software can do "housekeeping tasks" before the device voltage exits the valid operating range. This can be done using the Low-Voltage Detect module.

This module is a software programmable circuitry, where a device voltage trip point can be specified. When the voltage of the device becomes lower then the specified point, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to that interrupt source. The Low-Voltage Detect circuitry is completely under software control. This allows the circuitry to be "turned off" by the software, which minimizes the current consumption for the device.

Figure 22-1 shows a possible application voltage curve (typically for batteries). Over time, the device voltage decreases. When the device voltage equals voltage VA, the LVD logic generates an interrupt. This occurs at time TA. The application software then has the time, until the device voltage is no longer in valid operating range, to shut down the system. Voltage point VB is the minimum valid operating voltage specification. This occurs at time TB. The difference TB – TA is the total time for shutdown.

The block diagram for the LVD module is shown in Figure 22-2. A comparator uses an internally generated reference voltage as the set point. When the selected tap output of the device voltage crosses the set point (is lower than), the LVDIF bit is set.

Each node in the resistor divider represents a "trip point" voltage. The "trip point" voltage is the minimum supply voltage level at which the device can operate before the LVD module asserts an interrupt. When the supply voltage is equal to the trip point, the voltage tapped off of the resistor array is equal to the 1.2V internal reference voltage generated by the voltage reference module. The comparator then generates an interrupt signal, setting the LVDIF bit. This voltage is software programmable to any one of 16 values (see Figure 22-2). The trip point is selected by programming the LVDL3:LVDL0 bits (LVDCON<3:0>).

Syntax:[label]CPFSGTf [,a]Operands: $0 \le f \le 255$ $a \in [0,1]$ Operation:(f) - (W), skip if (f) > (W) (unsigned comparison)Status Affected:NoneEncoding: 0110 $010a$ ffffDescription:Compares the contents of data memory location f' to the contents of W by performing an unsigned subtraction.If the contents of 'f are greater than the contents of 'f are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).Words:1Cycles:1(2) Note:Note:3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity:Q1Q1Q2Q3Q4NoNoNo operationIf skip:Q1Q2Q1Q2Q3Q4NoNo operationNoNoNo operationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNo operationNoNo operationNo operationMoNo operationNo operationMoNo operationNo operationMoNo operationNo operationMoNo operationNo operationMoNo operationNo operationPC	CPF	SGT	Compare	f with W, s	kip if f > W					
$a \in [0,1]$ Operation: (f) – (W), skip if (f) > (W) (unsigned comparison) Status Affected: None Encoding: 0110 010a ffff ffff Description: Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is 'o', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default). Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4	Synt	ax:	[label] C	CPFSGT f	[,a]					
skip if (f) > (W) (unsigned comparison) Status Affected: None Encoding: 0110 010a ffff ffff Description: Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default). Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read Process No operation operation If skip: Q1 Q2 Q3 Q4 No No No No No No No No No No	Ope	rands:		5						
Encoding:0110010affffffffDescription:Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of WEG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).Words:1Cycles:1(2) Note:Q1Q2Q3Q4Decode register 'f'DecodeRead register 'f'DataoperationIf skip:Q1Q2Q3Q4DecodeRead register 'f'DataoperationIf skip and followed by 2-word instruction:Q1Q2Q3Q4Q4NoNo operationIf skip and followed by 2-word instruction:Q1Q2Q3Q4Q4No operationNo operationIf skip and followed by 2-word instruction:Q1Q2Q3Q4Q4No operationNo operationNo operationNo operationNo operationNo operationNo operationNo operationNo operationNo operationNo operationNo operationNo operationNo operationNo operationNo operationNo operationNo operation <td>Ope</td> <td>ration:</td> <td>skip if (f) ></td> <td></td> <td>۱)</td>	Ope	ration:	skip if (f) >		۱)					
Description: Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default). Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Read register 'f' Data operation No No No No No No No No No No	Statu	us Affected:	None	None						
$\begin{array}{rcl} & \mbox{memory location 'f' to the contents} \\ & \mbox{of W by performing an unsigned} \\ & \mbox{subtraction.} \\ & \mbox{If the contents of 'f' are greater than} \\ & \mbox{the contents of WREG, then the} \\ & \mbox{fetched instruction is discarded and} \\ & \mbox{a NOP is executed instead, making} \\ & \mbox{this a two-cycle instruction. If 'a' is} \\ & \mbox{'o', the Access Bank will be} \\ & \mbox{selected, overriding the BSR value.} \\ & \mbox{If 'a' = 1, then the bank will be} \\ & \mbox{selected as per the BSR value} \\ & \mbox{(default).} \\ \\ \hline & \mbox{Vords: 1} \\ \hline \\ & \mbox{Cycle Activity:} \\ \hline \\ & \mbox{Q 1 } \mbox{Q 2 } \mbox{Q 3 } \mbox{Q 4} \\ \hline \\ & \mbox{Decode } \mbox{Read } \mbox{Process } \mbox{No} \\ & \mbox{operation} \mbox{operation} \\ \hline \\ & \mbox{If skip:} \\ \hline \\ & \mbox{Q 1 } \mbox{Q 2 } \mbox{Q 3 } \mbox{Q 4} \\ \hline \\ & \mbox{Decode } \mbox{Read } \mbox{Process } \mbox{No} \\ & \mbox{operation} \mbox{operation} \mbox{operation} \\ \hline \\ & \mbox{If skip:} \\ \hline \\ & \mbox{Q 1 } \mbox{Q 2 } \mbox{Q 3 } \mbox{Q 4} \\ \hline \\ & \mbox{Decode } \mbox{No } \mbox{No } \mbox{No} \\ & \mbox{operation} \mbox{operation} \mbox{operation} \mbox{operation} \mbox{operation} \\ \hline \\ & \mbox{If skip and followed by 2-word instruction:} \\ \hline \\ & \mbox{Q 1 } \mbox{Q 2 } \mbox{Q 3 } \mbox{Q 4} \\ \hline \\ & \mbox{No } \mbox{No } \mbox{No } \mbox{No} \mbox{operation} \mb$	Enco	oding:	0110	010a fi	ff ffff					
$(default).$ Words: 1 Cycles: 1(2) Note: 3 cycles if skip and followed by a 2-word instruction. Q Cycle Activity: $\begin{array}{c c c c c c c c c c c c c c c c c c c $	Des	cription:	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be							
Cycles:1(2)Note:3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity: $Q1$ Q1Q2Q3Q4DecodeRead register 'f'DataoperationIf skip: $Q1$ Q1Q2Q3Q4No </td <td>10/</td> <td>da .</td> <td></td> <td>·</td> <td></td>	10/	da .		·						
Note: 3 cycles if skip and followed by a 2-word instruction.Q Cycle Activity:Q1Q2Q3Q4DecodeRead register 'f'ProcessNo operationIf skip:Q1Q2Q3Q4NoNoNoNo operationNo operationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNo operationNo operationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNo operationNo operationIf skip and followed by 2-word instruction:Q1Q2Q3Q4NoNoNo operationNo operationNoNoNo operationNo operationQ1Q2Q3Q4NoNo operationNo operationNoNoNo operationNo operationNoNo operationNo operationNoNoNo operationNo operationNoNo operationNo operationNoNo operationNo operationExample:HERE GREATERCPFSGT REG, 0 NGREATERPC=Address (HERE) W =PC=Address (GREATER) (f REGIf REG>W;			-							
$\begin{tabular}{ c c c c c c c } \hline Decode & Read & Process & No & operation \\ \hline register 'f' & Data & operation \\ \hline If skip: & & & & & & \\ \hline Q1 & Q2 & Q3 & Q4 & & \\ \hline No & No & No & No & & \\ \hline operation & operation & operation & operation \\ \hline If skip and followed by 2-word instruction: & & & \\ \hline Q1 & Q2 & Q3 & Q4 & & \\ \hline No & No & No & No & & \\ \hline operation & operation & operation & operation & \\ \hline No & No & No & No & & \\ \hline operation & operation & operation & operation & \\ \hline No & No & No & No & & \\ \hline operation & operation & operation & operation & \\ \hline example: & HERE & CPFSGT REG, 0 & \\ \hline NGREATER & : & & \\ \hline Before Instruction & & \\ \hline PC & = & Address & (HERE) & \\ \hline W & = & ? & \\ \hline After Instruction & & \\ \hline If REG & > & W; & \\ \hline PC & = & Address & (GREATER) & \\ \hline If REG & & & & W; & \\ \hline example & & & & \\ \hline \end{array}$	QC		by	a 2-word ir	struction.					
If skip: Q1 Q2 Q3 Q4 No No No No operation operation operation If skip and followed by 2-word instruction: Q1 Q2 Q3 Q4 No No No No No operation operation operation No No No No No operation operation operation No No No No No operation operation No No No No No operation operation Example: HERE CPFSGT REG, 0 NGREATER : GREATER : GREATER : Before Instruction PC = Address (HERE) W = ? After Instruction If REG > W; PC = Address (GREATER) If REG \leq W;		- •								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			register 'f'	Data	operation					
$\begin{tabular}{ c c c c c c c } \hline No & No & operation & operato$	If sł	· _	00	00	04					
$\begin{tabular}{ c c c c c c } \hline $operation$ & operation$ & operation$ & operation$ & operation$ \\ \hline If skip$ and followed by 2-word instruction: \\ \hline $Q1$ & $Q2$ & $Q3$ & $Q4$ \\ \hline No & No & No & No & $operation$ & operation$ & operation$ & $operation$ & o										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-						
No No No No operation operation operation operation No No No No operation operation operation operation Second No No No Operation operation operation operation Example: HERE CPFSGT REG, 0 MGREATER : GREATER : Before Instruction PC = Address (HERE) W = ? After Instruction If REG > W; PC = Address (GREATER) If REG W;	lf sł	kip and follow	ed by 2-wor	d instructior	1:					
$\begin{tabular}{ c c c c c c c } \hline \end{tabular} operation & operation & operation \\ \hline \end{tabular} No & No & No \\ \hline \end{tabular} operation & operation & operation \\ \hline \end{tabular} operation & operation & operation \\ \hline \end{tabular} $										
No No No operation operation operation Example: HERE CPFSGT REG, 0 NGREATER : GREATER : Before Instruction PC PC = After Instruction If REG > PC = Address (GREATER) If REG > W; PC PC = Address (GREATER) If REG										
Example: HERE CPFSGT REG, 0 NGREATER : GREATER : Before Instruction PC = Address (HERE) W = ? After Instruction If REG > W; PC = Address (GREATER) If REG ≤ W;										
$\begin{array}{rcl} \mathrm{NGREATER} & : & & \\ \mathrm{GREATER} & : & & \\ & & & & \\ & & & \\ & & & $		operation	operation	operation	operation					
PC = Address (HERE) W = ? After Instruction If REG > W; PC = Address (GREATER) If REG ≤ W;	<u>Exar</u>	<u>mple</u> :	NGREATER	:	EG, 0					
		Before Instru	iction							
After Instruction If REG > W; PC = Address (GREATER) If REG ≤ W;				dress (HER	E)					
If REG > W; PC = Address (GREATER) If REG ≤ W;			-							
lf REG ≤ W;		If REG	> W;							
PC = Address (NGREATER)		If REG	≤ W;							
		PC	= Ad	dress (NGR	EATER)					

CPFSLT	Compare	f with W, sk	ip if f < W
Syntax:	[<i>label</i>] C	CPFSLT f[,	a]
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]	5	
Operation:	(f) – (W), skip if (f) <	: (W) comparison)	
Status Affected:	None	,	
Encoding:	0110	000a fff	f ffff
Description:	memory lo of W by persubtraction If the content instruction is execute two-cycle in Access Ba	ents of 'f' are its of W, then is discarded d instead, ma instruction. If ank will be se 3SR will not b	he contents unsigned less than the fetched and a NOP aking this a 'a' is '0', the lected. If 'a'
Words:	1		
Cycles:		cycles if skip a 2-word ins	and followed
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	No operation
lf skip:			
Q1	Q2	Q3	Q4
No operation	No operation	No operation	No operation
If skip and followe			
Q1	Q2	Q3	Q4
No	No	No	No
operation	operation	operation	operation
No operation	No operation	No operation	No operation
Example:	NLESS	CPFSLT REG,	1
Before Instruct PC W After Instructi If REG PC If REG PC	ction = Ad = ? on < W; = Ad ≥ W;	dress (LESS))

MOVLB

MOVFF	Move f to	o f		
Syntax:	[label]	MOVFF	f _s ,f _d	
Operands:	$\begin{array}{l} 0 \leq f_s \leq 4 \\ 0 \leq f_d \leq 4 \end{array}$			
Operation:	$(f_s) \to f_d$			
Status Affected:	None			
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d
	are move 'f _d '. Locat anywhere space (00 of destina anywhere Either sou W (a use MOVFF is transferrin to a perip transmit b The MOVE the PCL, the destina	tion of sc e in the 4 20h to FF ation 'f _d ' (e from 00 urce or d ful specia particula ng a data heral reg puffer or FF instru TOSU, T	ource 'f _s ' of 096-byte Fh) and can also 00h to FF lestination al situation arity usefut a memory gister (suc an I/O po ction can 'OSH or '	can be data location be Fh. n can be on). I for location ch as the ort). not use
Words:	2			
Cycles:	2 (3)			
Q Cycle Activity:				
Q1	Q2	Q3	3	Q4

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation, No dummy read	No operation	Write register 'f' (dest)

REG1, REG2

Example: MOVFF

Before Instruction				
REG1	=	0x33		
REG2	=	0x11		
After Instruction				
REG1	=	0x33,		
REG2	=	0x33		

Synt	ax:	[label]	MOVLB	k		
$Operands: \qquad 0 \leq k \leq 255$						
Operation: $k \rightarrow BSR$						
Statu	us Affected:	None				
Enco	oding:	0000	0001	kkk	ck	kkkk
Des	cription:	The 8-bit the Bank				
Wor	ds:	1				
Cycl	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3			Q4
	Decode	Read literal 'k'	Proce Data		lite	Write ral 'k' to BSR

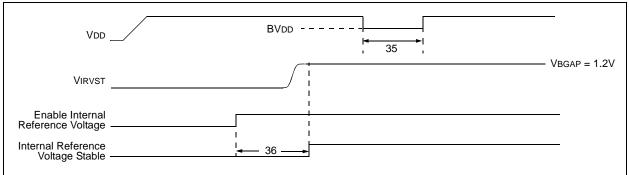
Move literal to low nibble in BSR

Example: MOVLB 5

=	0x02
=	0x05

DC Characteristics			$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$				
Param No.	Sym	Characteristic	Characteristic Min Typ† Max Ur		Units	Conditions	
		Internal Program Memory Programming Specifications (Note 1)					
D110	Vpp	Voltage on MCLR/VPP pin	9.00	_	13.25	V	(Note 2)
D112	IPP	Current into MCLR/VPP pin	—	_	5	μA	
D113	IDDP	Supply Current during Programming	—	—	10	mA	
		Data EEPROM Memory					
D120	ED	Cell Endurance	100K	1M	_	E/W	-40°C to +85°C
D120A	ED	Cell Endurance	10K	100K	_	E/W	+85°C to +125°C
D121	Vdrw	VDD for Read/Write	VMIN	_	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	—	4	_	ms	
D123	TRETD	Characteristic Retention	40	_	_	Year	-40°C to +85°C (Note 3)
D123A	Tretd	Characteristic Retention	100	_		Year	25°C (Note 3)
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	100K		E/W	-40°C to +85°C
D130A	Eр	Cell Endurance	1000	10K		E/W	+85°C to +125°C
D131	Vpr	VDD for Read	Vmin	—	5.5	V	VMIN = Minimum operating voltage
D132	VIE	VDD for Block Erase	4.5	—	5.5	V	Using ICSP port
D132A	Viw	VDD for Externally Timed Erase or Write	4.5	—	5.5	V	Using ICSP port
D132B	Vpew	VDD for Self-Timed Write	VMIN	—	5.5	V	VMIN = Minimum operating voltage
D133	TIE	ICSP Block Erase Cycle Time	—	5	—	ms	VDD > 4.5V
D133A	Tiw	ICSP Erase or Write Cycle Time (externally timed)	1	_	_	ms	VDD > 4.5V
D133A	Tiw	Self-Timed Write Cycle Time	—	2.5		ms	
D134	Tretd	Characteristic Retention	40			Year	-40°C to +85°C (Note 3)
D134A	TRETD	Characteristic Retention	100	_	_	Year	25°C (Note 3)

TABLE 26-4: MEMORY PROGRAMMING REQUIREMENTS


† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: The pin may be kept in this range at times other than programming, but it is not recommended.

3: Retention time is valid, provided no other specifications are violated.

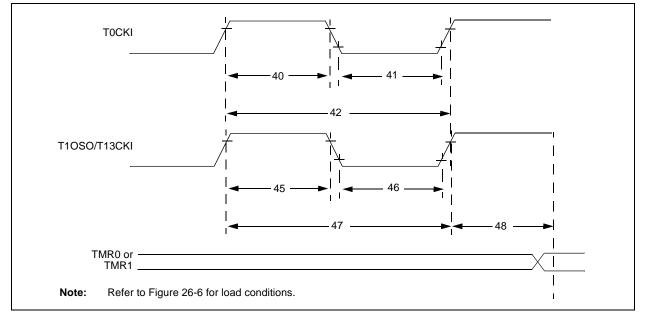

FIGURE 26-12: BROWN-OUT RESET TIMING

TABLE 26-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2	_	—	μS	
31	Twdt	Watchdog Timer Time-out Period (no postscaler)	7	18	33	ms	
32	Tost	Oscillation Start-up Timer Period	1024 Tosc	_	1024 Tosc	_	Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	28	72	132	ms	
34	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	_	2	—	μS	
35	TBOR	Brown-out Reset Pulse Width	200		_	μS	$VDD \le BVDD$ (see D005)
36	TIVRST	Time for Internal Reference Voltage to become stable	—	20	50	μS	
37	Tlvd	Low-Voltage Detect Pulse Width	200	_	—	μS	$VDD \leq VLVD$

FIGURE 26-13: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

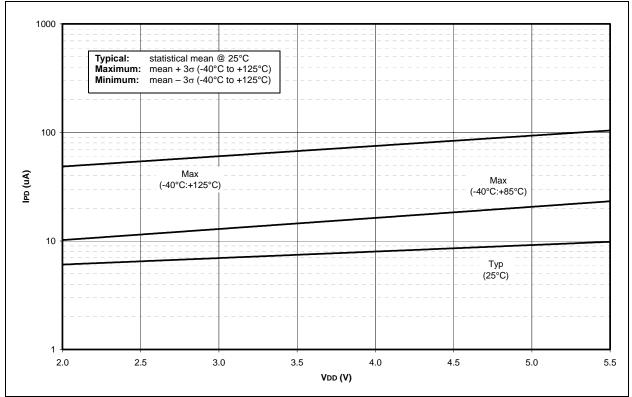
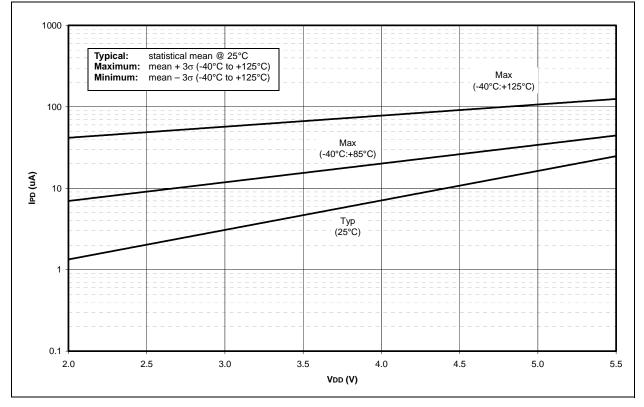



FIGURE 27-16: TYPICAL AND MAXIMUM Alwdt vs. Vdd OVER TEMPERATURE (WDT ENABLED)

Watchdog Timer	
BN	
BNC	
BNN	
BNOV	270
BNZ	
BOR. See Brown-out Reset.	
BOV	273
BRA	271
BRG. See Baud Rate Generator.	
Brown-out Reset (BOR)	
BSF	
BTFSC	272
BTFSS	
BTG	
BZ	274

С

C Compilers	
MPLAB C18	
CALL	
Capture (CCP Module)	
Associated Registers	
CCP Pin Configuration CCPR1H:CCPR1L Registers	
Software Interrupt	
Timer1/Timer3 Mode Selection	
Capture/Compare/PWM (CCP)	
Capture Mode. See Capture.	143
CCP Mode and Timer Resources	150
CCPRxH Register	
CCPRxL Register	
Compare Mode. See Compare.	
Interconnect Configurations	150
Module Configuration	
PWM Mode. See PWM.	
Capture/Compare/PWM Requirements (All CCP Modul 327	es)
CLKO and I/O Timing Requirements	2. 323
Clocking Scheme/Instruction Cycle	
CLRF	
CLRWDT	275
Code Examples	
16 x 16 Signed Multiply Routine	86
16 x 16 Unsigned Multiply Routine	86
8 x 8 Signed Multiply Routine	85
8 x 8 Unsigned Multiply Routine	
Changing Between Capture Prescalers	151
Data EEPROM Read	
Data EEPROM Refresh Routine	
Data EEPROM Write	
Erasing a Flash Program Memory Row	66
Fast Register Stack	
How to Clear RAM (Bank 1) Using Indirect Addres	sing .
57	
Implementing a Real-Time Clock using a Timer1	
rupt Service	
Initializing PORTA	
Initializing PORTB	
Initializing PORTC	
Initializing PORTD	
Initializing PORTE	
Initializing PORTF	
Initializing PORTG Initializing PORTH	
Initializing PORTH	
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	120

Loading the SSPBUF (SSPSR) Register	
Reading a Flash Program Memory Word	
Saving Status, WREG and BSR Registers in RAM	. 102
Writing to Flash Program Memory6	8–69
Code Protection	. 239
COMF	. 276
Comparator	. 223
Analog Input Connection Considerations	. 227
Associated Registers	. 228
Configuration	
Effects of a Reset	
Interrupts	. 226
Operation	. 225
Operation During Sleep	
Outputs	
Reference	. 225
External Signal	
Internal Signal	
Response Time	
Comparator Specifications	
Comparator Voltage Reference	
Accuracy and Error	
Associated Registers	
Configuring	
Connection Considerations	
Effects of a Reset	. 230
Operation During Sleep	. 230
Compare (CCP Module)	. 152
Associated Registers	
CCP Pin Configuration	
CCPR1 Register	
Software Interrupt	. 152
Special Event Trigger 138, 145	
Timer1/Timer3 Mode Selection	
Compare (CCP2 Module)	
Special Event Trigger	. 220
Configuration Bits	
Context Saving During Interrupts	. 102
Control Registers	
EECON1 and EECON2	62
TABLAT (Table Latch) Register	
TBLPTR (Table Pointer) Register	64
Conversion Considerations	
CPFSEQ	
CPFSGT	
CPFSLT	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data EEPROM Memory	
Associated Registers	83
EEADR Register	
EEADRH Register	79
EECON1 Register	
EECON2 Register	79
Operation During Code-Protect	82
Protection Against Spurious Write	82
Reading	81
Using	82
Write Verify	
Writing	81
Data Memory	47
General Purpose Registers	47
Map for PIC18FX520 Devices	