

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.75К х 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f6720t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

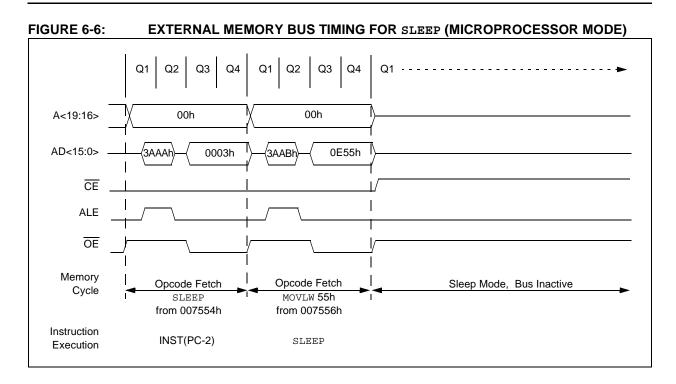
PIC18F6X20	PIC18F8X20	Pin Type	Buffer Type	Description		
			Type	Description		
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.		
48	58	I/O I	TTL ST	Digital I/O. External interrupt 0.		
47	57	I/O I	TTL ST	Digital I/O. External interrupt 1.		
46	56	I/O I	TTL ST	Digital I/O. External interrupt 2.		
45	55	I/O I/O I/O	TTL ST ST	Digital I/O. External interrupt 3. Capture2 input, Compare2 output, PWM2 output.		
44	54	I/O I	TTL ST	Digital I/O. Interrupt-on-change pin.		
43	53	I/O I I/O	TTL ST ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP Programming enabl pin.		
42	52	I/O I I/O	TTL ST ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock.		
37	47	I/O I/O	TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data.		
mitt Trigger inpu it		evels	Analog = O =	 CMOS compatible input or output Analog input Output Open-Drain (no P diode to VDD) 		
ller). gnment when C	CP2MX is set.					
	46 45 44 43 42 37 compatible inpumit rer ssignment for Culler). gnment when Comony interface iltiplexed with the	46 56 45 55 44 54 43 53 42 52 37 47 compatible input mitt Trigger input with CMOS late rer ssignment for CCP2 when CCF iller). gnment when CCP2MX is set. emory interface functions are o	4757I/O4656I/O4555I/O4555I/O4454I/O4353I/O4252I/O4252I/O3747I/O100I/OI/O101I/O10252103I/O103100104100105100106100107100107100108100109100	4757 I/O TTL ST4656 I/O TTL ST4555 I/O TTL ST4555 I/O TTL I4454 I/O TTL ST4353 I/O TTL I4252 I/O TTL ST4252 I/O TTL ST3747 I/O TTL ST3747 I/O TTL STareO=compatible inputCMOS levelsAnalog =rerO=ssignment for CCP2 when CCP2MX is not selected ller).Set.gnment when CCP2MX is set.en only available on Plu utiplexed with this pin by default when configured		

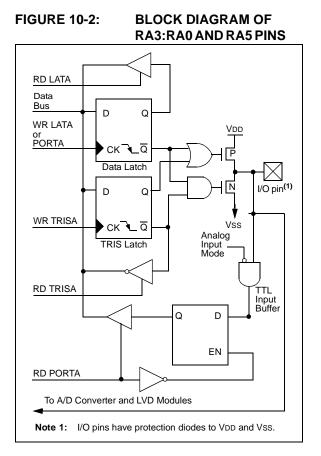
- 5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.
- 6: AVDD must be connected to a positive supply and AVSS must be connected to a ground reference for proper operation of the part in user or ICSP modes. See parameter D001A for details.

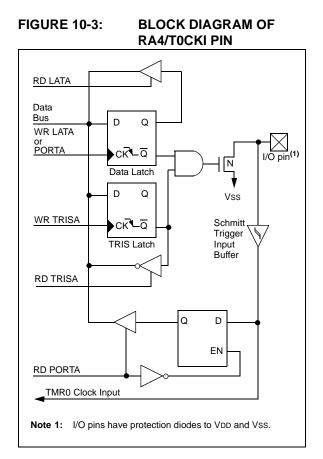
Pin Name	Pin N	umber	Pin	Buffer	Description		
Pin Name	PIC18F6X20	PIC18F8X20	Туре	Туре	Description		
					PORTC is a bidirectional I/O port.		
RC0/T1OSO/T13CKI	30	36					
RC0			I/O	ST	Digital I/O.		
T1OSO			0	—	Timer1 oscillator output.		
T13CKI			I	ST	Timer1/Timer3 external clock input.		
RC1/T1OSI/CCP2	29	35					
RC1			I/O	ST	Digital I/O.		
T1OSI			I	CMOS	Timer1 oscillator input.		
CCP2 ⁽²⁾			I/O	ST	Capture2 input/Compare2 output/		
					PWM2 output.		
RC2/CCP1	33	43					
RC2			I/O	ST	Digital I/O.		
CCP1			I/O	ST	Capture1 input/Compare1 output/		
					PWM1 output.		
RC3/SCK/SCL	34	44					
RC3			I/O	ST	Digital I/O.		
SCK			I/O	ST	Synchronous serial clock input/outpu		
					for SPI mode.		
SCL			I/O	ST	Synchronous serial clock input/output for I ² C mode.		
RC4/SDI/SDA	35	45					
RC4		45	I/O	ST	Digital I/O.		
SDI			"/C	ST	SPI data in.		
SDA			I/O	ST	I^2C data I/O.		
RC5/SDO	36	46	., C	•			
RC5/SDO RC5	30	40	I/O	ST	Digital I/O.		
SDO			0		SPI data out.		
		07	Ŭ				
RC6/TX1/CK1	31	37	1/0	ст			
RC6 TX1			1/O O	ST	Digital I/O. USART 1 asynchronous transmit.		
CK1			1/0	ST	USART 1 synchronous clock		
ONT			1/0	51	(see RX1/DT1).		
	22	20					
RC7/RX1/DT1	32	38	I/O	ST	Digital I/O		
RC7 RX1				ST	Digital I/O. USART 1 asynchronous receive.		
DT1			I/O	ST	USART 1 synchronous data		
			",0		(see TX1/CK1).		
Legend: TTL = TTL	compatible inp	L		CMOS -	= CMOS compatible input or output		
	mitt Trigger inp		evels		= Analog input		
				•			
I = Inpu P = Pow	it ver			O = OD =	 Analog input Output Open-Drain (no P diode to VE (all operating modes except 		

TABLE 1-2: PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except Microcontroller).


2: Default assignment when CCP2MX is set.


3: External memory interface functions are only available on PIC18F8X20 devices.


4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is multiplexed with either RB3 or RC1.

5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.

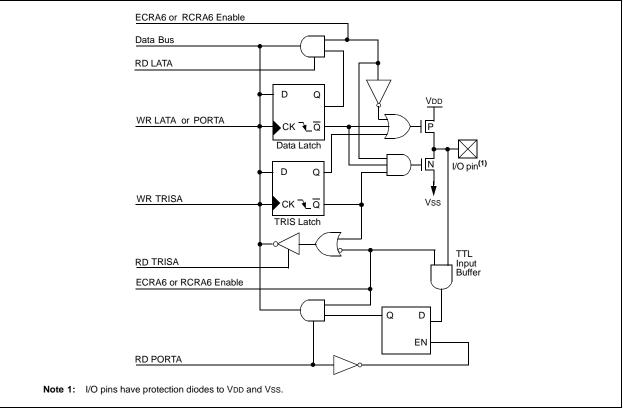

6: AVDD must be connected to a positive supply and AVss must be connected to a ground reference for proper operation of the part in user or ICSP modes. See parameter D001A for details.

FIGURE 10-4: BLOCK DIAGRAM OF RA6 PIN (WHEN ENABLED AS I/O)

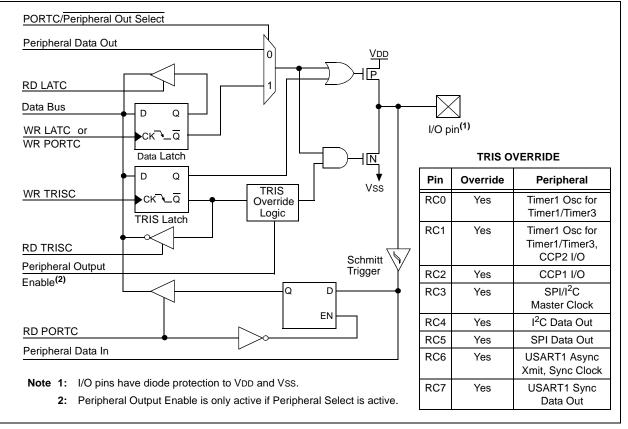
10.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

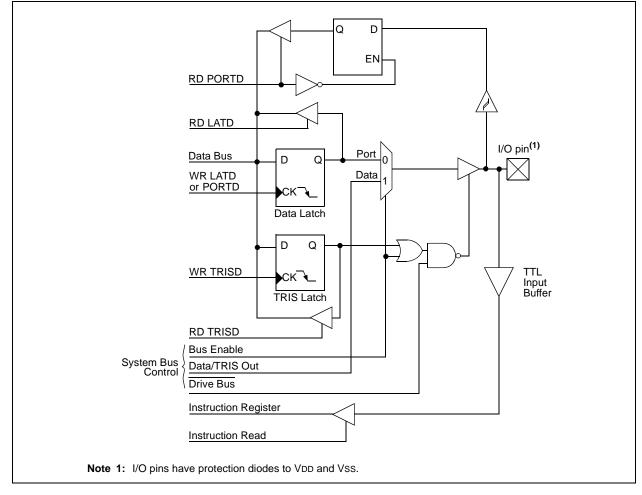
The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register, read and write the latched output value for PORTC.

PORTC is multiplexed with several peripheral functions (Table 10-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.


Note: On a Power-on Reset, these pins are configured as digital inputs.

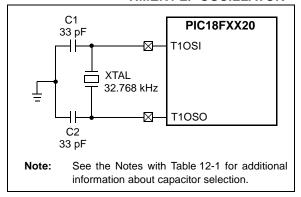
The pin override value is not loaded into the TRIS register. This allows read-modify-write of the TRIS register, without concern due to peripheral overrides.


RC1 is normally configured by configuration bit, CCP2MX, as the default peripheral pin of the CCP2 module (default/erased state, CCP2MX = 1).

CLRF	PORTC	; Initialize PORTC by ; clearing output ; data latches
CLRF	LATC	; Alternate method ; to clear output ; data latches
MOVLW	0xCF	; Value used to ; initialize data ; direction
MOVWF	TRISC	; Set RC<3:0> as inputs ; RC<5:4> as outputs ; RC<7:6> as inputs

FIGURE 10-8: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

FIGURE 10-10: PORTD BLOCK DIAGRAM IN SYSTEM BUS MODE



12.2 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit, T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator, rated up to 200 kHz. It will continue to run during Sleep. It is primarily intended for a 32 kHz crystal. The circuit for a typical LP oscillator is shown in Figure 12-3. Table 12-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator

FIGURE 12-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

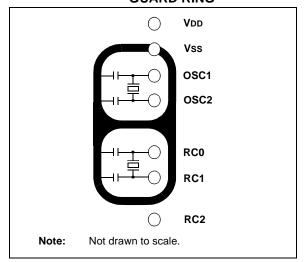
TABLE 12-1: CAPACITOR SELECTION FOR THE ALTERNATE OSCILLATOR

Osc Type	Freq	C1	C2							
LP	32 kHz	TBD ⁽¹⁾	TBD ⁽¹⁾							
Crystal to be Tested:										
32.768 kHz	32.768 kHz Epson C-001R32.768K-A ± 20 PPM									

- **Note 1:** Microchip suggests 33 pF as a starting point in validating the oscillator circuit.
 - **2:** Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
 - 3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 4: Capacitor values are for design guidance only.

12.2.1 LOW-POWER TIMER1 OPTION (PIC18FX520 DEVICES ONLY)

The Timer1 oscillator for PIC18LFX520 devices incorporates a low-power feature, which allows the oscillator to automatically reduce its power consumption when the microcontroller is in Sleep mode.


As high noise environments may cause excessive oscillator instability in Sleep mode, this option is best suited for low noise applications where power conservation is an important design consideration. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 12-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

If a high-speed circuit must be located near the oscillator (such as the CCP1 pin in output compare or PWM mode, or the primary oscillator using the OSC2 pin), a grounded guard ring around the oscillator circuit, as shown in Figure 12-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

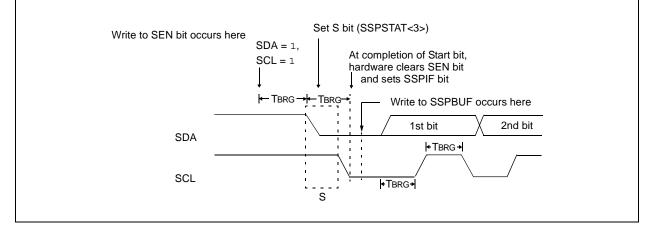
OSCILLATOR CIRCUIT WITH GROUNDED GUARD RING

Note: PIC18FX620/X720 devices have the standard Timer1 oscillator permanently selected. PIC18LFX620/X720 devices have the low-power Timer1 oscillator permanently selected.

NOTES:

17.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Condition Enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low, while SCL is high, is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.


Note: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

17.4.8.1 WCOL Status Flag

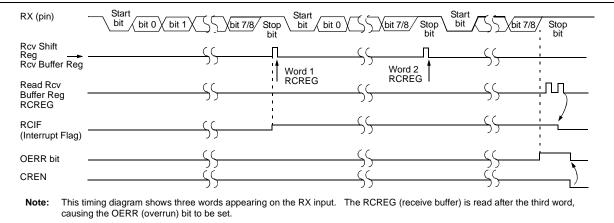
If the user writes the SSPBUF when a Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the Start condition is complete.

FIGURE 17-19: FIRST START BIT TIMING

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit (
SPEN: Se	erial Port Enab	le bit					
	port enabled (port disabled	configures	RX/DT and	TX/CK pins	as serial po	rt pins)	
RX9 : 9-bi	t Receive Enat	ole bit					
	ts 9-bit receptients 8-bit receptients 8-bit receptients						
SREN: Si	ngle Receive E	Enable bit					
Asynchro Don't care	nous mode: e.						
1 = Enab 0 = Disal	ous mode – M les single rece bles single rece cleared after r	ive eive	s complete.				
	<u>ous mode – Sl</u>	-	·				
CREN: C	ontinuous Rec	eive Enable	e bit				
1 = Enab	nous mode: les receiver les receiver						
Synchron 1 = Enab	ous mode: les continuous les continuous		til enable bit	CREN is cle	eared (CREI	N overrides	SREN)
ADDEN:	Address Detec	t Enable bi	it				
1 = Enat is set	nous mode 9-b les address de bles address de	tection, en	ables interru				
	aming Error bit		· · ·) · · · · · · · ·				
1 = Fram	ng error (can b aming error		by reading	RCREG regi	ster and rec	eive next va	alid byte)
	verrun Error bi	t					
	un error (can b rerrun error	e cleared	by clearing b	oit CREN)			
RX9D: 9t	h bit of Receive	ed Data					
This can	pe address/dat	a bit or a p	arity bit and	must be cale	culated by u	ser firmwar	э.
Legend:							
R = Read	able bit	W = W	/ritable bit	U = Unim	plemented	bit, read as	'0'

'1' = Bit is set


'0' = Bit is cleared

REGISTER 18-

- n = Value at POR

x = Bit is unknown

FIGURE 18-5: ASYNCHRONOUS RECEPTION

TABLE 18-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	t 3 Bit 2 Bit 1		Bit 0	Value on POR, BOR	Value on all other Resets	
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 0000	0000 0000	
PIR1	PSPIF	ADIF	RC1IF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000	
PIE1	PSPIE	ADIE	RC1IE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000	
IPR1	PSPIP	ADIP	RC1IP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0111 1111	0111 1111	
PIR3	—	—	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	00 0000	00 0000	
PIE3	—	—	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	00 0000	00 0000	
IPR3	—	—	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	11 1111	11 1111	
RCSTAx ⁽¹⁾	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 0000x	x000 0000x	
RCREGx ⁽¹⁾	USART Rec	eive Regis	ter						0000 0000	0000 0000	
TXSTAx ⁽¹⁾	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010	
SPBRGx ⁽¹⁾	Baud Rate C	0000 0000	0000 0000								

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: Register names generically refer to both of the identically named registers for the two USART modules, where 'x' indicates the particular module. Bit names and Reset values are identical between modules.

REGISTER 19-2: ADCON1 REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-4 VCFG1:VCFG0: Voltage Reference Configuration bits:

VCFG1 VCFG0	A/D Vref+	A/D VREF-
00	AVdd	AVss
01	External VREF+	AVss
10	AVDD	External VREF-
11	External VREF+	External VREF-

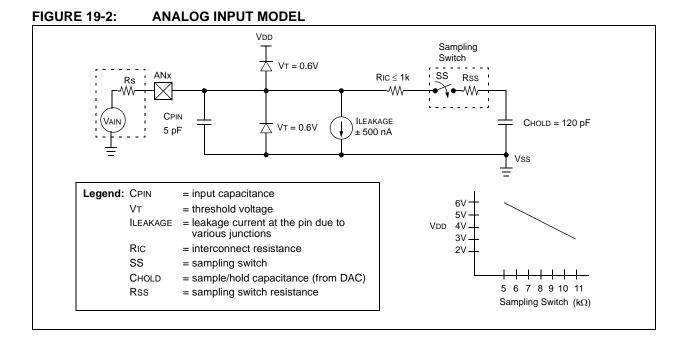
bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3 PCFG0	AN15	AN14	AN13	AN12	AN11	AN10	AN9	AN8	AN7	ANG	AN5	AN4	AN3	AN2	AN1	ANO
0000	Α	Α	А	Α	Α	Α	Α	Α	А	А	Α	Α	Α	Α	Α	Α
0001	D	D	А	Α	Α	А	А	Α	А	А	А	А	Α	А	А	Α
0010	D	D	D	А	Α	А	А	Α	А	А	А	А	Α	А	А	А
0011	D	D	D	D	Α	А	А	Α	А	А	А	А	Α	А	А	А
0100	D	D	D	D	D	А	А	Α	А	А	А	А	Α	А	А	Α
0101	D	D	D	D	D	D	А	Α	А	А	А	А	Α	А	А	А
0110	D	D	D	D	D	D	D	Α	А	А	А	А	Α	А	А	А
0111	D	D	D	D	D	D	D	D	А	А	А	А	Α	А	А	А
1000	D	D	D	D	D	D	D	D	D	А	А	А	Α	А	А	А
1001	D	D	D	D	D	D	D	D	D	D	А	А	Α	А	А	А
1010	D	D	D	D	D	D	D	D	D	D	D	А	Α	А	Α	А
1011	D	D	D	D	D	D	D	D	D	D	D	D	А	А	А	А
1100	D	D	D	D	D	D	D	D	D	D	D	D	D	А	А	А
1101	D	D	D	D	D	D	D	D	D	D	D	D	D	D	А	А
1110	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	А
1111	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
A _ Ana	$\Delta = Analog input D = Digital I/O$															

A = Analog input D = Digital I/O

Note: Shaded cells indicate A/D channels available only on PIC18F8X20 devices.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

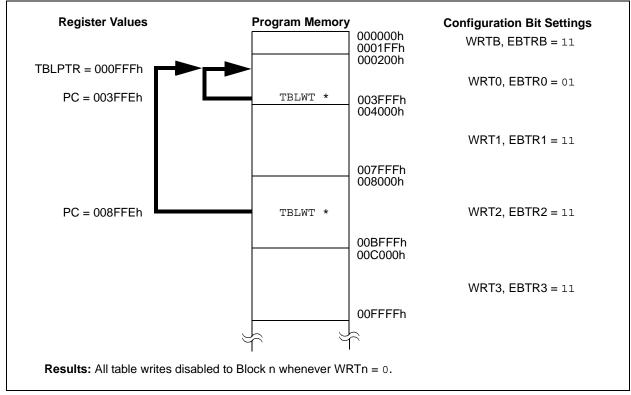

The value in the ADRESH/ADRESL registers is not modified for a Power-on Reset. The ADRESH/ ADRESL registers will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 19.1 "A/D Acquisition Requirements"**. After this acquisition time has elapsed, the A/D conversion can be started.

The following steps should be followed to do an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)

- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - · Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0 register)
- 5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit ADIF, if required.
- 7. For the next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.


23.4.1 PROGRAM MEMORY CODE PROTECTION

The user memory may be read to, or written from, any location using the table read and table write instructions. The device ID may be read with table reads. The configuration registers may be read and written with the table read and table write instructions.

In user mode, the CPn bits have no direct effect. CPn bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTn configuration bit is '0'. The EBTRn bits control table reads. For a block of user memory with the EBTRn bit set to '0', a table read instruction that executes from within that block is allowed to read. A table read instruction that executes from a location out-

side of that block is not allowed to read and will result in reading '0's. Figures 23-5 through 23-7 illustrate table write and table read protection using devices with a 16-Kbyte block size as the models. The principles illustrated are identical for devices with an 8-Kbyte block size.

Note: Code protection bits may only be written to a '0' from a '1' state. It is not possible to write a '1' to a bit in the '0' state. Code protection bits are only set to '1' by a full chip erase or block erase function. The full chip erase and block erase functions can only be initiated via ICSP or an external programmer.

FIGURE 23-5: TABLE WRITE (WRTn) DISALLOWED

23.4.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits external writes to data EEPROM. The CPU can continue to read and write data EEPROM, regardless of the protection bit settings.

23.4.3 CONFIGURATION REGISTER PROTECTION

The configuration registers can be write-protected. The WRTC bit controls protection of the configuration registers. In user mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer.

23.5 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are accessible during normal execution through the TBLRD and TBLWT instructions or during program/verify. The ID locations can be read when the device is code-protected.

23.6 In-Circuit Serial Programming

PIC18FX520/X620/X720 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

Note:	When	performing	In-Circuit	Serial		
	Progran	nming, verify	that power	is con-		
	nected to all VDD and AVDD pins of the					
	microcontroller and that all Vss and AVss					
	pins are	grounded.				

23.7 In-Circuit Debugger

When the DEBUG bit in the CONFIG4L Configuration register is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 23-4 shows which features are consumed by the background debugger.

TABLE 23-4: DEBUGGER RESOURCES

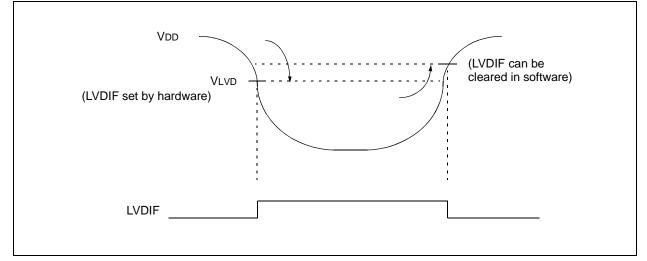
I/O pins	RB6, RB7			
Stack	2 levels			
Program Memory	Last 576 bytes			
Data Memory	Last 10 bytes			

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, GND, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

23.8 Low-Voltage ICSP Programming

The LVP bit in the CONFIG4L Configuration register enables Low-Voltage ICSP Programming. This mode allows the microcontroller to be programmed via ICSP using a VDD source in the operating voltage range. This only means that VPP does not have to be brought to VIHH, but can instead be left at the normal operating voltage. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. During programming, VDD is applied to the MCLR/VPP pin. To enter Programming mode, VDD must be applied to the RB5/PGM pin, provided the LVP bit is set. The LVP bit defaults to a '1' from the factory.

- Note 1: The High-Voltage Programming mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: While in Low-Voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O pin and should be held low during normal operation.
 - 3: When using Low-Voltage ICSP Programming (LVP) and the pull-ups on PORTB are enabled, bit 5 in the TRISB register must be cleared to disable the pull-up on RB5 and ensure the proper operation of the device.


If Low-Voltage Programming mode is not used, the LVP bit can be programmed to a '0' and RB5/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed when programming is entered with VIHH on MCLR/VPP.

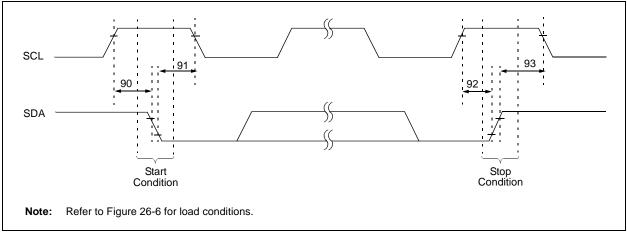
It should be noted that once the LVP bit is programmed to '0', only the High-Voltage Programming mode is available and only High-Voltage Programming mode can be used to program the device.

When using Low-Voltage ICSP Programming, the part must be supplied 4.5V to 5.5V if a bulk erase will be executed. This includes reprogramming of the codeprotect bits from an on state to an off state. For all other cases of Low-Voltage ICSP, the part may be programmed at the normal operating voltage. This means unique user IDs or user code can be reprogrammed or added.

CLRF	Clear f	CLRWDT	Clear Watchdog Timer			
Syntax:	[label] CLRF f [,a]	Syntax:	[label] CLRWDT			
Operands:	$0 \leq f \leq 255$	Operands:	None			
	a ∈ [0,1]	Operation:	000h \rightarrow WDT,			
Operation:	$\begin{array}{l} 000h \rightarrow f \\ 1 \rightarrow Z \end{array}$		$000h \rightarrow WDT$ postscaler,			
	. , _		$1 \rightarrow \underline{TO},$ $1 \rightarrow \overline{PD}$			
Status Affected:	Z	Status Affected:	TO, PD			
Encoding:	0110 101a ffff ffff	Encoding:				
Description:	Clears the contents of the specified register. If 'a' is '0', the Access	Description:	CLRWDT instruction resets the			
	Bank will be selected, overriding		Watchdog Timer. It also resets the			
	the BSR value. If 'a' = 1, then the		postscaler of the WDT. Status bits			
	bank will be selected as per the BSR value (default).		TO and PD are set.			
Words:	1	Words:	1			
Cycles:	1	Cycles:	1			
-	I	Q Cycle Activity:				
Q Cycle Activity: Q1	Q2 Q3 Q4	Q1 Decode	Q2 Q3 Q4			
Decode	Read Process Write	Decode	operation Data operation			
	register 'f' Data register 'f'	<u> </u>	,			
		Example:	CLRWDT			
Example:	CLRF FLAG_REG,1	Before Instru				
Before Instruc		WDT Cou				
FLAG_REG = 0x5A After Instruction		After Instruct WDT Cou				
$FLAG_REG = 0x00$		WDT Pos				
		TO PD	= 1 = 1			
FLAG_KE		TO	= 1			

FIGURE 26-5: LOW-VOLTAGE DETECT CHARACTERISTICS

TABLE 26-3: LOW-VOLTAGE DETECT CHARACTERISTICS


Standard Operating Conditions (unless otherwise stated)

Operating temperature $~-40^\circ C \le TA \le +85^\circ C$ for industrial $-40^\circ C ~\le TA \le +125^\circ C$ for extended

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
D420		LVD Voltage on VDD	LVV = 0001	1.96	2.06	2.16	V	
		Transition high-to-low	LVV = 0010	2.16	2.27	2.38	V	
			LVV = 0011	2.35	2.47	2.59	V	
			LVV = 0100	2.45	2.58	2.71	V	
			LVV = 0101	2.64	2.78	2.92	V	
			LVV = 0110	2.75	2.89	3.03	V	
			LVV = 0111	2.95	3.1	3.26	V	
			LVV = 1000	3.24	3.41	3.58	V	
			LVV = 1001	3.43	3.61	3.79	V	
			LVV = 1010	3.53	3.72	3.91	V	
			LVV = 1011	3.72	3.92	4.12	V	
			LVV = 1100	3.92	4.13	4.34	V	
			LVV = 1101	4.11	4.33	4.55	V	
			LVV = 1110	4.41	4.64	4.87	V	
D423	Vbg	Band Gap Reference Voltage Value			1.22	—	V	

† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

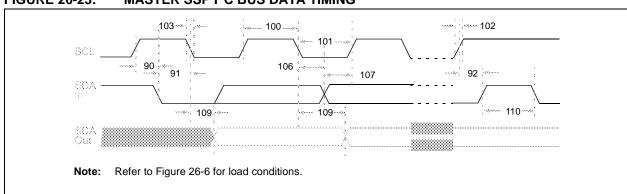
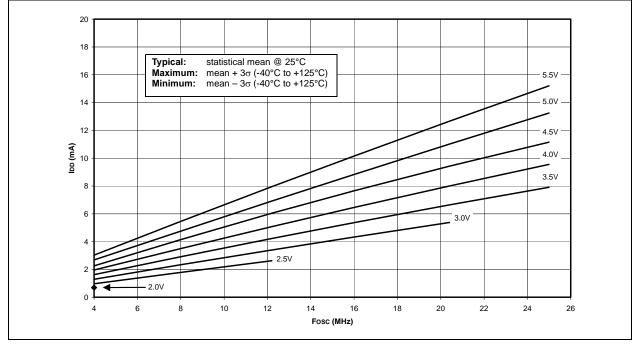


TABLE 26-21: MASTER SSP I ² C BUS START/STOP BITS REQUIREMENT
--

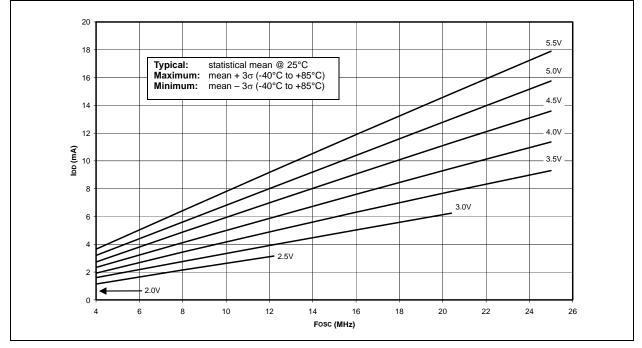
Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
90	TSU:STA	Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	—		Only relevant for Repeated Start condition
			400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		
91	91 Thd:sta	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	After this period, the first clock pulse is generated
			400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		
92	2 Tsu:sto	Stop Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	
			400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		
93	THD:STO	Stop Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	
			400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.


FIGURE 26-23: MASTER SSP I²C BUS DATA TIMING

27.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.


"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean – 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

MAXIMUM IDD vs. Fosc OVER VDD (HS MODE) INDUSTRIAL

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC17C756 to a PIC18F8720.

Not Currently Available

APPENDIX D: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442".* The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.