

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.75K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8720-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin N	Pin	Buffer	Description		
Pin Name	PIC18F6X20	PIC18F8X20	Туре	Туре	Description	
					PORTC is a bidirectional I/O port.	
RC0/T1OSO/T13CKI	30	36				
RC0			I/O	ST	Digital I/O.	
T1OSO			0	—	Timer1 oscillator output.	
T13CKI			I	ST	Timer1/Timer3 external clock input.	
RC1/T1OSI/CCP2	29	35				
RC1			I/O	ST	Digital I/O.	
T1OSI			I	CMOS	Timer1 oscillator input.	
CCP2 ⁽²⁾			I/O	ST	Capture2 input/Compare2 output/	
					PWM2 output.	
RC2/CCP1	33	43				
RC2			I/O	ST	Digital I/O.	
CCP1			I/O	ST	Capture1 input/Compare1 output/	
					PWM1 output.	
RC3/SCK/SCL	34	44				
RC3			I/O	ST	Digital I/O.	
SCK			I/O	ST	Synchronous serial clock input/outpu	
					for SPI mode.	
SCL			I/O	ST	Synchronous serial clock input/output for I ² C mode.	
RC4/SDI/SDA	35	45				
RC4		45	I/O	ST	Digital I/O.	
SDI			"/C	ST	SPI data in.	
SDA			I/O	ST	I^2C data I/O.	
RC5/SDO	36	46	., C	•		
RC5/SDO RC5	30	40	I/O	ST	Digital I/O.	
SDO			0		SPI data out.	
		07	Ŭ			
RC6/TX1/CK1	31	37	1/0	ст		
RC6 TX1			1/O O	ST	Digital I/O. USART 1 asynchronous transmit.	
CK1			1/0	ST	USART 1 synchronous clock	
ONT			1/0	51	(see RX1/DT1).	
	22	20				
RC7/RX1/DT1	32	38	I/O	ST	Digital I/O	
RC7 RX1				ST	Digital I/O. USART 1 asynchronous receive.	
DT1			I/O	ST	USART 1 synchronous data	
			",0		(see TX1/CK1).	
Legend: TTL = TTL	compatible inp	L		CMOS -	= CMOS compatible input or output	
	mitt Trigger inp		evels		= Analog input	
				•		
I = Inpu P = Pow	it ver			O = OD =	 Analog input Output Open-Drain (no P diode to VE (all operating modes except 	

TABLE 1-2: PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 when CCP2MX is not selected (all operating modes except Microcontroller).

2: Default assignment when CCP2MX is set.

3: External memory interface functions are only available on PIC18F8X20 devices.

4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is multiplexed with either RB3 or RC1.

5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.

6: AVDD must be connected to a positive supply and AVss must be connected to a ground reference for proper operation of the part in user or ICSP modes. See parameter D001A for details.

2.7 Effects of Sleep Mode on the On-Chip Oscillator

When the device executes a SLEEP instruction, the onchip clocks and oscillator are turned off and the device is held at the beginning of an instruction cycle (Q1 state). With the oscillator off, the OSC1 and OSC2 signals will stop oscillating. Since all the transistor switching currents have been removed, Sleep mode achieves the lowest current consumption of the device (only leakage currents). Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The user can wake from Sleep through external Reset, Watchdog Timer Reset or through an interrupt.

2.8 Power-up Delays

Power up delays are controlled by two timers so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply and clock are stable. For additional information on Reset operation, see **Section 3.0 "Reset**".

The first timer is the Power-up Timer (PWRT), which optionally provides a fixed delay of 72 ms (nominal) on power-up only (POR and BOR). The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable.

With the PLL enabled (HS/PLL Oscillator mode), the time-out sequence following a Power-on Reset is different from other oscillator modes. The time-out sequence is as follows: First, the PWRT time-out is invoked after a POR time delay has expired. Then, the Oscillator Start-up Timer (OST) is invoked. However, this is still not a sufficient amount of time to allow the PLL to lock at high frequencies. The PWRT timer is used to provide an additional fixed 2 ms (nominal) time-out to allow the PLL ample time to lock to the incoming clock frequency.

 TABLE 2-3:
 OSC1 AND OSC2 PIN STATES IN SLEEP MODE

OSC Mode	OSC1 Pin	OSC2 Pin		
RC	Floating, external resistor should pull high	At logic low		
RCIO	Floating, external resistor should pull high	Configured as PORTA, bit 6		
ECIO	Floating	Configured as PORTA, bit 6		
EC	Floating	At logic low		
LP, XT and HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level		

Note: See Table 3-1 in Section 3.0 "Reset" for time-outs due to Sleep and MCLR Reset.

5.0 FLASH PROGRAM MEMORY

The Flash program memory is readable, writable and erasable, during normal operation over the entire VDD range.

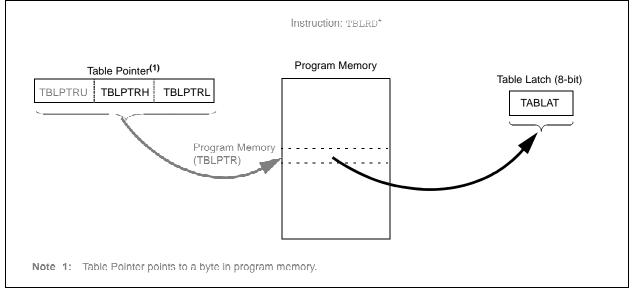
A read from program memory is executed on one byte at a time. A write to program memory is executed on blocks of 8 bytes at a time. Program memory is erased in blocks of 64 bytes at a time. A bulk erase operation may not be issued from user code.

Writing or erasing program memory will cease instruction fetches until the operation is complete. The program memory cannot be accessed during the write or erase, therefore, code cannot execute. An internal programming timer terminates program memory writes and erases.

A value written to program memory does not need to be a valid instruction. Executing a program memory location that forms an invalid instruction results in a NOP.

5.1 Table Reads and Table Writes

In order to read and write program memory, there are two operations that allow the processor to move bytes between the program memory space and the data RAM:


- Table Read (TBLRD)
- Table Write (TBLWT)

The program memory space is 16 bits wide, while the data RAM space is 8 bits wide. Table reads and table writes move data between these two memory spaces through an 8-bit register (TABLAT).

Table read operations retrieve data from program memory and place it into the data RAM space. Figure 5-1 shows the operation of a table read with program memory and data RAM.

Table write operations store data from the data memory space into holding registers in program memory. The procedure to write the contents of the holding registers into program memory is detailed in **Section 5.5 "Writing to Flash Program Memory"**. Figure 5-2 shows the operation of a table write with program memory and data RAM.

Table operations work with byte entities. A table block containing data, rather than program instructions, is not required to be word aligned. Therefore, a table block can start and end at any byte address. If a table write is being used to write executable code into program memory, program instructions will need to be word aligned.

FIGURE 5-1: TABLE READ OPERATION

REGISTER 9-2: INTCON2 REGISTER

9-2:	INTCON2	REGISTE	२					
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
	bit 7							bit 0
bit 7	RBPU: PO	ORTB Pull-u	o Enable bit					
		ORTB pull-up TB pull-ups a			port latch va	lues		
bit 6		: External In		•	portilatori va			
SIL U		upt on rising						
		upt on falling	•					
bit 5		: External In		e Select bit				
		upt on rising		,				
		upt on falling						
bit 4	INTEDG2	: External In	terrupt 2 Edg	ge Select bit				
		upt on rising						
	0 = Interr	upt on falling	l edge					
bit 3		: External In		ge Select bit				
		upt on rising	•					
		upt on falling	-	B · · · · ·				
bit 2		TMR0 Overf	ow Interrupt	Priority bit				
	1 = High 0 = Low p							
bit 1		NT3 External	Interrunt Pri	ority hit				
	1 = High		menuptri					
	0 = Low p	• •						
bit 0	-	Port Chang	e Interrupt P	riority bit				
	1 = High	•		,				
	0 = Low p	oriority						
	Legend:							
	R = Read	able bit	W = V	Vritable bit	U = Unim	plemented b	oit, read as '	0'

- n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown)

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-3:	INTCON3	INTCON3 REGISTER						
	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF
	bit 7							bit 0
bit 7		T2 External	Interrupt Pr	iority bit				
	1 = High p 0 = Low p	•						
bit 6		T1 External	Interrunt Pr	iority bit				
bit 0	1 = High p		menuptri	ionty bit				
	0 = Low p							
bit 5	INT3IE: IN	T3 External	Interrupt Er	able bit				
		es the INT3						
		les the INT3		•				
bit 4		T2 External	•					
		es the INT2 les the INT2						
bit 3		T1 External		•				
Sit O		es the INT1	•					
		les the INT1		•				
bit 2	INT3IF: IN	T3 External	Interrupt Fla	ag bit				
				curred (mus	t be cleared	l in software)	
		NT3 external	•					
bit 1		T2 External	•	•	4 h a ala ana d		`	
		NT2 external	•	curred (mus	st be cleared	i in software)	
bit 0		T1 External	•					
			-	curred (mus	t be cleared	l in software)	
		NT1 external					,	
	Legend:							
	R = Reada	ble bit		Vritable bit		•	bit, read as	'0'
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit	is cleared	x = Bit is u	unknown

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-6:	PIR3: PER		INTERRU	PT REQUE	EST (FLAG) REGISTI	ER 3		
	U-0	U-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
			RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	
	bit 7							bit 0	
bit 7- 6	Unimplem	ented: Rea	d as '0'						
bit 5	RC2IF: US	ART2 Rece	ive Interrup	t Flag bit					
		SART2 rece SART2 rece		RCREG, is fu empty	III (cleared w	when RCRE	G is read)		
bit 4	TX2IF: US	ART2 Trans	mit Interrup	t Flag bit					
		SART2 tran SART2 tran			mpty (cleare	ed when TX	REG is writte	en)	
bit 3	TMR4IF: T	MR3 Overfl	ow Interrupt	Flag bit					
		register over register did		ust be cleare w	ed in softwar	e)			
bit 2-0	CCPxIF: C	CPx Interru	pt Flag bit (CCP Module	s 3, 4 and 5	5)			
		R1 or TMR3	•	oture occurre apture occur		cleared in so	oftware)		
	1 = A TMF	<u>Compare mode:</u> 1 = A TMR1 or TMR3 register compare match occurred (must be cleared in software) 0 = No TMR1 or TMR3 register compare match occurred							
		<u>PWM mode:</u> Unused in this mode.							
	Legend:								
	R = Reada	ble bit	W = WI	ritable bit	U = Unir	nplemented	bit, read as	'0'	

R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.4 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Priority Registers (IPR1, IPR2 and IPR3). The operation of the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

ER 9-10:	IPR1: PER	IPHERAL	INTERRU	PT PRIOR	ITY REGIS	TER 1		
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	PSPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP
	bit 7							bit 0
bit 7	PSPIP: Par 1 = High pri 0 = Low prio	ority	Port Read/V	Vrite Interrup	ot Priority bit	(1)		
bit 6	ADIP: A/D (1 = High pri 0 = Low prio	ority	nterrupt Pric	rity bit				
bit 5	RC1IP: US/ 1 = High pri 0 = Low prio	ority	vive Interrupt	Priority bit				
bit 4	TX1IP: USA 1 = High pri 0 = Low prio	ority	mit Interrup	t Priority bit				
bit 3	SSPIP: Mas 1 = High pri 0 = Low prio	ority	onous Seria	l Port Interru	ıpt Priority b	it		
bit 2	CCP1IP: Co 1 = High pri 0 = Low prio	ority	pt Priority bi	t				
bit 1	1 = High pri	TMR2IP: TMR2 to PR2 Match Interrupt Priority bit 1 = High priority 0 = Low priority						
bit 0	1 = High pri	 0 = Low priority TMR1IP: TMR1 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority 						
	P	J						

REGISTER 9-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

Note 1: Enabled only in Microcontroller mode for PIC18F8X20 devices.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Name	Bit#	Buffer Type	Function
RD0/PSP0/AD0	bit 0	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 0 or address/data bus bit 0.
RD1/PSP1/AD1	bit 1	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 1 or address/data bus bit 1.
RD2/PSP2/AD2	bit 2	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 2 or address/data bus bit 2.
RD3/PSP3/AD3	bit 3	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 3 or address/data bus bit 3.
RD4/PSP4/AD4	bit 4	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 4 or address/data bus bit 4.
RD5/PSP5/AD5	bit 5	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 5 or address/data bus bit 5.
RD6/PSP6/AD6	bit 6	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 6 or address/data bus bit 6.
RD7/PSP7/AD7	bit 7	ST/TTL ⁽¹⁾	Input/output port pin, Parallel Slave Port bit 7 or address/data bus bit 7.

TABLE 10-7:PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

WAIT1

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus or Parallel Slave Port mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
LATD	LATD Da	ata Output Register							xxxx xxxx	uuuu uuuu
TRISD	PORTD Data Direction Register 1111 1111 111							1111 1111		
PSPCON	IBF	OBF	IBOV	PSPMODE	_	_	_	_	0000	0000

TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

WAIT0

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTD.

WM1

WM0

0-00 --00

0-00 --00

MEMCON EBDIS

TABLE 10-9: F	ORIEF	UNCTIONS	
Name	Bit#	Buffer Type	Function
RE0/RD/AD8	bit 0	ST/TTL ⁽¹⁾	Input/output port pin, read control for Parallel Slave Port or address/data bit 8 For RD (PSP Control mode): 1 = Not a read operation 0 = Read operation, reads PORTD register (if chip selected)
RE1/WR/AD9	bit 1	ST/TTL ⁽¹⁾	Input/output port pin, write control for Parallel Slave Port or address/data bit 9 For WR (PSP Control mode): 1 = Not a write operation 0 = Write operation, writes PORTD register (if chip selected)
RE2/CS/AD10	bit 2	ST/TTL ⁽¹⁾	Input/output port pin, chip select control for Parallel Slave Port or address/data bit 10 For CS (PSP Control mode): 1 = Device is not selected 0 = Device is selected
RE3/AD11	bit 3	ST/TTL ⁽¹⁾	Input/output port pin or address/data bit 11.
RE4/AD12	bit 4	ST/TTL ⁽¹⁾	Input/output port pin or address/data bit 12.
RE5/AD13	bit 5	ST/TTL ⁽¹⁾	Input/output port pin or address/data bit 13.
RE6/AD14	bit 6	ST/TTL ⁽¹⁾	Input/output port pin or address/data bit 14.
RE7/CCP2/AD15	bit 7	ST/TTL ⁽¹⁾	Input/output port pin, Capture2 input/Compare2 output/PWM output (PIC18F8X20 devices in Microcontroller mode only) or address/data bit 15.

TABLE 10-9: PORTE FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O or CCP mode and TTL buffers when in System Bus or PSP Control mode.

TABLE 10-10:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTE
--------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TRISE	PORTE	Data Di	rection Co	ontrol Register					1111 1111	1111 1111
PORTE	Read PC	ORTE pi	n/Write P	ORTE Data La	tch				xxxx xxxx	uuuu uuuu
LATE	Read PC	ORTE D	ata Latch/	Write PORTE	Data La	atch			xxxx xxxx	uuuu uuuu
MEMCON	EBDIS	_	WAIT1	WAIT0		_	WM1	WM0	0-0000	000000
PSPCON	IBF	OBF	IBOV	PSPMODE		_		_	0000	0000

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTE.

Name	Bit#	Buffer Type	Function
RF0/AN5	bit 0	ST	Input/output port pin or analog input.
RF1/AN6/C2OUT	bit 1	ST	Input/output port pin, analog input or comparator 2 output.
RF2/AN7/C1OUT	bit 2	ST	Input/output port pin, analog input or comparator 1 output.
RF3/AN8	bit 3	ST	Input/output port pin or analog input/comparator input.
RF4/AN9	bit 4	ST	Input/output port pin or analog input/comparator input.
RF5/AN10/CVREF	bit 5	ST	Input/output port pin, analog input/comparator input or comparator reference output.
RF6/AN11	bit 6	ST	Input/output port pin or analog input/comparator input.
RF7/SS	bit 7	ST/TTL	Input/output port pin or slave select pin for synchronous serial port.

TABLE 10-11: PORTF FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

TABLE 10-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF

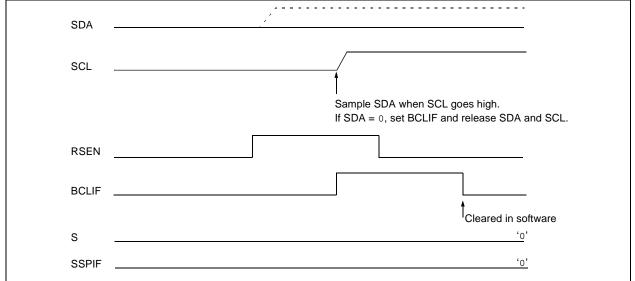
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TRISF	PORTF I	Data Direc	tion Con	trol Regist	ter				1111 1111	1111 1111
PORTF	Read PC	ORTF pin/	Nrite PO	RTF Data	Latch				xxxx xxxx	uuuu uuuu
LATF	Read PC	ORTF Data	a Latch/W	/rite POR	FF Data L	atch.			0000 0000	uuuu uuuu
ADCON1		_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	00 0000
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTF.

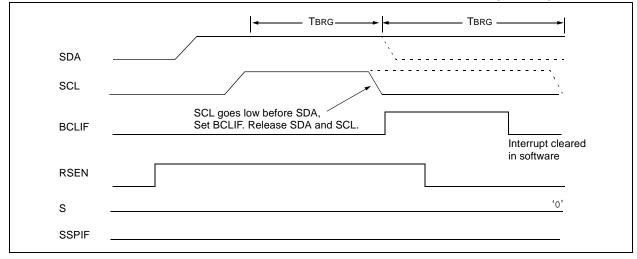
17.4.17.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- b) SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.


When the user deasserts SDA and the pin is allowed to float high, the BRG is loaded with SSPADD<6:0> and counts down to '0'. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled.

If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 17-29). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.


If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, Figure 17-30.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 17-29: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 17-30: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

23.3 Power-down Mode (Sleep)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared, but keeps running, the $\overline{\text{PD}}$ bit (RCON<3>) is cleared, the $\overline{\text{TO}}$ (RCON<4>) bit is set and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low or high-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are high-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

23.3.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or a peripheral interrupt.

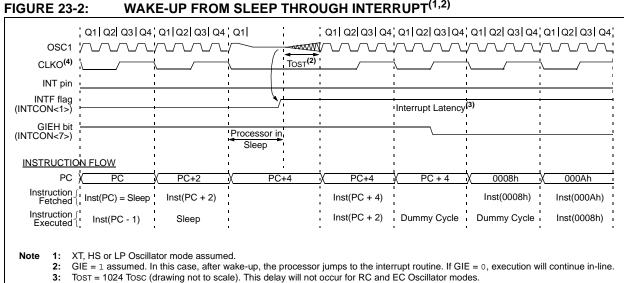
The following peripheral interrupts can wake the device from Sleep:

- 1. PSP read or write.
- 2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. TMR3 interrupt. Timer3 must be operating as an asynchronous counter.
- 4. CCP Capture mode interrupt.
- 5. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 6. MSSP (Start/Stop) bit detect interrupt.
- MSSP transmit or receive in Slave mode (SPI/l²C).
- 8. USART RX or TX (Synchronous Slave mode).
- 9. A/D conversion (when A/D clock source is RC).
- 10. EEPROM write operation complete.
- 11. LVD interrupt.

Other peripherals cannot generate interrupts, since during Sleep, no on-chip clocks are present.

External MCLR Reset will cause a device Reset. All other events are considered a continuation of program execution and will cause a "wake-up". The TO and PD bits in the RCON register can be used to determine the cause of the device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. The TO bit is cleared if a WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 2) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.


23.3.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If an interrupt condition (interrupt flag bit and interrupt enable bits are set) occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt condition occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

4: CLKO is not available in these oscillator modes, but shown here for timing reference

23.4 Program Verification and Code Protection

The overall structure of the code protection on the PIC18 Flash devices differs significantly from other $PIC^{\textcircled{B}}$ devices. The user program memory is divided on binary boundaries into individual blocks, each of which has three separate code protection bits associated with it:

- Code-Protect bit (CPn)
- Write-Protect bit (WRTn)
- External Block Table Read bit (EBTRn)

The code protection bits are located in Configuration Registers 5L through 7H. Their locations within the registers are summarized in Table 23-3.

In the PIC18FXX20 family, the block size varies with the size of the user program memory. For PIC18FX520 devices, program memory is divided into four blocks of 8 Kbytes each. The first block is further divided into a boot block of 2 Kbytes and a second block (Block 0) of 6 Kbytes, for a total of five blocks. The organization of the blocks and their associated code protection bits are shown in Figure 23-3.

For PIC18FX620 and PIC18FX720 devices, program memory is divided into blocks of 16 Kbytes. The first block is further divided into a boot block of 512 bytes and a second block (Block 0) of 15.5 Kbytes, for a total of nine blocks. This produces five blocks for 64-Kbyte devices and nine for 128-Kbyte devices. The organization of the blocks and their associated code protection bits are shown in Figure 23-4.

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L	CP7 ⁽¹⁾	CP6 ⁽¹⁾	CP5 ⁽¹⁾	CP4 ⁽¹⁾	CP3	CP2	CP1	CP0
300009h	CONFIG5H	CPD	CPB	_	—	_		_	_
30000Ah	CONFIG6L	WRT7 ⁽¹⁾	WRT6 ⁽¹⁾	WRT5 ⁽¹⁾	WRT4 ⁽¹⁾	WRT3	WRT2	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	—		_	_	_
30000Ch	CONFIG7L	EBTR7 ⁽¹⁾	EBTR6 ⁽¹⁾	EBTR5 ⁽¹⁾	EBTR4 ⁽¹⁾	EBTR3	EBTR2	EBTR1	EBTR0
30000Dh	CONFIG7H	_	EBTRB	_	_			_	_

TABLE 23-3: SUMMARY OF CODE PROTECTION REGISTERS

Legend: Shaded cells are unimplemented.

Note 1: Unimplemented in PIC18FX520 and PIC18FX620 devices.

23.4.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits external writes to data EEPROM. The CPU can continue to read and write data EEPROM, regardless of the protection bit settings.

23.4.3 CONFIGURATION REGISTER PROTECTION

The configuration registers can be write-protected. The WRTC bit controls protection of the configuration registers. In user mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer.

23.5 ID Locations

Eight memory locations (200000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are accessible during normal execution through the TBLRD and TBLWT instructions or during program/verify. The ID locations can be read when the device is code-protected.

23.6 In-Circuit Serial Programming

PIC18FX520/X620/X720 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

Note:	When	performing	In-Circuit	Serial
	Progran	nming, verify	that power	is con-
	nected	to all VDD ar	nd AVDD pins	s of the
	microco	ntroller and th	nat all Vss an	d AVss
	pins are	grounded.		

23.7 In-Circuit Debugger

When the DEBUG bit in the CONFIG4L Configuration register is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some of the resources are not available for general use. Table 23-4 shows which features are consumed by the background debugger.

TABLE 23-4: DEBUGGER RESOURCES

I/O pins	RB6, RB7
Stack	2 levels
Program Memory	Last 576 bytes
Data Memory	Last 10 bytes

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to MCLR/VPP, VDD, GND, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

23.8 Low-Voltage ICSP Programming

The LVP bit in the CONFIG4L Configuration register enables Low-Voltage ICSP Programming. This mode allows the microcontroller to be programmed via ICSP using a VDD source in the operating voltage range. This only means that VPP does not have to be brought to VIHH, but can instead be left at the normal operating voltage. In this mode, the RB5/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. During programming, VDD is applied to the MCLR/VPP pin. To enter Programming mode, VDD must be applied to the RB5/PGM pin, provided the LVP bit is set. The LVP bit defaults to a '1' from the factory.

- Note 1: The High-Voltage Programming mode is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: While in Low-Voltage ICSP mode, the RB5 pin can no longer be used as a general purpose I/O pin and should be held low during normal operation.
 - 3: When using Low-Voltage ICSP Programming (LVP) and the pull-ups on PORTB are enabled, bit 5 in the TRISB register must be cleared to disable the pull-up on RB5 and ensure the proper operation of the device.

If Low-Voltage Programming mode is not used, the LVP bit can be programmed to a '0' and RB5/PGM becomes a digital I/O pin. However, the LVP bit may only be programmed when programming is entered with VIHH on MCLR/VPP.

It should be noted that once the LVP bit is programmed to '0', only the High-Voltage Programming mode is available and only High-Voltage Programming mode can be used to program the device.

When using Low-Voltage ICSP Programming, the part must be supplied 4.5V to 5.5V if a bulk erase will be executed. This includes reprogramming of the codeprotect bits from an on state to an off state. For all other cases of Low-Voltage ICSP, the part may be programmed at the normal operating voltage. This means unique user IDs or user code can be reprogrammed or added.

Mnem	onic,	Description	Qualas	16-	Bit Instr	uction W	Vord	Status	Natas
Operands		Description	Cycles	MSb			LSb	Affected	Notes
CONTROL	OPERAT	IONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)	1110	0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)	1110	0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	0nnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW	—	Decimal Adjust WREG	1	0000	0000	0000	0111	С	
GOTO	n	Go to address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP	—	No Operation	1	0000	0000	0000	0000	None	
NOP	_	No Operation	1	1111	xxxx	xxxx	xxxx	None	4
POP	—	Pop top of return stack (TOS)	1	0000	0000	0000	0110	None	
PUSH	—	Push top of return stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101	1nnn	nnnn	nnnn	None	
RESET		Software device Reset	1	0000	0000	1111	1111	All	
RETFIE	S	Return from interrupt enable	2	0000	0000	0001	000s	GIE/GIEH,	
								PEIE/GIEL	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2	0000	0000	0001	001s	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0000	0011	TO, PD	

TABLE 24-1: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTE, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

5: If the table write starts the write cycle to internal memory, the write will continue until terminated.

ΒZ		Branch if	Zero						
Synt	ax:	[<i>label</i>] B	Zn						
Ope	rands:	-128 ≤ n ≤	$-128 \le n \le 127$						
Ope	ration:	if Zero bit (PC) + 2 +	is '1' · 2n → PC						
Statu	us Affected:	None							
Enco	oding:	1110	0000 r	nnn	nnnn				
Description: If the Zero bit is '1', then the program will branch. The 2's complement number '2n added to the PC. Since the PC ' have incremented to fetch the ne instruction, the new address will PC+2+2n. This instruction is the a two-cycle instruction.					r '2n' is PC will ne next will be				
Word	ds:	1							
Cycl	es:	1(2)							
	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read literal 'n'	Process Data	Write	e to PC				
	No	No	No		No				
IF NL	operation	operation	operation	n ope	eration				
	o Jump: Q1	Q2	Q3		Q4				
	Decode	Read literal	Process		No				
		'n'	Data	оре	eration				
<u>Exar</u>	<u>nple</u> : Before Instru PC		BZ Jur dress (HEF	-					
	After Instruct		uless (ner	(6)					
	If Zero	= 1;							
	PC If Zero	= 0;	dress (Jun	-					
	PC	= ad	dress (HEF	RE+2)					

CAL	.L	Subrouti	ne Call				
Syn	tax:	[label]	CALL k	[,s]			
Ope	erands:	0 ≤ k ≤ 1048575 s ∈ [0,1]					
Ope	eration:	$(PC) + 4 \rightarrow TOS,$ $k \rightarrow PC < 20:1>,$ if s = 1 $(W) \rightarrow WS,$ $(STATUS) \rightarrow STATUSS,$ $(BSR) \rightarrow BSRS$					
Stat	us Affected:	None					
1st v	oding: word (k<7:0>) word(k<19:8>		110s k ₁₉ kkk	k ₇ k} kkk		kkkk ₀ kkkk ₈	
		address (I return sta Status and pushed in shadow re and BSRS occurs (de value 'k' is CALL is a	ck. If 's' d BSR ro to their l egisters, S. If 's' = efault). T s loaded	= 1, the egiste ws, 0, no hen, into l	he V ers a ctive STA o up the PC<	V, are also e ATUSS date 20-bit :20:1>.	
Wor	ds:	2					
Сус	les:	2					
QC	Cycle Activity:						
	Q1	Q2	Q	3		Q4	
	Decode	Read literal 'k'<7:0>	Push P stac		'k'	ad literal <19:8>, ite to PC	
	No	No	No			No	
	operation	operation	opera	tion	op	peration	
<u>Exa</u>	mple:	HERE	CALL	THEF	RE,1	-	
	Before Instruc						
	PC	= address	S (HERE)			
	After Instructi PC TOS WS BSRS	on = address = address = W = BSR					

BSRS = BSR STATUSS = STATUS

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow W$
Status Affected:	N, Z
Encoding:	0000 1001 kkkk kkkk
Description:	The contents of W are OR'ed with the eight-bit literal 'k'. The result is placed in W.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	ReadProcessWrite to Wliteral 'k'Data
Example:	IORLW 0x35
Before Instru	ction
W	= 0x9A
After Instruct	ion
W	= 0xBF

IORWF	Inclusive	OR W w	ith f		
Syntax:	[label]	IORWF	f [,c	l [,a]	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5			
Operation:	(W) .OR.	$(f) \rightarrow des$	t		
Status Affected:	N, Z				
Encoding:	0001	00da	fff	f ffff	
	'd' is '1', th register 'f' Access Ba riding the	ne result i (default) ank will be BSR valu vill be sele	s pla . If 'a e sele e. If ' ecteo	ced in W. If ced back in ' is '0', the ected, over- a' = 1, then d as per the	
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read register 'f'	Proces: Data	-	Write to destination	
Example:	IORWF R	ESULT, O), 1		
Before Instruction					

efore Instruction				
RESULT	=	0x13		
W	=	0x91		

After Instruction

RESULT =	0x13				
W =	0x93				

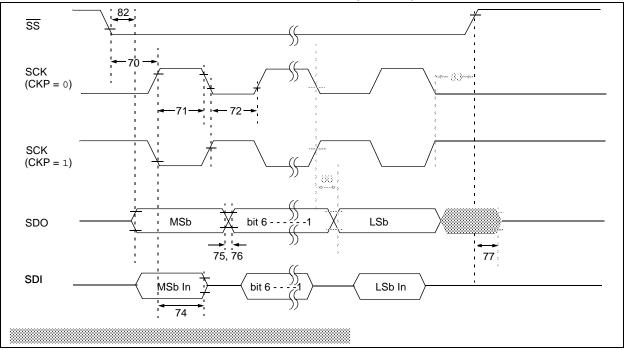
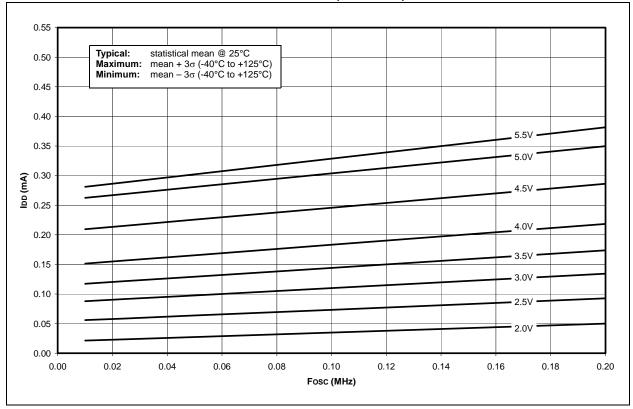
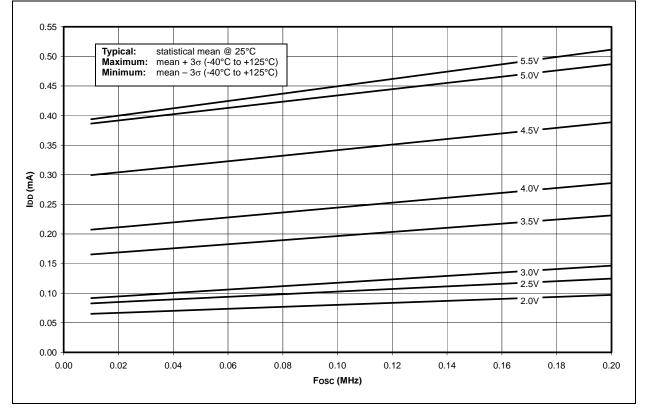

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		Тсү		ns	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCK Input Low Time (Slave mode)	Continuous	1.25 TCY + 30		ns	
72A			Single Byte	40		ns	(Note 1)
73	TDIV2SCH, TDIV2SCL	Setup Time of SDI Data Input to SCK Edge		100	_	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 Tcy + 40		ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		100	_	ns	
75 TDOR	TDOR	SDO Data Output Rise Time	PIC18FXX20		25	ns	
			PIC18LFXX20	—	45	ns	VDD = 2.0V
76	TDOF	SDO Data Output Fall Time			25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedance		10	50	ns	
78	TSCR	SCK Output Rise Time (Master mode)	PIC18FXX20	—	25	ns	
			PIC18LFXX20		45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time (Master mode)			25	ns	
	TSCH2DOV, TSCL2DOV	SDO Data Output Valid after SCK Edge	PIC18FXX20	_	50	ns	
			PIC18LFXX20	—	100	ns	VDD = 2.0V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge		1.5 TCY + 40	—	ns	

TABLE 26-17: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)


Note 1: Requires the use of Parameter #73A.

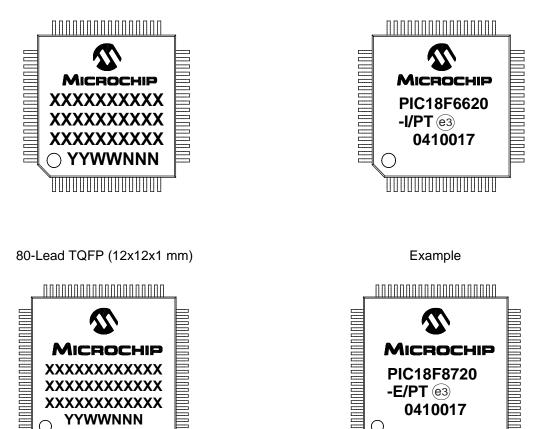
2: Only if Parameter #71A and #72A are used.

FIGURE 26-19: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)



© 2003-2013 Microchip Technology Inc.

FIGURE 27-17: TYPICAL IDD vs. Fosc OVER VDD (EC MODE)


© 2003-2013 Microchip Technology Inc.

Example

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

64-Lead TQFP (10x10x1 mm)

Le	gend:	XXX Y YY WW NNN (e3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.	
No	b	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.		