

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

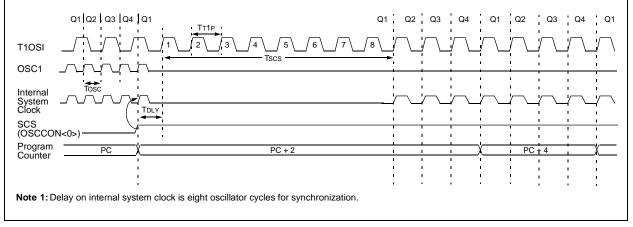
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

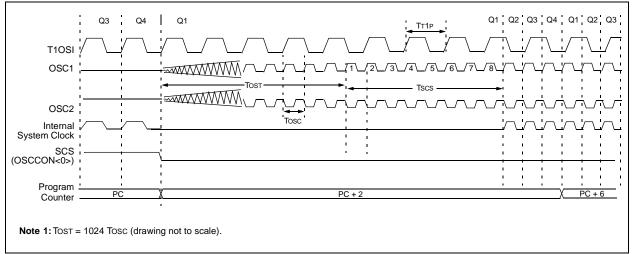
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8520t-i-pt

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.6.2 OSCILLATOR TRANSITIONS

PIC18FXX20 devices contain circuitry to prevent "glitches" when switching between oscillator sources. Essentially, the circuitry waits for eight rising edges of the clock source that the processor is switching to. This ensures that the new clock source is stable and that its pulse width will not be less than the shortest pulse width of the two clock sources.


A timing diagram indicating the transition from the main oscillator to the Timer1 oscillator is shown in Figure 2-8. The Timer1 oscillator is assumed to be running all the time. After the SCS bit is set, the processor is frozen at the next occurring Q1 cycle. After eight synchronization cycles are counted from the Timer1 oscillator, operation resumes. No additional delays are required after the synchronization cycles.

The sequence of events that takes place when switching from the Timer1 oscillator to the main oscillator will depend on the mode of the main oscillator. In addition to eight clock cycles of the main oscillator, additional delays may take place. If the main oscillator is configured for an external crystal (HS, XT, LP), then the transition will take place after an oscillator start-up time (TOST) has occurred. A timing diagram, indicating the transition from the Timer1 oscillator to the main oscillator for HS, XT and LP modes, is shown in Figure 2-9.

TABLE 3-3:			_	MCLR Resets	JED) Wake-up via WDT or Interrupt	
Register	Applicabl	e Devices	Power-on Reset, Brown-out Reset	WDT Reset RESET Instruction Stack Resets		
ADRESH	PIC18F6X20	PIC18F8X20	XXXX XXXX	uuuu uuuu	uuuu uuuu	
ADRESL	PIC18F6X20	PIC18F8X20	xxxx xxxx	սսսս սսսս	սսսս սսսս	
ADCON0	PIC18F6X20	PIC18F8X20	00 0000	00 0000	uu uuuu	
ADCON1	PIC18F6X20	PIC18F8X20	00 0000	00 0000	uu uuuu	
ADCON2	PIC18F6X20	PIC18F8X20	0000	0000	uuuu	
CCPR1H	PIC18F6X20	PIC18F8X20	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCPR1L	PIC18F6X20	PIC18F8X20	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCP1CON	PIC18F6X20	PIC18F8X20	00 0000	00 0000	uu uuuu	
CCPR2H	PIC18F6X20	PIC18F8X20	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCPR2L	PIC18F6X20	PIC18F8X20	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCP2CON	PIC18F6X20	PIC18F8X20	00 0000	00 0000	uu uuuu	
CCPR3H	PIC18F6X20	PIC18F8X20	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCPR3L	PIC18F6X20	PIC18F8X20	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCP3CON	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	uuuu uuuu	
CVRCON	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	uuuu uuuu	
CMCON	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	uuuu uuuu	
TMR3H	PIC18F6X20	PIC18F8X20	XXXX XXXX	uuuu uuuu	uuuu uuuu	
TMR3L	PIC18F6X20	PIC18F8X20	XXXX XXXX	uuuu uuuu	uuuu uuuu	
T3CON	PIC18F6X20	PIC18F8X20	0000 0000	uuuu uuuu	uuuu uuuu	
PSPCON	PIC18F6X20	PIC18F8X20	0000	0000	uuuu	
SPBRG1	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	uuuu uuuu	
RCREG1	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	uuuu uuuu	
TXREG1	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	uuuu uuuu	
TXSTA1	PIC18F6X20	PIC18F8X20	0000 -010	0000 -010	uuuu -uuu	
RCSTA1	PIC18F6X20	PIC18F8X20	0000 000x	0000 000x	uuuu uuuu	
EEADRH	PIC18F6X20	PIC18F8X20	00	00	uu	
EEADR	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	uuuu uuuu	
EEDATA	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	uuuu uuuu	
EECON2	PIC18F6X20	PIC18F8X20				
EECON1	PIC18F6X20	PIC18F8X20	xx-0 x000	uu-0 u000	uu-0 u000	

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for Reset value for specific condition.

5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

4.7.1 TWO-WORD INSTRUCTIONS

The PIC18FXX20 devices have four two-word instructions: MOVFF, CALL, GOTO and LFSR. The second word of these instructions has the 4 MSBs set to '1's and is a special kind of NOP instruction. The lower 12 bits of the second word contain data to be used by the instruction. If the first word of the instruction is executed, the data in the second word is accessed. If the second word of the instruction is executed by itself (first word was skipped), it will execute as a NOP. This action is necessary when the two-word instruction is preceded by a conditional instruction that changes the PC. A program example that demonstrates this concept is shown in Example 4-3. Refer to **Section 24.0 "Instruction Set Summary"** for further details of the instruction set.

EXAMPLE 4-3:	TWO-WORD INSTRUCTIONS

CASE	1:					
Object	Code			Source Co	de	
0110	0110	0000	0000	TSTFSZ	REG1	; is RAM location 0?
1100	0001	0010	0011	MOVFF	REG1, REG2	; No, execute 2-word instruction
1111	0100	0101	0110			; 2nd operand holds address of REG2
0010	0100	0000	0000	ADDWF	REG3	; continue code
CASE	2:					
Object	Code			Source Co	de	
0110	0110	0000	0000	TSTFSZ	REG1	; is RAM location 0?
1100	0001	0010	0011	MOVFF	REG1, REG2	; Yes
1111	0100	0101	0110			; 2nd operand becomes NOP
0010	0100	0000	0000	ADDWF	REG3	; continue code

4.8 Look-up Tables

Look-up tables are implemented two ways. These are:

- Computed GOTO
- Table Reads

4.8.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL).

A look-up table can be formed with an ADDWF PCL instruction and a group of RETLW 0xnn instructions. WREG is loaded with an offset into the table before executing a call to that table. The first instruction of the called routine is the ADDWF PCL instruction. The next instruction executed will be one of the RETLW 0xnn instructions, that returns the value 0xnn to the calling function.

The offset value (value in WREG) specifies the number of bytes that the program counter should advance.

In this method, only one data byte may be stored in each instruction location and room on the return address stack is required.

4.8.2 TABLE READS/TABLE WRITES

A better method of storing data in program memory allows 2 bytes of data to be stored in each instruction location.

Look-up table data may be stored 2 bytes per program word by using table reads and writes. The Table Pointer (TBLPTR) specifies the byte address and the Table Latch (TABLAT) contains the data that is read from, or written to program memory. Data is transferred to/from program memory, one byte at a time.

A description of the table read/table write operation is shown in **Section 5.0 "Flash Program Memory"**.

TABLE 4-2: SPECIAL FUNCTION REGISTER MAP

Address	Name	Address	Name	Address	Name	Address	Name
FFFh	TOSU	FDFh	INDF2 ⁽³⁾	FBFh	CCPR1H	F9Fh	IPR1
FFEh	TOSH	FDEh	POSTINC2(3)	FBEh	CCPR1L	F9Eh	PIR1
FFDh	TOSL	FDDh	POSTDEC2(3)	FBDh	CCP1CON	F9Dh	PIE1
FFCh	STKPTR	FDCh	PREINC2 ⁽³⁾	FBCh	CCPR2H	F9Ch	MEMCON ⁽²⁾
FFBh	PCLATU	FDBh	PLUSW2 ⁽³⁾	FBBh	CCPR2L	F9Bh	(1)
FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP2CON	F9Ah	TRISJ
FF9h	PCL	FD9h	FSR2L	FB9h	CCPR3H	F99h	TRISH
FF8h	TBLPTRU	FD8h	STATUS	FB8h	CCPR3L	F98h	TRISG
FF7h	TBLPTRH	FD7h	TMR0H	FB7h	CCP3CON	F97h	TRISF
FF6h	TBLPTRL	FD6h	TMR0L	FB6h	(1)	F96h	TRISE
FF5h	TABLAT	FD5h	T0CON	FB5h	CVRCON	F95h	TRISD
FF4h	PRODH	FD4h	(1)	FB4h	CMCON	F94h	TRISC
FF3h	PRODL	FD3h	OSCCON	FB3h	TMR3H	F93h	TRISB
FF2h	INTCON	FD2h	LVDCON	FB2h	TMR3L	F92h	TRISA
FF1h	INTCON2	FD1h	WDTCON	FB1h	T3CON	F91h	LATJ
FF0h	INTCON3	FD0h	RCON	FB0h	PSPCON	F90h	LATH
FEFh	INDF0 ⁽³⁾	FCFh	TMR1H	FAFh	SPBRG1	F8Fh	LATG
FEEh	POSTINC0 ⁽³⁾	FCEh	TMR1L	FAEh	RCREG1	F8Eh	LATF
FEDh	POSTDEC0 ⁽³⁾	FCDh	T1CON	FADh	TXREG1	F8Dh	LATE
FECh	PREINC0 ⁽³⁾	FCCh	TMR2	FACh	TXSTA1	F8Ch	LATD
FEBh	PLUSW0 ⁽³⁾	FCBh	PR2	FABh	RCSTA1	F8Bh	LATC
FEAh	FSR0H	FCAh	T2CON	FAAh	EEADRH	F8Ah	LATB
FE9h	FSR0L	FC9h	SSPBUF	FA9h	EEADR	F89h	LATA
FE8h	WREG	FC8h	SSPADD	FA8h	EEDATA	F88h	PORTJ
FE7h	INDF1 ⁽³⁾	FC7h	SSPSTAT	FA7h	EECON2	F87h	PORTH
FE6h	POSTINC1 ⁽³⁾	FC6h	SSPCON1	FA6h	EECON1	F86h	PORTG
FE5h	POSTDEC1 ⁽³⁾	FC5h	SSPCON2	FA5h	IPR3	F85h	PORTF
FE4h	PREINC1 ⁽³⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE
FE3h	PLUSW1 ⁽³⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD
FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC
FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB
FE0h	BSR	FC0h	ADCON2	FA0h	PIE2	F80h	PORTA

Note 1: Unimplemented registers are read as '0'.

2: This register is unused on PIC18F6X20 devices. Always maintain this register clear.

3: This is not a physical register.

EXAMPLE 5-3: WRITING TO FLASH PROGRAM MEMORY

EXAMPLE 5-3:	WRI	TING TO FLASH PROC	
	MOVLW	D'64	; number of bytes in erase block
	MOVWF	COUNTER	
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF MOVLW	FSR0H BUFFER ADDR LOW	
	MOVWF	FSROL	
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF MOVLW	TBLPTRH CODE ADDR LOW	
	MOVHW	CODE_ADDR_LOW TBLPTRL	
READ_BLOCK			
	TBLRD*+	÷	; read into TABLAT, and inc
	MOVF	TABLAT, W	; get data
	MOVWF	POSTINCO COUNTER	; store data ; done?
	BRA	READ BLOCK	; repeat
MODIFY_WORD			
_	MOVLW	DATA_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW MOVWF	DATA_ADDR_LOW FSR0L	
	MOVWF MOVLW	NEW DATA LOW	; update buffer word
	MOVWF	POSTINC0	, apaaoo barror nora
	MOVLW	NEW_DATA_HIGH	
	MOVWF	INDF0	
ERASE_BLOCK	MOLITIN		
	MOVLW MOVWF	CODE_ADDR_UPPER TBLPTRU	; load TBLPTR with the base ; address of the memory block
	MOVLW	CODE ADDR HIGH	, address of the memory brock
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
	BSF BCF	EECON1, EEPGD EECON1, CFGS	; point to Flash program memory ; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Row Erase operation
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF MOVLW	EECON2 AAh	; write 55H
Sequence	MOVWF	EECON2	; write AAH
-	BSF	EECON1, WR	; start erase (CPU stall)
	NOP		
	BSF TDIDD+	INTCON, GIE	; re-enable interrupts ; dummy read decrement
WRITE BUFFER B	TBLRD*- BACK	-	; dummy read decrement
	MOVLW	8	; number of write buffer groups of 8 bytes
	MOVWF	COUNTER_HI	
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	
	MOVLW MOVWF	BUFFER_ADDR_LOW FSR0L	
PROGRAM LOOP	110 V W1	IDROL	
	MOVLW	8	; number of bytes in holding register
	MOVWF	COUNTER	
WRITE_WORD_TO_	-		
	MOVFF	POSTINCO, WREG	; get low byte of buffer data ; present data to table latch
	TBLWT+*	•	; present data to table latch ; write data, perform a short write
			; to internal TBLWT holding register.
	DECFSZ	COUNTER	; loop until buffers are full
	BRA	WRITE_WORD_TO_HREGS	
r			

REGISTER 7-1:	EECON1 F	REGISTER	(ADDRES	S FA6h)				
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD
	bit 7							bit 0
bit 7		-			ry Select bit			
		s Flash prog s data EEPR						
bit 6		•			guration Sel	lect bit		
		s configurati s Flash prog						
bit 5	Unimplem	ented: Read	as '0'					
bit 4		sh Row Eras						
	(cleare	the program d by comple m write only			d by TBLPT	R on the ne	kt WR comn	hand
bit 3	WRERR: F	lash Progra	m/Data EEF	ROM Error	Flag bit			
	(any M	operation is ICLR or any rite operation	WDT Reset	t during self-	d timed progra	amming in n	ormal opera	ation)
	Note:	When a Wittracing of the		•	GD or FRE	E bits are n	ot cleared.	This allows
bit 2	WREN: Fla	ish Program	/Data EEPR	OM Write E	nable bit			
		write cycles write cycles	•	•				
bit 1	WR: Write	Control bit						
	 1 = Initiates a data EEPROM erase/write cycle, or a program memory erase cycle or write cycle. (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle to the EEPROM is complete 							
bit 0	RD: Read	Control bit						
	can on		ot cleared) ir	n software. F	ne cycle. RD RD bit canno			
	Legend:							
	P - Roodo	hla hit	$\lambda \Lambda I = \lambda \Lambda I$	ritable bit		nlomontod	hit road as	·^'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADRH:EEADR register pair, clear the EEPGD control bit (EECON1<7>), clear the CFGS

EXAMPLE 7-1: DATA EEPROM READ

control bit (EECON1<6>) and then set the RD control bit (EECON1<0>). The data is available for the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

	MOVLW	DATA_EE_ADDRH		
	MOVWF	EEADRH	Jpper bits of Data Memory Ad	dress to read
	MOVLW	DATA_EE_ADDR		
	MOVWF	EEADR	Lower bits of Data Memory Ad	dress to read
	BCF	EECON1, EEPGD	Point to DATA memory	
	BCF	EECON1, CFGS	Access EEPROM	
	BSF	EECON1, RD	EEPROM Read	
	MOVF	EEDATA, W	N = EEDATA	
I				

7.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADRH:EEADR register pair and the data written to the EEDATA register. Then the sequence in Example 7-2 must be followed to initiate the write cycle.

The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware

After a write sequence has been initiated, EECON1, EEADRH, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Write Complete Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt, or poll this bit. EEIF must be cleared by software.

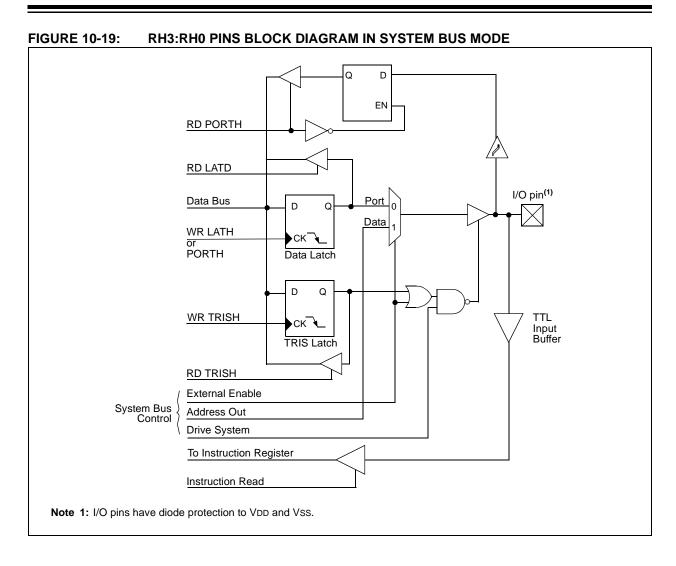
	MOVLW	DATA_EE_ADDRH	;
	MOVWF	EEADRH	; Upper bits of Data Memory Address to write
	MOVLW	DATA_EE_ADDR	;
	MOVWF	EEADR	; Lower bits of Data Memory Address to write
	MOVLW	DATA_EE_DATA	;
	MOVWF	EEDATA	; Data Memory Value to write
	BCF	EECON1, EEPGD	; Point to DATA memory
	BCF	EECON1, CFGS	; Access EEPROM
	BSF	EECON1, WREN	; Enable writes
	BCF	INTCON, GIE	; Disable Interrupts
	MOVLW	55h	i
Required	MOVWF	EECON2	; Write 55h
Sequence	MOVLW	AAh	;
	MOVWF	EECON2	; Write AAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BSF	INTCON, GIE	; Enable Interrupts
			; User code execution
	BCF	EECON1, WREN	; Disable writes on write complete (EEIF set)

EXAMPLE 7-2: DATA EEPROM WRITE

REGISTER 9-3:	INTCON3	REGISTER	र						
	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	
	bit 7							bit 0	
bit 7		T2 External	Interrupt Pr	iority bit					
	1 = High p 0 = Low p	•							
bit 6		T1 External	Interrunt Pr	iority bit					
bit 0	1 = High p		menuptri	ionty bit					
	0 = Low p								
bit 5	INT3IE: IN	T3 External	Interrupt Er	able bit					
		es the INT3							
		les the INT3		•					
bit 4		T2 External	•						
		es the INT2 les the INT2							
bit 3		T1 External		•					
Sit O		es the INT1	•						
		les the INT1		•					
bit 2	INT3IF: IN	T3 External	Interrupt Fla	ag bit					
				curred (mus	t be cleared	l in software)		
		NT3 external	•						
bit 1		T2 External	•	•	4 h a ala ana d		`		
		NT2 external	•	curred (mus	st be cleared	i in software)		
bit 0			•						
		INT1IF: INT1 External Interrupt Flag bit 1 = The INT1 external interrupt occurred (must be cleared in software)							
	0 = The INT1 external interrupt did not occur								
	Legend:								
	R = Reada	ble bit		Vritable bit		•	bit, read as	'0'	
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit	is cleared	x = Bit is u	unknown	

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

LIN 3-11.	IF NZ. FLN	IFILINAL			I I KLOIS							
	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	—	CMIP	_	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP				
	bit 7							bit 0				
bit 7	Unimpleme	ented: Rea	d as '0'									
bit 6	CMIP: Com 1 = High pri 0 = Low pri	iority	errupt Priorit	y bit								
bit 5	Unimpleme	ented: Rea	d as '0'									
bit 4	EEIP: Data 1 = High pri 0 = Low pri	iority	Flash Write	Operation In	terrupt Prior	ity bit						
bit 3	BCLIP: Bus 1 = High pri 0 = Low pri	iority	nterrupt Prio	rity bit								
bit 2	LVDIP: Low 1 = High pri 0 = Low pri	iority	etect Interru	pt Priority bi	t							
bit 1	TMR3IP: T 1 = High pr 0 = Low pri	iority	ow Interrupt	Priority bit								
bit 0	1 = High pr	CCP2IP: CCP2 Interrupt Priority bit 1 = High priority 0 = Low priority										
	Legend:											
	R = Readal	ole bit	W = W	ritable bit	U = Unin	plemented	bit, read as	'0'				
	1											


'1' = Bit is set

'0' = Bit is cleared

REGISTER 9-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2

- n = Value at POR

x = Bit is unknown

NOTES:

Register 12-1 details the Timer1 Control register. This register controls the operating mode of the Timer1

module and contains the Timer1 Oscillator Enable bit

(T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

Timer1 can also be used to provide Real-Time Clock

(RTC) functionality to applications, with only a minimal addition of external components and code overhead.

12.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (two 8-bit registers: TMR1H and TMR1L)
- Readable and writable (both registers)
- Internal or external clock select
- Interrupt-on-overflow from FFFFh to 0000h
- Reset from CCP module special event trigger

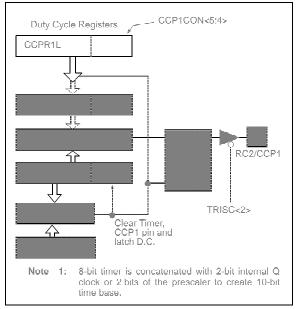
Figure 12-1 is a simplified block diagram of the Timer1 module.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON
bit 7							bit 0

bit 7	RD16: 16-bit Read/Write M	lode Enable bit				
	1 = Enables register read/	write of Timer1 in one	+ 16-bit operation			
	0 = Enables register read/\	write of Timer1 in two	8-bit operations			
bit 6	Unimplemented: Read as	· ' O '				
bit 5-4	T1CKPS1:T1CKPS0: Time	er1 Input Clock Preso	ale Select bits			
	11 = 1:8 Prescale value					
	10 = 1:4 Prescale value					
	01 = 1:2 Prescale value					
	00 = 1:1 Prescale value					
bit 3	T10SCEN: Timer1 Oscilla	tor Enable bit				
	1 = Timer1 oscillator is ena	abled				
	0 = Timer1 oscillator is shu	it off				
	The oscillator inverter and	feedback resistor are	turned off to eliminate	power drain.		
bit 2	T1SYNC: Timer1 External	Clock Input Synchro	nization Select bit			
	<u>When TMR1CS = 1:</u>					
	1 = Do not synchronize ext	ternal clock input				
	0 = Synchronize external o	lock input				
	When TMR1CS = 0:					
	This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.					
bit 1	TMR1CS: Timer1 Clock So	ource Select bit				
	1 = External clock from pin	RC0/T1OSO/T13Ck	(I (on the rising edge)			
	0 = Internal clock (Fosc/4)					
bit 0	TMR1ON: Timer1 On bit					
	1 = Enables Timer1					
	0 = Stops Timer1					
	Legend:					
	R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'		
	- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

16.4 PWM Mode


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data latch.

Figure 16-4 shows a simplified block diagram of the CCP module in PWM mode.

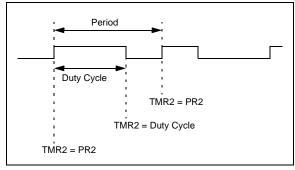

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 16.4.3** "Setup for PWM Operation".

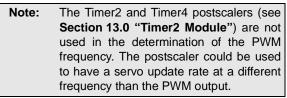
FIGURE 16-4: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 16-5) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 16-5: PWM OUTPUT

16.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:


EQUATION 16-1:

 $PWM Period = (PR2) + 1] \bullet 4 \bullet TOSC \bullet$ (TMR2 Prescale Value)

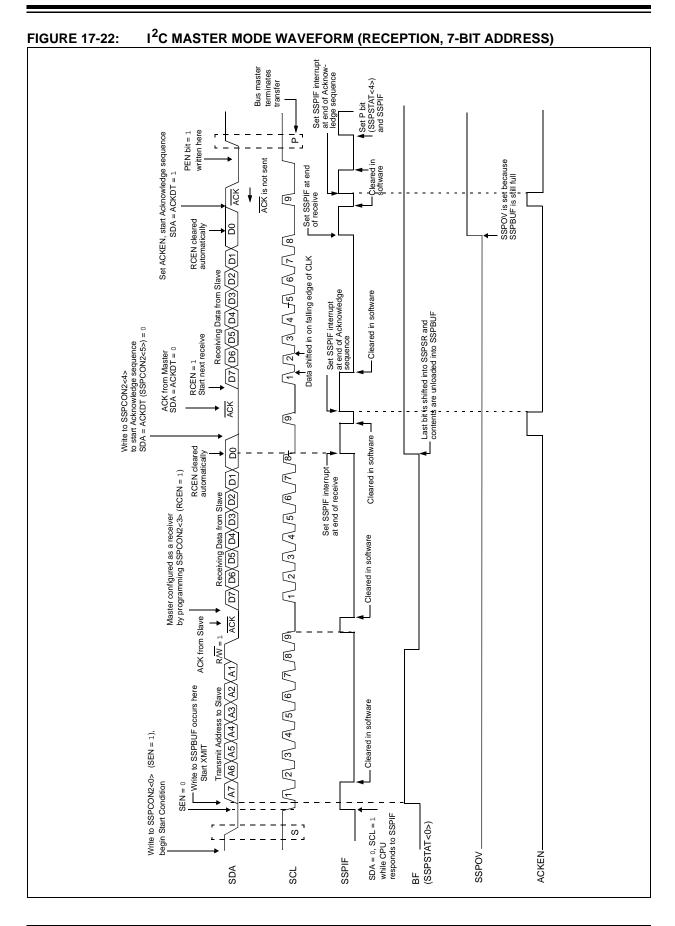
PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

16.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:


EQUATION 16-2:

```
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •
Tosc • (TMR2 Prescale Value)
```

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This doublebuffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

MOVLB

MOVFF	Move f to	o f			
Syntax:	[label]	MOVFF	f _s ,f _d		
Operands:	$\begin{array}{l} 0 \leq f_s \leq 4095 \\ 0 \leq f_d \leq 4095 \end{array}$				
Operation:	$(f_s) \to f_d$				
Status Affected:	None				
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d	
	tion: The contents of source register 'f _s ' are moved to destination register 'f _d '. Location of source 'f _s ' can be anywhere in the 4096-byte data space (000h to FFFh) and location of destination 'f _d ' can also be anywhere from 000h to FFFh. Either source or destination can be W (a useful special situation). MOVFF is particularly useful for transferring a data memory location to a peripheral register (such as the transmit buffer or an I/O port). The MOVFF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register.				
Words:	2				
Cycles:	2 (3)				
Q Cycle Activity:					
Q1	Q2	Q3	3	Q4	

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation, No dummy read	No operation	Write register 'f' (dest)

REG1, REG2

Example: MOVFF

Before Instructio	n	
REG1	=	0x33
REG2	=	0x11
After Instruction		
REG1	=	0x33,
REG2	=	0x33

Syntax:		[label]	MOVLB	k			
Ope	rands:	$0 \le k \le 25$	$0 \leq k \leq 255$				
Operation:		$k \rightarrow BSR$	$k \rightarrow BSR$				
Statu	us Affected:	None					
Enco	oding:	0000	0001	kkk	ck	kkkk	
Des	cription:	The 8-bit the Bank					
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3			Q4	
	Decode	Read literal 'k'	Proce Data		lite	Write ral 'k' to BSR	

Move literal to low nibble in BSR

Example: MOVLB 5

=	0x02
=	0x05

MO\	/LW	Move lite	eral to W				
Syntax:		[label]	MOVLW	/ k			
Operands:		$0 \le k \le 2$	$0 \le k \le 255$				
Ope	ration:	$k \to W$					
Statu	us Affected:	None					
Encoding:		0000	1110	kkk	k	kkkk	
Description:		The eigh W.	t-bit litera	l 'k' is	s loa	ded into	
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3	6	Q4		
	Decode	Read literal 'k'	Proce Data		Wr	ite to W	
Exar	mple:	MOVLW	0x5A				

MOVWF Move W to f					
Synt	ax:	[label]	MOVWF	= f	[,a]
Ope	rands:	0 ≤ f ≤ 25 a ∈ [0,1]	5		
Ope	ration:	$(W) \to f$			
Statu	is Affected:	None			
Enco	oding:	0110	111a	fff	f ffff
Word	ds:	256-byte Access B	bank. If ' ank will I the BSI bank will	a' is ' be se R valu be se	lected, ue. If 'a' = 1, elected as
Cycl	es:	1			
QC	ycle Activity:				
	Q1	Q2	Q3	5	Q4
	Decode	Read register 'f'	Proce Data		Write register 'f'
Example: MOVWF REG, 0 Before Instruction					

MOVLW 0x5A Example:

After Instruction

W = 0x5A

Before Instruction

W	=	0x4F
REG	=	0xFF

After Instruction

 $\begin{array}{rcl} W &=& 0x4F \\ REG &=& 0x4F \end{array}$

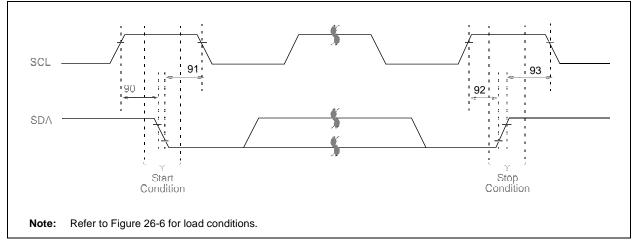
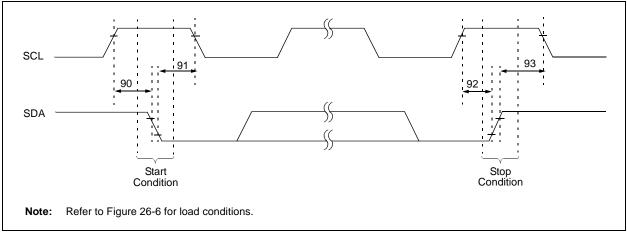

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{\text{SS}} \downarrow \text{to SCK} \downarrow \text{or SCK} \uparrow \text{Input}$	SCK $↓$ or SCK \uparrow Input		_	ns	
71	TscH	SCK Input High Time	Continuous	1.25 TCY + 30	_	ns	
71A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 TCY + 30	_	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73A	Тв2в	Last Clock Edge of Byte 1 to the First	Clock Edge of Byte 2	1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDI Data Input to SCK Edge		100	_	ns	
75	TDOR	SDO Data Output Rise Time	PIC18FXX20	—	25	ns	
			PIC18LFXX20	—	45	ns	VDD = 2.0V
76	TDOF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedance	ce	10	50	ns	
78	TscR	SCK Output Rise Time	PIC18FXX20	—	25	ns	
		(Master mode)	PIC18LFXX20	—	45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time (Master mode	e)	_	25	ns	
80	TscH2doV,	SDO Data Output Valid after SCK	PIC18FXX20	—	50	ns	
	TscL2doV	Edge	PIC18LFXX20	—	100	ns	VDD = 2.0V
82	TssL2doV	SDO Data Output Valid after $\overline{\text{SS}}\downarrow$	PIC18FXX20	—	50	ns	
		Edge	PIC18LFXX20	—	100	ns	VDD = 2.0V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 TCY + 40	-	ns	

TABLE 26-18: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)


Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

FIGURE 26-20: I²C BUS START/STOP BITS TIMING

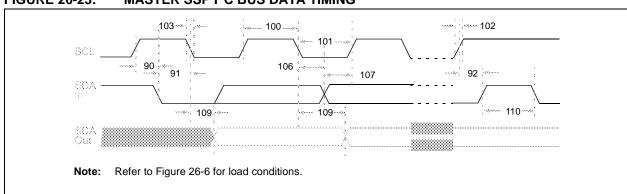


TABLE 26-21: MASTER SSP I ² C BUS START/STOP BITS REQUIREMENT
--

Param No.	Symbol	Charac	teristic	Min	Max	Units	Conditions
90	TSU:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	Only relevant for Repeated Start condition
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		
91	THD:STA	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	After this period, the first clock pulse is generated
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	
			400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—		
93	Thd:sto	Stop Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	—	ns	
			400 kHz mode	2(Tosc)(BRG + 1)	—		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_		

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

FIGURE 26-23: MASTER SSP I²C BUS DATA TIMING

NOTES:

Q

u
Q Clock154
R
RAM. See Data Memory
RC Oscillator
RCALL
RCON Registers
RCSTA Register
SPEN Bit197
Reader Response
Register File
Registers
ADCON0 (A/D Control 0)
ADCON1 (A/D Control 1)
ADCON2 (A/D Control 2)
CCPxCON (Capture/Compare/PWM Control)
CMCON (Comparator Control)
CONFIG1H (Configuration 1 High)240
CONFIG2H (Configuration 2 High)241
CONFIG2L (Configuration 2 Low)241
CONFIG3H (Configuration 3 High)242
CONFIG3L (Configuration 3 Low)
CONFIG3L (Configuration Byte)41
CONFIG4L (Configuration 4 Low)243
CONFIG5H (Configuration 5 High)245
CONFIG5L (Configuration 5 Low)
CONFIG6H (Configuration 6 High)
CONFIG6L (Configuration 6 Low)
CONFIG7H (Configuration 7 High)249
CONFIG7L (Configuration 7 Low)248
CVRCON (Comparator Voltage Reference Control) 229
Device ID 1249
Device ID 2
EECON1 (Data EEPROM Control 1)63, 80
INTCON (Interrupt Control)
INTCON2 (Interrupt Control 2)
INTCON3 (Interrupt Control 3)
IPR1 (Peripheral Interrupt Priority 1)
IPR2 (Peripheral Interrupt Priority 2)
IPR3 (Peripheral Interrupt Priority 3)100
LVDCON (Low-Voltage Detect Control)
MEMCON (Memory Control)71
OSCCON
PIE1 (Peripheral Interrupt Enable 1)
PIE2 (Peripheral Interrupt Enable 2)
PIE3 (Peripheral Interrupt Enable 3)
PIR1 (Peripheral Interrupt Request 1)
PIR2 (Peripheral Interrupt Request 2)
PIR3 (Peripheral Interrupt Request 3)
PSPCON (Parallel Slave Port Control) Register 129
RCON
RCON (Reset Control) 60, 101
RCSTAx (Receive Status and Control) 199
SSPCON2 (MSSP Control 2, I ² C Mode)
SSPSTAT (MSSP Status, I ² C Mode)
SSPSTAT (MSSP Status, SPI Mode)158
Statis
STATIS
Summary
T1CON (Timer 1 Control)135
T3CON (Timer3 Control)143
TXSTAx (Transmit Status and Control) 198
WDTCON (Watchdog Timer Control)250
RESET
Reset

Brown-out Reset (BOR)	239
MCLR Reset	29
MCLR Reset during Sleep	29
Oscillator Start-up Timer (OST)	239
Power-on Reset (POR)	. 29, 239
Power-up Timer (PWRT)	239
Programmable Brown-out Reset (PBOR)	29
Reset Instruction	29
Stack Full Reset	
Stack Underflow Reset	
Watchdog Timer (WDT) Reset	29
Reset, Watchdog Timer, Oscillator Start-up Timer, F	ower-up
Timer and Brown-out Reset Requirements	325
RETFIE	290
RETLW	290
RETURN	291
Return Address Stack	
and Associated Registers	43
Revision History	361
RLCF	291
RLNCF	292
RRCF	292
RRNCF	293

S

SCI. See USART	
SCK	. 157
SDI	. 157
SDO	. 157
Serial Clock, SCK	. 157
Serial Communication Interface. See USART.	
Serial Data In, SDI	. 157
Serial Data Out, SDO	. 157
Serial Peripheral Interface. See SPI	
SETF	. 293
Slave Select, SS	
SLEEP	
Sleep	, 252
Software Simulator (MPLAB SIM)	. 303
Special Event Trigger. See Compare	
Special Features of the CPU	. 239
Configuration Registers 240	-249
Special Function Registers	47
Мар	50
SPI	
Serial Clock	. 157
Serial Data In	. 157
Serial Data Out	
Slave Select	. 157
SPI Mode	
SPI Master/Slave Connection	. 161
SPI Module	
Associated Registers	
Bus Mode Compatibility	
Effects of a Reset	
Master/Slave Connection	
Slave Mode	
Sleep Operation	
<u>SS</u>	. 157
SSP	
TMR2 Output for Clock Shift 141	
TMR4 Output for Clock Shift	
SSPOV Status Flag	. 187
SSPSTAT Register	
R/W Bit	, 171
Status Bits	_
Significance and Initialization Condition for RCON	Reg-

© 2003-2013 Microchip Technology Inc.