

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8520-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.9 Data Memory Organization

The data memory is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. The data memory map is in turn divided into 16 banks of 256 bytes each. The lower 4 bits of the Bank Select Register (BSR<3:0>) select which bank will be accessed. The upper 4 bits of the BSR are not implemented.

The data memory space contains both Special Function Registers (SFR) and General Purpose Registers (GPR). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratch pad operations in the user's application. The SFRs start at the last location of Bank 15 (0FFFh) and extend downwards. Any remaining space beyond the SFRs in the Bank may be implemented as GPRs. GPRs start at the first location of Bank 0 and grow upwards. Any read of an unimplemented location will read as '0's.

PIC18FX520 devices have 2048 bytes of data RAM, extending from Bank 0 to Bank 7 (000h through 7FFh). PIC18FX620 and PIC18FX720 devices have 3840 bytes of data RAM, extending from Bank 0 to Bank 14 (000h through EFFh). The organization of the data memory space for these devices is shown in Figure 4-6 and Figure 4-7.

The entire data memory may be accessed directly or indirectly. Direct addressing may require the use of the BSR register. Indirect addressing requires the use of a File Select Register (FSRn) and a corresponding Indirect File Operand (INDFn). Each FSR holds a 12-bit address value that can be used to access any location in the data memory map without banking.

The instruction set and architecture allow operations across all banks. This may be accomplished by indirect addressing, or by the use of the MOVFF instruction. The MOVFF instruction is a two-word/two-cycle instruction that moves a value from one register to another.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, regardless of the current BSR values, an Access Bank is implemented. A segment of Bank 0 and a segment of Bank 15 comprise the Access RAM. **Section 4.10** "Access Bank" provides a detailed description of the Access RAM.

4.9.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly or indirectly. Indirect addressing operates using a File Select Register and corresponding Indirect File Operand. The operation of indirect addressing is shown in Section 4.12 "Indirect Addressing, INDF and FSR Registers".

Enhanced MCU devices may have banked memory in the GPR area. GPRs are not initialized by a Power-on Reset and are unchanged on all other Resets.

Data RAM is available for use as General Purpose Registers by all instructions. The top section of Bank 15 (F60h to FFFh) contains SFRs. All other banks of data memory contain GPR registers, starting with Bank 0.

4.9.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFRs) are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 4-2 and Table 4-3.

The SFRs can be classified into two sets: those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described in this section, while those related to the operation of the peripheral features are described in the section of that peripheral feature. The SFRs are typically distributed among the peripherals whose functions they control.

The unused SFR locations are unimplemented and read as '0's. The addresses for the SFRs are listed in Table 4-2.

TABLE 4-2: SPECIAL FUNCTION REGISTER MAP

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽³⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2(3)	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2(3)	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽³⁾	FBCh	CCPR2H	F9Ch	MEMCON ⁽²⁾
FFBh	PCLATU	FDBh	PLUSW2 ⁽³⁾	FBBh	CCPR2L	F9Bh	(1)
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	TRISJ
FF9h	PCL	FD9h	FSR2L	FB9h	CCPR3H	F99h	TRISH
FF8h	TBLPTRU	FD8h	STATUS	FB8h	CCPR3L	F98h	TRISG
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	CCP3CON	F97h	TRISF
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	(1)	F96h	TRISE
FF5h	TABLAT	FD5h	T0CON	FB5h	CVRCON	F95h	TRISD
FF4h	PRODH	FD4h	(1)	FB4h	CMCON	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	LATJ
FF0h	INTCON3	FD0h	RCON	FB0h	PSPCON	F90h	LATH
FEFh	INDF0 ⁽³⁾	FCFh	TMR1H	FAFh	SPBRG1	F8Fh	LATG
FEEh	POSTINC0 ⁽³⁾	FCEh	TMR1L	FAEh	RCREG1	F8Eh	LATF
FEDh	POSTDEC0 ⁽³⁾	FCDh	T1CON	FADh	TXREG1	F8Dh	LATE
FECh	PREINC0 ⁽³⁾	FCCh	TMR2	FACh	TXSTA1	F8Ch	LATD
FEBh	PLUSW0 ⁽³⁾	FCBh	PR2	FABh	RCSTA1	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh	EEADRH	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	PORTJ
FE7h	INDF1 ⁽³⁾	FC7h	SSPSTAT	FA7h	EECON2	F87h	PORTH
FE6h	POSTINC1 ⁽³⁾	FC6h	SSPCON1	FA6h	EECON1	F86h	PORTG
FE5h	POSTDEC1 ⁽³⁾	FC5h	SSPCON2	FA5h	IPR3	F85h	PORTF
FE4h	PREINC1 ⁽³⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE
FE3h	PLUSW1 ⁽³⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

Note 1: Unimplemented registers are read as '0'.

2: This register is unused on PIC18F6X20 devices. Always maintain this register clear.

3: This is not a physical register.

REGISTER 7-1:	EECON1 F	REGISTER	(ADDRES	S FA6h)				
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD
	bit 7							bit 0
bit 7		-			ry Select bit			
		s Flash prog s data EEPR						
bit 6		•			guration Sel	lect bit		
		s configurati s Flash prog						
bit 5	Unimplem	ented: Read	as '0'					
bit 4		sh Row Eras						
	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write only 							hand
bit 3	WRERR: F	lash Progra	m/Data EEF	ROM Error	Flag bit			
	(any M	operation is ICLR or any rite operation	WDT Reset	t during self-	d timed progra	amming in n	ormal opera	ation)
	Note:	When a Wittracing of the		•	GD or FRE	E bits are n	ot cleared.	This allows
bit 2	WREN: Fla	ish Program	/Data EEPR	OM Write E	nable bit			
		write cycles write cycles	•	•				
bit 1	WR: Write	Control bit						
	(The o WR bit		elf-timed an set (not cle	d the bit is c ared) in sof	or a progran leared by ha tware.)			
bit 0	RD: Read	Control bit						
	can on		ot cleared) ir	n software. F	ne cycle. RD RD bit canno			
	Legend:							
	P - Roodo	hla hit	$\lambda \Lambda I = \lambda \Lambda I$	ritable bit		nlomontod	hit road as	·^'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in four registers, RES3:RES0.

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

RES3:RES0	=	ARG1H:ARG1L • ARG2H:ARG2L (ARG1H • ARG2H • 2^{16}) + (ARG1H • ARG2L • 2^{8}) +
		$(ARG1L \bullet ARG2H \bullet 2^8) +$
		$(ARG1L \bullet ARG2L)$

EXAMPLE 8-3: 16 x 16 UNSIGNED MULTIPLY ROUTINE

	MOVF	ARG1L, W	
	MULWF	ARG2L	; ARG1L * ARG2L ->
			; PRODH:PRODL
	MOVFF	PRODH, RES1	;
	MOVFF	PRODL, RESO	;
;			
	MOVF	ARG1H, W	
	MULWF	ARG2H	; ARG1H * ARG2H ->
			; PRODH:PRODL
	MOVFF	PRODH, RES3	;
	MOVFF	PRODL, RES2	;
;			
	MOVF	ARG1L, W	
	MULWF	ARG2H	; ARG1L * ARG2H ->
			; PRODH:PRODL
		PRODL, W	;
	ADDWF	RES1, F	; Add cross
		PRODH, W	; products
	ADDWFC	RES2, F	;
	CLRF		;
	ADDWFC	RES3, F	;
;			
		ARG1H, W	;
	MULWF	ARG2L	; ARG1H * ARG2L ->
			; PRODH:PRODL
	MOVF	-	;
		RES1, F	
		PRODH, W	; products
		RES2, F	;
	CLRF		;
	ADDWFC	RES3, F	;

Example 8-4 shows the sequence to do a 16 x 16 signed multiply. Equation 8-2 shows the algorithm used. The 32-bit result is stored in four registers, RES3:RES0. To account for the sign bits of the arguments, each argument pairs' Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 8-2: 16 x 16 SIGNED MULTIPLICATION

RES3:RE	ES0
=	AI

0 ARG1H:ARG1L • ARG2H:ARG2L

=	$(ARG1H \bullet ARG2H \bullet 2^{16}) +$
	$(ARG1H \bullet ARG2L \bullet 2^8) +$
	$(ARG1L \bullet ARG2H \bullet 2^8) +$
	$(ARG1L \bullet ARG2L) +$
	$(-1 \bullet ARG2H < 7 > \bullet ARG1H:ARG1L \bullet 2^{16}) +$
	$(-1 \bullet ARG1H < 7 > \bullet ARG2H:ARG2L \bullet 2^{16})$

EXAMPLE 8-4: 16 x 16 SIGNED MULTIPLY ROUTINE

MOVF ARG1L, W	
MULWF ARG2L	; ARG1L * ARG2L ->
	; PRODH:PRODL
MOVFF PRODH, RES1	;
MOVFF PRODL, RESO	;
;	
MOVF ARG1H, W	
MULWF ARG2H	; ARG1H * ARG2H ->
	; PRODH:PRODL
MOVFF PRODH, RES3	
MOVFF PRODL, RES2	
;	7
, MOVF ARG1L, W	
MULWF ARG2H	; ARG1L * ARG2H ->
MOLWF ARG2H	
	; PRODH:PRODL
MOVF PRODL, W	;
ADDWF RES1, F	; Add cross
MOVF PRODH, W	; products
ADDWFC RES2, F	;
CLRF WREG	;
ADDWFC RES3, F	;
;	
MOVF ARG1H, W	;
MULWF ARG2L	; ARG1H * ARG2L ->
	; PRODH:PRODL
MOVF PRODL, W	;
ADDWF RES1, F	; Add cross
	; products
ADDWFC RES2, F	;
CLRF WREG	i
ADDWFC RES3, F	i
;	7
	· APC2H·APC2L neg2
	; ARG2H:ARG2L neg?
	; no, check ARG1
MOVF ARG1L, W	;
SUBWF RES2	;
MOVF ARG1H, W	;
SUBWFB RES3	
;	
SIGN_ARG1	
	; ARG1H:ARG1L neg?
BRA CONT_CODE	; no, done
MOVF ARG2L, W	;
SUBWF RES2	;
MOVF ARG2H, W	;
SUBWFB RES3	
;	
CONT_CODE	
:	

Name	Bit#	Buffer Type	Function
RF0/AN5	bit 0	ST	Input/output port pin or analog input.
RF1/AN6/C2OUT	bit 1	ST	Input/output port pin, analog input or comparator 2 output.
RF2/AN7/C1OUT	bit 2	ST	Input/output port pin, analog input or comparator 1 output.
RF3/AN8	bit 3	ST	Input/output port pin or analog input/comparator input.
RF4/AN9	bit 4	ST	Input/output port pin or analog input/comparator input.
RF5/AN10/CVREF	bit 5	ST	Input/output port pin, analog input/comparator input or comparator reference output.
RF6/AN11	bit 6	ST	Input/output port pin or analog input/comparator input.
RF7/SS	bit 7	ST/TTL	Input/output port pin or slave select pin for synchronous serial port.

TABLE 10-11: PORTF FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

TABLE 10-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TRISF	PORTF I	Data Direc	tion Con	trol Regist	ter				1111 1111	1111 1111
PORTF	Read PC	ORTF pin/	Nrite PO	RTF Data	Latch				xxxx xxxx	uuuu uuuu
LATF	Read PC	ORTF Data	a Latch/W	/rite POR	FF Data L	atch.			0000 0000	uuuu uuuu
ADCON1		_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTF.

Name	Bit#	Buffer Type	Function
RG0/CCP3	bit 0	ST	Input/output port pin or Capture3 input/Compare3 output/PWM3 output.
RG1/TX2/CK2	bit 1	ST	Input/output port pin, addressable USART2 asynchronous transmit or addressable USART2 synchronous clock.
RG2/RX2/DT2	bit 2	ST	Input/output port pin, addressable USART2 asynchronous receive or addressable USART2 synchronous data.
RG3/CCP4	bit 3	ST	Input/output port pin or Capture4 input/Compare4 output/PWM4 output.
RG4/CCP5	bit 4	ST	Input/output port pin or Capture5 input/Compare5 output/PWM5 output.

TABLE 10-13: PORTG FUNCTIONS

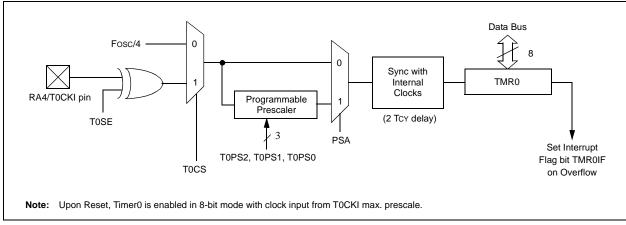
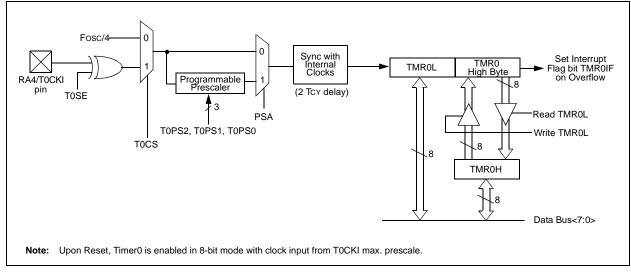
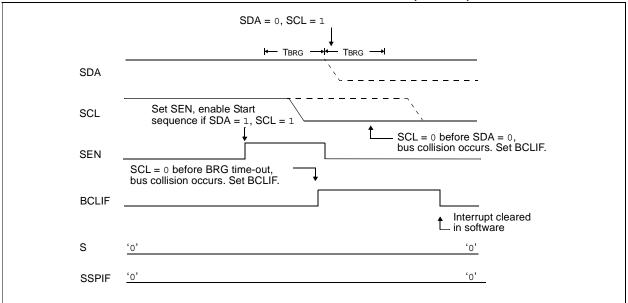

Legend: ST = Schmitt Trigger input

TABLE 10-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTG	_	_		Read PORTF pin/Write PORTF Data Latch						u uuuu
LATG	—	_		LATG Data Output Register x xxxxu uuu						u uuuu
TRISG	_	_	_	Data Direction Control Register for PORTG1 11111 11					1 1111	

Legend: x = unknown, u = unchanged


FIGURE 11-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE

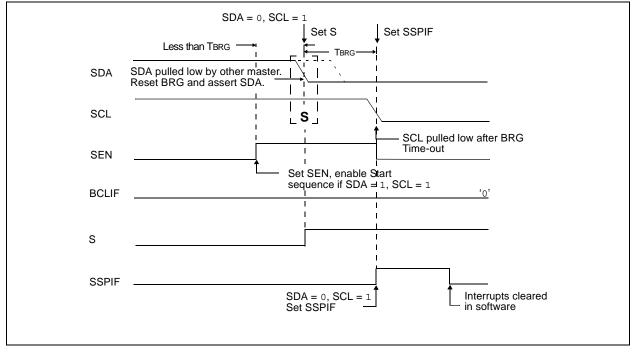


FIGURE 17-27: BUS COLLISION DURING START CONDITION (SCL = 0)

FIGURE 17-28: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

REGISTER 19-2: ADCON1 REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5-4 VCFG1:VCFG0: Voltage Reference Configuration bits:

VCFG1 VCFG0	A/D Vref+	A/D VREF-			
00	AVdd	AVss			
01	External VREF+	AVss			
10	AVDD	External VREF-			
11	External VREF+	External VREF-			

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits:

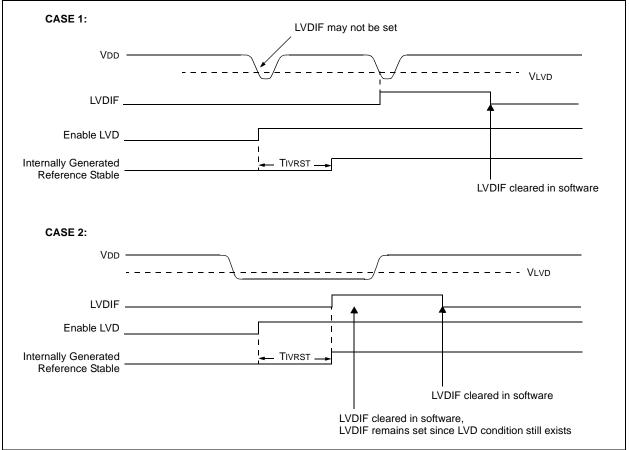
PCFG3 PCFG0	AN15	AN14	AN13	AN12	AN11	AN10	AN9	AN8	AN7	ANG	AN5	AN4	AN3	AN2	AN1	ANO
0000	Α	Α	А	Α	Α	Α	Α	Α	А	А	Α	Α	Α	Α	Α	Α
0001	D	D	А	А	Α	А	А	Α	А	А	А	А	Α	А	Α	А
0010	D	D	D	А	Α	А	А	Α	А	А	А	А	Α	Α	А	А
0011	D	D	D	D	Α	А	А	Α	А	А	А	А	Α	Α	А	А
0100	D	D	D	D	D	А	А	Α	А	А	А	А	Α	А	А	Α
0101	D	D	D	D	D	D	А	Α	А	А	А	А	Α	Α	А	А
0110	D	D	D	D	D	D	D	Α	А	А	А	А	А	Α	А	А
0111	D	D	D	D	D	D	D	D	А	А	А	А	Α	А	А	А
1000	D	D	D	D	D	D	D	D	D	А	А	А	А	Α	А	А
1001	D	D	D	D	D	D	D	D	D	D	А	А	А	Α	А	А
1010	D	D	D	D	D	D	D	D	D	D	D	А	Α	А	Α	А
1011	D	D	D	D	D	D	D	D	D	D	D	D	А	А	А	А
1100	D	D	D	D	D	D	D	D	D	D	D	D	D	А	А	А
1101	D	D	D	D	D	D	D	D	D	D	D	D	D	D	А	А
1110	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	А
1111	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
A _ Ana	$\Delta = A palog input D = Digital I/O$															

A = Analog input D = Digital I/O

Note: Shaded cells indicate A/D channels available only on PIC18F8X20 devices.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

22.2 Operation


Depending on the power source for the device voltage, the voltage normally decreases relatively slowly. This means that the LVD module does not need to be constantly operating. To decrease the current requirements, the LVD circuitry only needs to be enabled for short periods, where the voltage is checked. After doing the check, the LVD module may be disabled.

Each time that the LVD module is enabled, the circuitry requires some time to stabilize. After the circuitry has stabilized, all status flags may be cleared. The module will then indicate the proper state of the system.

The following steps are needed to set up the LVD module:

- Write the value to the LVDL3:LVDL0 bits (LVDCON register), which selects the desired LVD trip point.
- 2. Ensure that LVD interrupts are disabled (the LVDIE bit is cleared or the GIE bit is cleared).
- 3. Enable the LVD module (set the LVDEN bit in the LVDCON register).
- 4. Wait for the LVD module to stabilize (the IRVST bit to become set).
- Clear the LVD interrupt flag, which may have falsely become set, until the LVD module has stabilized (clear the LVDIF bit).
- 6. Enable the LVD interrupt (set the LVDIE and the GIE bits).

Figure 22-4 shows typical waveforms that the LVD module may be used to detect.

FIGURE 22-4: LOW-VOLTAGE DETECT WAVEFORMS

CONFIG3L: CONFIGURATION REGISTER 3 LOW (BYTE ADDRESS 300004h)⁽¹⁾ REGISTER 23-4: R/P-1 U-0 U-0 U-0 U-0 U-0 R/P-1 **R/P-1** WAIT PM1 PM0 bit 7 bit 0 bit 7 WAIT: External Bus Data Wait Enable bit 1 = Wait selections unavailable for table reads and table writes 0 = Wait selections for table reads and table writes are determined by the WAIT1:WAIT0 bits (MEMCOM<5:4>) bit 6-2 Unimplemented: Read as '0' PM1:PM0: Processor Mode Select bits bit 1-0 11 = Microcontroller mode 10 = Microprocessor mode 01 = Microprocessor with Boot Block mode 00 = Extended Microcontroller mode Note 1: This register is unimplemented in PIC18F6X20 devices; maintain these bits set. Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as '0' - n = Value when device is unprogrammed u = Unchanged from programmed state

REGISTER 23-5: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)

U-0	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1
	—	—	—	—	—	r(1)	CCP2MX
bit 7							bit 0

- bit 7-2 Unimplemented: Read as '0'
- bit 1 Reserved: Read as unknown⁽¹⁾
- bit 0 CCP2MX: CCP2 Mux bit
 - In Microcontroller mode:
 - 1 = CCP2 input/output is multiplexed with RC1
 - 0 = CCP2 input/output is multiplexed with RE7

In Microprocessor, Microprocessor with Boot Block and Extended Microcontroller modes (PIC18F8X20 devices only):

- 1 = CCP2 input/output is multiplexed with RC1
- 0 = CCP2 input/output is multiplexed with RB3

Note 1: Unimplemented in PIC18FX620 and PIC18FX720 devices; read as '0'.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device	ce is unprogrammed	u = Unchanged from programmed state

REGISTER 23-12: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)

U-0	R/P-1	U-0	U-0	U-0	U-0	U-0	U-0
	EBTRB		—	—	—	—	—
bit 7							bit 0

- bit 7 Unimplemented: Read as '0'
- bit 6 **EBTRB:** Boot Block Table Read Protection bit

For PIC18FX520 devices:

- 1 = Boot Block (000000-0007FFh) not protected from table reads executed in other blocks
- 0 = Boot Block (000000-0007FFh) protected from table reads executed in other blocks
- For PIC18FX620 and PIC18FX720 devices:
- 1 = Boot Block (000000-0001FFh) not protected from table reads executed in other blocks
- 0 = Boot Block (000000-0001FFh) protected from table reads executed in other blocks
- bit 5-0 Unimplemented: Read as '0'

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

REGISTER 23-13: DEVICE ID REGISTER 1 FOR PIC18FXX20 DEVICES (ADDRESS 3FFFFEh)

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

bit 7-5 **DEV2:DEV0:** Device ID bits

000	=	PIC18F8720
001	=	PIC18F6720
010	=	PIC18F8620
011	=	PIC18F6620

bit 4-0 REV4:REV0: Revision ID bits

These bits are used to indicate the device revision.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

REGISTER 23-14: DEVICE ID REGISTER 2 FOR PIC18FXX20 DEVICES (ADDRESS 3FFFFFh)

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

bit 7-0 DEV10:DEV3: Device ID bits

These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

ΒZ		Branch if	Branch if Zero				
Synt	ax:	[<i>label</i>] B	Zn				
Ope	rands:	-128 ≤ n ≤	127				
Ope	ration:	if Zero bit (PC) + 2 +	is '1' · 2n → PC				
Statu	us Affected:	None					
Enco	oding:	1110	0000 r	nnn	nnnn		
Desc	cription:	program w The 2's co added to t have incre instruction PC+2+2n.	If the Zero bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC+2+2n. This instruction is then a two-cycle instruction.				
Word	ds:	1					
Cycl	es:	1(2)					
	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n'	Process Data	Write	e to PC		
	No	No	No		No		
IF NL	operation	operation	operation	n ope	eration		
	o Jump: Q1	Q2	Q3		Q4		
	Decode	Read literal	Process		No		
		'n'	Data	оре	eration		
Example: HERE BZ Jump Before Instruction PC = address (HERE)							
PC = address (HERE) After Instruction							
	If Zero	= 1;					
	PC If Zero	= 0;	dress (Jun	-			
	PC	= ad	dress (HEF	RE+2)			

CAL	.L	Subrouti	Subroutine Call			
Syn	tax:	[label]	CALL k	[,s]		
Ope	erands:	$0 \le k \le 10$ s $\in [0,1]$	0 ≤ k ≤ 1048575			
Ope	eration:	$k \rightarrow PC < 2$ if s = 1 (W) \rightarrow WS (STATUS)	$(PC) + 4 \rightarrow TOS,$ $k \rightarrow PC<20:1>,$			
Stat	us Affected:	None				
1st v	oding: word (k<7:0>) word(k<19:8>		110s k ₁₉ kkk	k ₇ k} kkk		kkkk ₀ kkkk ₈
	address (PC+ 4) is pushed onto th return stack. If 's' = 1, the W, Status and BSR registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs (default). Then, the 20-bit value 'k' is loaded into PC<20:1>. CALL is a two-cycle instruction.				V, are also e ATUSS date 20-bit :20:1>.	
Wor	ds:	2				
Сус	les:	2				
QC	Cycle Activity:					
	Q1	Q2	Q	3		Q4
	Decode	Read literal 'k'<7:0>	Push P stac		'k'	ad literal <19:8>, ite to PC
	No	No	No			No
	operation	operation	opera	tion	op	peration
<u>Exa</u>	mple:	HERE	HERE CALL THERE, 1			
	Before Instruc					
	PC	= address	S (HERE)		
	After Instructi PC TOS WS BSRS	on = address = address = W = BSR				

BSRS = BSR STATUSS = STATUS

INCF	-SZ	Incremer	nt f, skip	if O			
Synt	ax:	[label]	INCFSZ	<u>f</u> f [,c	l [,a]		
Ope	rands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5				
Ope	ration:	(f) + 1 \rightarrow skip if res					
Statu	us Affected:	None					
Enco	oding:	0011	11da	fff	f ffff		
Desc	cription:	increment is placed (default). If the resu instruction is discard instead, n instruction Bank will the BSR v	If the result is '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the				
Word	ds:	1	1				
Cycl		by	ycles if s a 2-wore		nd followed uction.		
QU	ycle Activity: Q1	Q2	Q3	R	Q4		
	Decode	Read register 'f'	Proce	SS	Write to destination		
lf sk	kip:	.09.000	Duk		acculation		
	Q1	Q2	Q3	3	Q4		
	No	No	No		No		
lfck	operation	operation	operat operat		operation		
11 51	Q1	Q2	Q3		Q4		
1	No	No	No		No		
	operation	operation	operat	ion	operation		
No operation		No operation	No operat		No operation		
Example:		HERE NZERO ZERO	INCFSZ : :	CNI	2, 1, 0		
	Before Instru PC	iction = Addres	s (HERE	:)			
	After Instruct CNT If CNT	= CNT + = 0;					
	PC If CNT PC	 = Addres ≠ 0; = Addres 	s (ZERC s (NZER				
	. 0	. (30100	- (10001)				

INFSNZ	Incremen	Increment f, skip if not 0				
Syntax:	[label]	[<i>label</i>] INFSNZ f[,d[,a]				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	(f) + 1 \rightarrow oskip if resu					
Status Affected:	None					
Encoding:	0100	10da ffi	ff ffff			
Description: Words: Cycles:	increment is placed i is placed b (default). If the resu instruction is discarde instead, m instruction Bank will b the BSR value 1	If the result is not '0', the next instruction which is already fetched is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default). 1 1(2)				
- , 0,00.	· · ·	cycles if skip	and followed			
- , 0,000.	Note: 3 c	cycles if skip a 2-word ins				
Q Cycle Activity	Note: 3 c by					
Q Cycle Activity	Note: 3 c by /: Q2	a 2-word ins Q3	truction. Q4			
Q Cycle Activity	Note: 3 c by /: Q2 Read	a 2-word ins	truction. Q4 Write to			
Q Cycle Activity	Note: 3 c by /: Q2	a 2-word ins Q3 Process	truction. Q4			
Q Cycle Activity Q1 Decode	Note: 3 c by /: Q2 Read	a 2-word ins Q3 Process	truction. Q4 Write to			
Q Cycle Activity Q1 Decode If skip: Q1 No	Note: 3 c by /: Q2 Read register 'f' Q2 No	a 2-word ins Q3 Process Data Q3 No	truction. Q4 Write to destination Q4 No			
Q Cycle Activity Q1 Decode If skip: Q1 No operation	Note: 3 c by /: Q2 Read register 'f' Q2 No operation	a 2-word ins Q3 Process Data Q3 No operation	truction. Q4 Write to destination Q4 No operation			
Q Cycle Activity Q1 Decode If skip: Q1 No operation If skip and follow	Note: 3 c by C: Q2 Read register 'f' Q2 No operation wed by 2-wor	a 2-word ins Q3 Process Data Q3 No operation d instruction:	truction. Q4 Write to destination Q4 No operation			
Q Cycle Activity Q1 Decode If skip: Q1 No operation	Note: 3 c by /: Q2 Read register 'f' Q2 No operation	a 2-word ins Q3 Process Data Q3 No operation	truction. Q4 Write to destination Q4 No operation			
Q Cycle Activity Q1 Decode If skip: Q1 No operation If skip and follor Q1	Note: 3 d by (: Q2 Read register 'f' Q2 No operation wed by 2-wor Q2	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3	truction. Q4 Write to destination Q4 No operation Q4			
Q Cycle Activity Q1 Decode If skip: Q1 No operation If skip and follor Q1 No operation No	Note: 3 c by C Q2 Read register 'f' Q2 No operation wed by 2-wor Q2 No operation No operation	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation No	truction. Q4 Write to destination Q4 No operation No No			
Q Cycle Activity Q1 Decode If skip: Q1 No operation If skip and follor Q1 No operation	Note: 3 c by C Q2 Read register 'f' Q2 No operation wed by 2-wor Q2 No operation	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation	truction. Q4 Write to destination Q4 No operation Q4 No operation			
Q Cycle Activity Q1 Decode If skip: Q1 No operation If skip and follor Q1 No operation No	Note: 3 d by C Q2 Read register 'f' Q2 No operation wed by 2-wor Q2 No operation No operation	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation No operation	truction. Q4 Write to destination Q4 No operation No No			
Q Cycle Activity Q1 Decode If skip: Q1 No operation If skip and follor Q1 No operation No operation	Note: 3 d by (: Q2 Read register 'f' Q2 No operation wed by 2-wor Q2 No operation No operation HERE ZERO NZERO vuction	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation No operation	truction. Q4 Write to destination Q4 No operation No operation No			
Q Cycle Activity Q1 Decode If skip: Q1 No operation If skip and follor Q1 No operation No operation Example: Before Instruct	Note: 3 d by (: Q2 Read register 'f' Q2 No operation wed by 2-wor Q2 No operation Wed by 2-wor Q2 No operation HERE ZERO NZERO PUCTION = Address ction	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation No operation INFSNZ REG	truction. Q4 Write to destination Q4 No operation No operation No			
Q Cycle Activity Q1 Decode If skip: Q1 No operation If skip and follor Q1 No operation No operation Example: Before Instr PC	Note: 3 d by (: Q2 Read register 'f' Q2 No operation wed by 2-wor Q2 No operation No operation HERE ZERO NZERO Uction = Address	a 2-word ins Q3 Process Data Q3 No operation d instruction: Q3 No operation No operation INFSNZ REG	truction. Q4 Write to destination Q4 No operation No operation No			

MOVLB

MOVFF	Move f to	o f				
Syntax:	[label]	MOVFF	f _s ,f _d			
Operands:	$\begin{array}{l} 0 \leq f_{s} \leq 4095 \\ 0 \leq f_{d} \leq 4095 \end{array}$					
Operation:	$(f_s) \rightarrow f_d$					
Status Affected:	None					
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d		
	escription: The contents of source register 'f _s ' are moved to destination register 'f _d '. Location of source 'f _s ' can be anywhere in the 4096-byte data space (000h to FFFh) and location of destination 'f _d ' can also be anywhere from 000h to FFFh. Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.					
Words:	2					
Cycles:	2 (3)					
Q Cycle Activity:						
Q1	Q2	Q3	3	Q4		

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation, No dummy read	No operation	Write register 'f' (dest)

REG1, REG2

Example: MOVFF

Before Instruction					
REG1	=	0x33			
REG2	=	0x11			
After Instruction					
REG1	=	0x33,			
REG2	=	0x33			

Syntax:		[label]	MOVLB	k			
Ope	rands:	$0 \le k \le 25$	$0 \le k \le 255$				
Ope	ration:	$k \rightarrow BSR$					
Statu	us Affected:	None					
Enco	oding:	0000	0001	kkk	ck	kkkk	
Des	cription:	The 8-bit the Bank					
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
Q1		Q2	Q3			Q4	
	Decode	Read literal 'k'	Proce Data		lite	Write ral 'k' to BSR	

Move literal to low nibble in BSR

Example: MOVLB 5

Before Instruction					
=	0x02				
=	0x05				

25.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

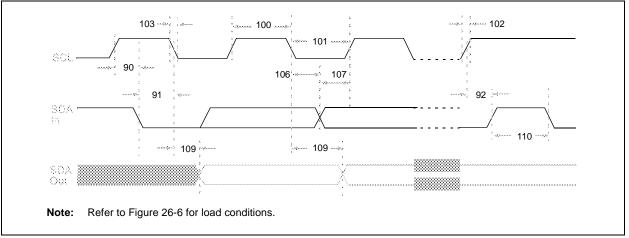
The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

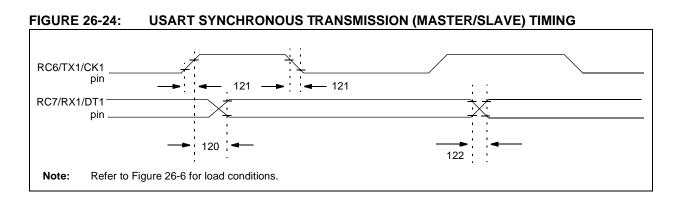
25.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express


The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].


The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

Param No.	Symbol	Characte	ristic	Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	4700	—	ns	Only relevant for Repeated
		Setup Time	400 kHz mode	600	—		Start condition
91	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first clock pulse is generated
		Hold Time	400 kHz mode	600	_		
92	Tsu:sto	Stop Condition	100 kHz mode	4700	_	ns	
		Setup Time	400 kHz mode	600	_		
93	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	
		Hold Time	400 kHz mode	600	—		

TABLE 26-19: I²C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

FIGURE 26-21: I²C BUS DATA TIMING

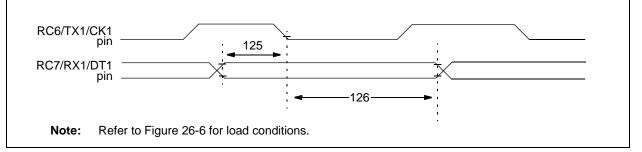


TABLE 26-23: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
120		SYNC XMIT (MASTER & SLAVE) Clock High to Data Out Valid	PIC18FXX20		40	ns	
			PIC18LFXX20		100	ns	VDD = 2.0V
121	TCKRF	Clock Out Rise Time and Fall Time	PIC18FXX20	_	20	ns	
		(Master mode)	PIC18LFXX20	_	50	ns	VDD = 2.0V
122	TDTRF	Data Out Rise Time and Fall Time	PIC18FXX20	—	20	ns	
			PIC18LFXX20	_	50	ns	VDD = 2.0V

FIGURE 26-25: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 26-24: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions
125	TDTV2CKL	SYNC RCV (MASTER & SLAVE)				
		Data Hold before CK \downarrow (DT hold time)	10	—	ns	
126	TCKL2DTL	Data Hold after CK \downarrow (DT hold time)	15	_	ns	

APPENDIX A: REVISION HISTORY

Revision A (January 2003)

Original data sheet for the PIC18FXX20 family which includes PIC18F6520, PIC18F6620, PIC18F6720, PIC18F8520, PIC18F8620 and PIC18F8720 devices.

This data sheet is based on the previous PIC18FXX20 Data Sheet (DS39580).

Revision B (January 2004)

This revision includes the DC and AC Characteristics Graphs and Tables. The Electrical Specifications in **Section 26.0 "Electrical Characteristics"** have been updated and there have been minor corrections to the data sheet text.

Revision C (November 2011)

This revision updated **Section 28.0** "Packaging Information".

PIC18F6520 PIC18F6620 PIC18F6720 PIC18F8520 PIC18F8620 PIC18F8720 Feature On-Chip Program Memory 32 128 32 128 64 64 (Kbytes) Data Memory (bytes) 3840 2048 3840 2048 3840 3840 512 Boot Block (bytes) 2048 512 2048 512 512 Timer1 Low-Power Option No No Yes No Yes No Ports A, B, C, I/O Ports Ports A, B, C, Ports A. B. C. Ports A, B, C, Ports A, B, C, Ports A, B, C, D, E, F, G D, E, F, G D, E, F, G D, E, F, G, H, J D, E, F, G, H, J D, E, F, G, H, J A/D Channels 12 12 12 16 16 16 **External Memory Interface** No No No Yes Yes Yes Maximum Operating 40 25 25 40 25 25 Frequency (MHz) Package Types 64-pin TQFP 64-pin TQFP 64-pin TQFP 80-pin TQFP 80-pin TQFP 80-pin TQFP

TABLE B-1: DEVICE DIFFERENCES

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	······································	Total Pages Sent
Fro	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Арр	lication (optional):	
Wo	uld you like a reply? Y N	
Dev	 ice: PIC18F6520/8520/6620/8620/6720/8720	Literature Number: DS39609C
Que	estions:	
1.	What are the best features of this document?	
2.	How does this document meet your hardware and soft	ware development needs?
3.	Do you find the organization of this document easy to f	ollow? If not, why?
4.	What additions to the document do you think would en	hance the structure and subject?
5.	What deletions from the document could be made with	out affecting the overall usefulness?
6.	Is there any incorrect or misleading information (what a	and where)?
7.	How would you improve this document?	