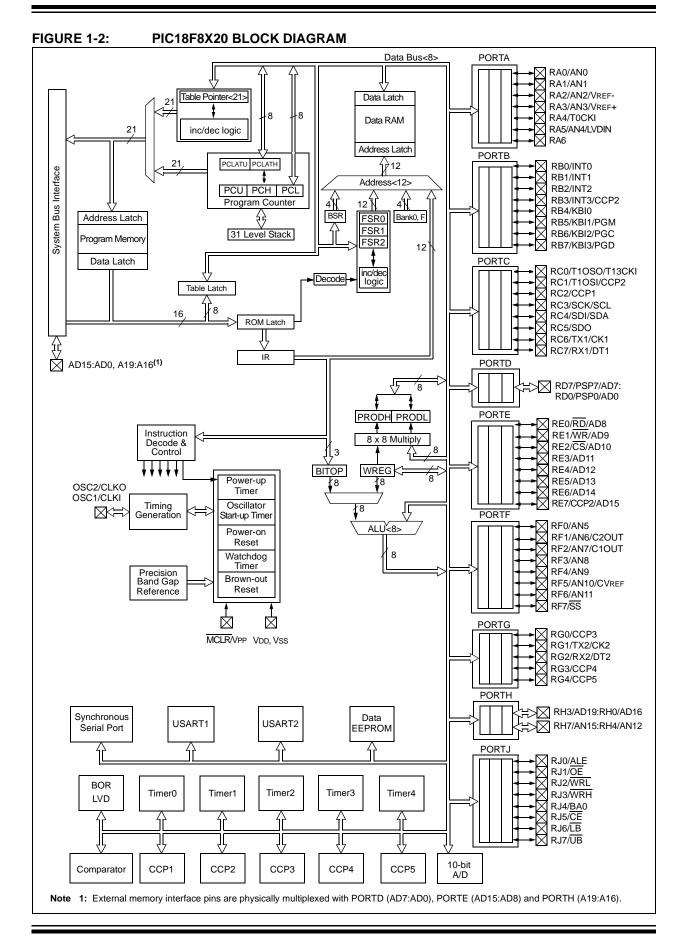


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.75K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f8720-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin N	umber	Pin	Buffer	Description
Pin Name	PIC18F6X20	PIC18F8X20	Туре	Туре	Description
					PORTA is a bidirectional I/O port.
RA0/AN0	24	30			
RA0			I/O	TTL	Digital I/O.
AN0			I	Analog	Analog input 0.
RA1/AN1	23	29			
RA1			I/O	TTL	Digital I/O.
AN1			I	Analog	Analog input 1.
RA2/AN2/VREF-	22	28		-	-
RA2			I/O	TTL	Digital I/O.
AN2			I	Analog	Analog input 2.
Vref-			I	Analog	A/D reference voltage (Low) input.
RA3/AN3/VREF+	21	27		Ū	
RA3			I/O	TTL	Digital I/O.
AN3			., C	Analog	Analog input 3.
VREF+			I	Analog	A/D reference voltage (High) input.
RA4/T0CKI	28	34		Ū	
RA4	20	01	I/O	ST/OD	Digital I/O – Open-drain when
			., C	0.702	configured as output.
TOCKI			1	ST	Timer0 external clock input.
RA5/AN4/LVDIN	27	33			
RA5	21	00	I/O	TTL	Digital I/O.
AN4				Analog	Analog input 4.
LVDIN			i	Analog	Low-Voltage Detect input.
RA6					See the OSC2/CLKO/RA6 pin.
-	compatible inp	l		CMOS -	CMOS compatible input or output
	nitt Trigger inpu		evels		Analog input
I = Inpu				•	
P = Pow				-	Open-Drain (no P diode to VDD)
	•••	CP2 when CCF	P2MX is		ed (all operating modes except
Microcontro	-		2101/13		a (an operating modes except

TABLE 1-2: PIC18FXX20 PINOUT I/O DESCRIPTIONS (CONTINUED)

2: Default assignment when CCP2MX is set.

3: External memory interface functions are only available on PIC18F8X20 devices.

4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode. Otherwise, it is multiplexed with either RB3 or RC1.

5: PORTH and PORTJ are only available on PIC18F8X20 (80-pin) devices.

6: AVDD must be connected to a positive supply and AVss must be connected to a ground reference for proper operation of the part in user or ICSP modes. See parameter D001A for details.

TABLE 3-3.						
Register	Applicable Devices		Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset RESET Instruction Stack Resets	Wake-up via WDT or Interrupt	
PORTJ	PIC18F6X20	PIC18F8X20	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTH	PIC18F6X20	PIC18F8X20	0000 xxxx	0000 uuuu	uuuu uuuu	
PORTG	PIC18F6X20	PIC18F8X20	x xxxx	uuuu uuuu	u uuuu	
PORTF	PIC18F6X20	PIC18F8X20	x000 0000	u000 0000	u000 0000	
PORTE	PIC18F6X20	PIC18F8X20	XXXX XXXX	սսսս սսսս	սսսս սսսս	
PORTD	PIC18F6X20	PIC18F8X20	XXXX XXXX	սսսս սսսս	սսսս սսսս	
PORTC	PIC18F6X20	PIC18F8X20	XXXX XXXX	սսսս սսսս	սսսս սսսս	
PORTB	PIC18F6X20	PIC18F8X20	XXXX XXXX	սսսս սսսս	սսսս սսսս	
PORTA ^(5,6)	PIC18F6X20	PIC18F8X20	-x0x 0000 (5)	-u0u 0000 (5)	-uuu uuuu ⁽⁵⁾	
TMR4	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	սսսս սսսս	
PR4	PIC18F6X20	PIC18F8X20	1111 1111	1111 1111	սսսս սսսս	
T4CON	PIC18F6X20	PIC18F8X20	-000 0000	-000 0000	-uuu uuuu	
CCPR4H	PIC18F6X20	PIC18F8X20	XXXX XXXX	սսսս սսսս	սսսս սսսս	
CCPR4L	PIC18F6X20	PIC18F8X20	XXXX XXXX	uuuu uuuu	սսսս սսսս	
CCP4CON	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	սսսս սսսս	
CCPR5H	PIC18F6X20	PIC18F8X20	XXXX XXXX	սսսս սսսս	սսսս սսսս	
CCPR5L	PIC18F6X20	PIC18F8X20	XXXX XXXX	uuuu uuuu	սսսս սսսս	
CCP5CON	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	uuuu uuuu	
SPBRG2	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	սսսս սսսս	
RCREG2	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	uuuu uuuu	
TXREG2	PIC18F6X20	PIC18F8X20	0000 0000	0000 0000	սսսս սսսս	
TXSTA2	PIC18F6X20	PIC18F8X20	0000 -010	0000 -010	uuuu -uuu	
RCSTA2	PIC18F6X20	PIC18F8X20	0000 000x	x000 0000x	սսսս սսսս	

TABLE 3-3: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

4: See Table 3-2 for Reset value for specific condition.

5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other oscillator modes, they are disabled and read '0'.

6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they are read '0'.

TABLE 4-2: SPECIAL FUNCTION REGISTER MAP (CONTINUED)

Address	Name	Address	Name	Address	Name	Address	Name
F7Fh	(1)	F5Fh	(1)	F3Fh	(1)	F1Fh	(1)
F7Eh	(1)	F5Eh	(1)	F3Eh	(1)	F1Eh	(1)
F7Dh	(1)	F5Dh	(1)	F3Dh	(1)	F1Dh	(1)
F7Ch	(1)	F5Ch	(1)	F3Ch	_(1)	F1Ch	(1)
F7Bh	(1)	F5Bh	(1)	F3Bh	(1)	F1Bh	(1)
F7Ah	(1)	F5Ah	(1)	F3Ah	(1)	F1Ah	(1)
F79h	(1)	F59h	(1)	F39h	(1)	F19h	(1)
F78h	TMR4	F58h	(1)	F38h	(1)	F18h	(1)
F77h	PR4	F57h	(1)	F37h	(1)	F17h	(1)
F76h	T4CON	F56h	(1)	F36h	_(1)	F16h	(1)
F75h	CCPR4H	F55h	(1)	F35h	(1)	F15h	(1)
F74h	CCPR4L	F54h	(1)	F34h	_(1)	F14h	(1)
F73h	CCP4CON	F53h	(1)	F33h	_(1)	F13h	(1)
F72h	CCPR5H	F52h	(1)	F32h	_(1)	F12h	(1)
F71h	CCPR5L	F51h	(1)	F31h	_(1)	F11h	(1)
F70h	CCP5CON	F50h	(1)	F30h	_(1)	F10h	(1)
F6Fh	SPBRG2	F4Fh	(1)	F2Fh	(1)	F0Fh	(1)
F6Eh	RCREG2	F4Eh	(1)	F2Eh	_(1)	F0Eh	(1)
F6Dh	TXREG2	F4Dh	(1)	F2Dh	_(1)	F0Dh	_(1)
F6Ch	TXSTA2	F4Ch	(1)	F2Ch	_(1)	F0Ch	(1)
F6Bh	RCSTA2	F4Bh	(1)	F2Bh	_(1)	F0Bh	(1)
F6Ah	(1)	F4Ah	(1)	F2Ah	_(1)	F0Ah	_(1)
F69h	(1)	F49h	(1)	F29h	(1)	F09h	(1)
F68h	(1)	F48h	(1)	F28h	(1)	F08h	(1)
F67h	(1)	F47h	(1)	F27h	_(1)	F07h	(1)
F66h	(1)	F46h	(1)	F26h	(1)	F06h	(1)
F65h	(1)	F45h	(1)	F25h	_(1)	F05h	(1)
F64h	(1)	F44h	(1)	F24h	_(1)	F04h	_(1)
F63h	(1)	F43h	(1)	F23h	(1)	F03h	(1)
F62h	_(1)	F42h	(1)	F22h	_(1)	F02h	(1)
F61h	(1)	F41h	(1)	F21h	(1)	F01h	(1)
F60h	(1)	F40h	(1)	F20h	(1)	F00h	(1)

Note 1: Unimplemented registers are read as '0'.

2: This register is not available on PIC18F6X20 devices.

3: This is not a physical register.

4.10 Access Bank

The Access Bank is an architectural enhancement, which is very useful for C compiler code optimization. The techniques used by the C compiler may also be useful for programs written in assembly.

This data memory region can be used for:

- Intermediate computational values
- · Local variables of subroutines
- · Faster context saving/switching of variables
- · Common variables
- Faster evaluation/control of SFRs (no banking)

The Access Bank is comprised of the upper 160 bytes in Bank 15 (SFRs) and the lower 96 bytes in Bank 0. These two sections will be referred to as Access RAM High and Access RAM Low, respectively. Figure 4-7 indicates the Access RAM areas.

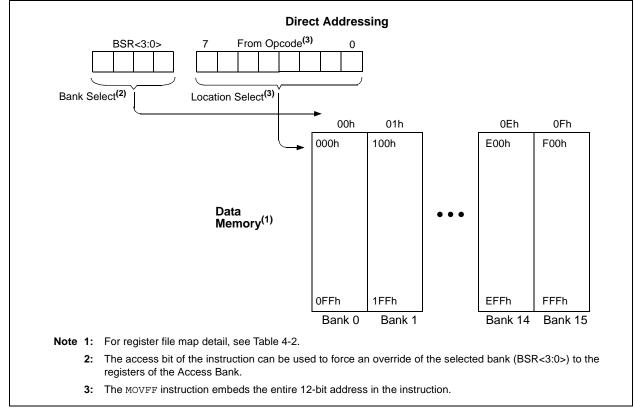
A bit in the instruction word specifies if the operation is to occur in the bank specified by the BSR register or in the Access Bank. This bit is denoted by the 'a' bit (for access bit).

When forced in the Access Bank (a = 0), the last address in Access RAM Low is followed by the first address in Access RAM High. Access RAM High maps the Special Function Registers, so that these registers can be accessed without any software overhead. This is useful for testing status flags and modifying control bits.

4.11 Bank Select Register (BSR)

The need for a large general purpose memory space dictates a RAM banking scheme. The data memory is partitioned into sixteen banks. When using direct addressing, the BSR should be configured for the desired bank.

BSR<3:0> holds the upper 4 bits of the 12-bit RAM address. The BSR<7:4> bits will always read '0's and writes will have no effect.


A MOVLB instruction has been provided in the instruction set to assist in selecting banks.

If the currently selected bank is not implemented, any read will return all '0's and all writes are ignored. The Status register bits will be set/cleared as appropriate for the instruction performed.

Each Bank extends up to FFh (256 bytes). All data memory is implemented as static RAM.

A MOVFF instruction ignores the BSR, since the 12-bit addresses are embedded into the instruction word.

Section 4.12 "Indirect Addressing, INDF and FSR Registers" provides a description of indirect addressing, which allows linear addressing of the entire RAM space.

FIGURE 4-8: DIRECT ADDRESSING

REGISTER 5-1:	EECON1 F	REGISTER	(ADDRE	SS FA6h)				
	R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD
	bit 7							bit 0
bit 7	EEPGD: F	lash Prograr	n or Data E		mory Select b	it		
	1 = Acces	 1 = Access Flash program memory 0 = Access data EEPROM memory 						
bit 6				-	figuration Sele	ct bit		
		s configurati s Flash prog	-	s a EEPROM	memory			
bit 5	Unimplem	ented: Read	d as '0'					
bit 4	FREE: Flas	sh Row Eras	se Enable b	oit				
	(cleare	 1 = Erase the program memory row addressed by TBLPTR on the next WR command (cleared by completion of erase operation) 0 = Perform write only 						
bit 3	WRERR: F	lash Progra	m/Data EE	PROM Error	[·] Flag bit			
	(any R 0 = The w	leset during rite operatio	self-timed n complete	d	g in normal ope	,		
	Note:	When a Wi tracing of th			GD and CFGS	bits are not	t cleared. T	his allows
bit 2	WREN: Fla	ash Program	/Data EEP	ROM Write I	Enable bit			
		•	•	rogram/data program/data				
bit 1	WR: Write	Control bit						
	 1 = Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle. (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.) 0 = Write cycle to the EEPROM is complete 							
bit 0	RD: Read	•		bompiete				
bit 0	1 = Initiate can or	s an EEPR	ot cleared)	in software.	ne cycle. RD is RD bit cannot			
	Legend:]
	R = Reada	ble bit	W = V	Vritable bit	U = Unimp	lemented bi	it. read as '	0'
					-			

'1' = Bit is set

'0' = Bit is cleared

- n = Value at POR

x = Bit is unknown

6.0 EXTERNAL MEMORY **INTERFACE**

Note:	The	External	Me	mory	Interface	is	not
	imple devic		on	PIC1	8F6X20	(64-	·pin)

The External Memory Interface is a feature of the PIC18F8X20 devices that allows the controller to access external memory devices (such as Flash, EPROM, SRAM, etc.) as program or data memory.

The physical implementation of the interface uses 27 pins. These pins are reserved for external address/data bus functions; they are multiplexed with I/O port pins on four ports. Three I/O ports are multiplexed with the address/data bus, while the fourth port is multiplexed with the bus control signals. The I/O port functions are enabled when the EBDIS bit in the MEMCON register is set (see Register 6-1). A list of the multiplexed pins and their functions is provided in Table 6-1.

As implemented in the PIC18F8X20 devices, the interface operates in a similar manner to the external memory interface introduced on PIC18C601/801 microcontrollers. The most notable difference is that the interface on PIC18F8X20 devices only operates in 16-bit modes. The 8-bit mode is not supported.

For a more complete discussion of the operating modes that use the external memory interface, refer to Section 4.1.1 "PIC18F8X20 Program Memory Modes".

R/W-0

U-0

R/W-0

6.1 **Program Memory Modes and the External Memory Interface**

As previously noted, PIC18F8X20 controllers are capable of operating in any one of four program memory modes, using combinations of on-chip and external program memory. The functions of the multiplexed port pins depend on the program memory mode selected, as well as the setting of the EBDIS bit.

In Microprocessor Mode, the external bus is always active and the port pins have only the external bus function.

In Microcontroller Mode, the bus is not active and the pins have their port functions only. Writes to the MEMCOM register are not permitted.

In Microprocessor with Boot Block or Extended Microcontroller Mode, the external program memory bus shares I/O port functions on the pins. When the device is fetching or doing table read/table write operations on the external program memory space, the pins will have the external bus function. If the device is fetching and accessing internal program memory locations only, the EBDIS control bit will change the pins from external memory to I/O port functions. When EBDIS = 0, the pins function as the external bus. When EBDIS = 1, the pins function as I/O ports.

Note: Maximum Fosc for the PIC18FX520 is limited to 25 MHz when using the external memory interface.

R/W-0

R/W-0

U-0

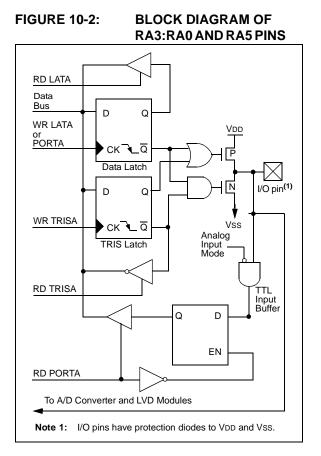
	EBDIS	—	WAIT1	WAIT0	—	—	WM1	WM0	
	bit7	L	I	1		I		bit0	
bit 7	EBDIS: Ex	ternal Bus D	isable bit						
		al system bu al system bu					as I/O ports		
bit 6	Unimplem	Inimplemented: Read as '0'							
bit 5-4	11 = Table 10 = Table 01 = Table	NAIT<1:0>: Table Reads and Writes Bus Cycle Wait Count bits 1 = Table reads and writes will wait 0 Tcy 0 = Table reads and writes will wait 1 Tcy 1 = Table reads and writes will wait 2 Tcy 0 = Table reads and writes will wait 3 Tcy							
bit 3-2	Unimplem	ented: Read	d as '0'						
bit 1-0	-			16-bit Bus b	oits				
	TABL 01 = Byte \$ will ac	 WM<1:0>: TBLWRT Operation with 16-bit Bus bits 1x = Word Write mode: TABLAT<0> and TABLAT<1> word output, WRH active when TABLAT<1> written 01 = Byte Select mode: TABLAT data copied on both MSB and LSB, WRH and (UB or LB) will activate 00 = Byte Write mode: TABLAT data copied on both MSB and LSB, WRH or WRL will activate 							
	00 = Byte V	write mode:	TABLAT DAT	a copied on	DOTU MOR S	and LSB, W		will activate	
	Legend:								
	R = Reada	ble bit	W = W	/ritable bit	U = Unim	nplemented	bit, read as	'0'	
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	nknown	

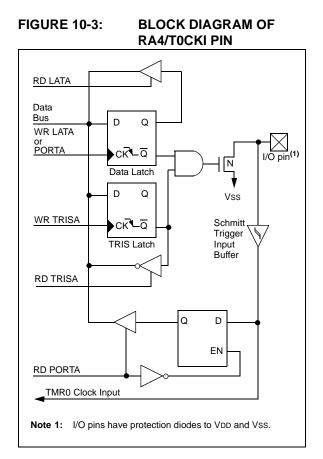
R/W-0

U-0

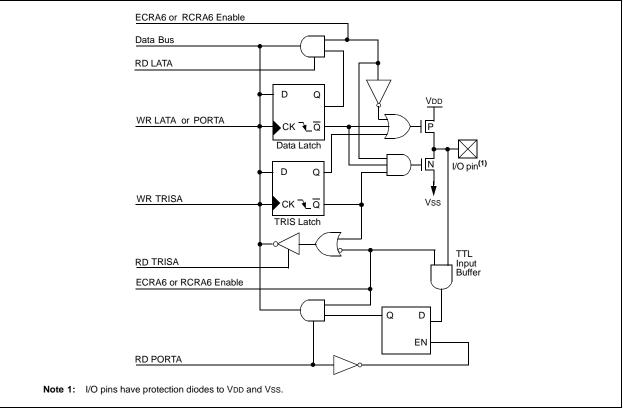
REGISTER 6-1: MEMCON REGISTER

LIN 3-11.	IF NZ. FLN	IFILINAL			I I KLOIS			
	U-0	R/W-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	CMIP	_	EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP
	bit 7							bit 0
bit 7	Unimpleme	ented: Rea	d as '0'					
bit 6	CMIP: Com 1 = High pri 0 = Low pri	iority	errupt Priorit	y bit				
bit 5	Unimpleme	ented: Rea	d as '0'					
bit 4	EEIP: Data 1 = High pri 0 = Low pri	iority	Flash Write	Operation In	terrupt Prior	ity bit		
bit 3	BCLIP: Bus 1 = High pri 0 = Low pri	iority	nterrupt Prio	rity bit				
bit 2	LVDIP: Low 1 = High pri 0 = Low pri	iority	etect Interru	pt Priority bi	t			
bit 1	TMR3IP: T 1 = High pr 0 = Low pri	iority	ow Interrupt	Priority bit				
bit 0	CCP2IP: C 1 = High pr 0 = Low pri	iority	pt Priority bi	t				
	Legend:							
	R = Readal	ole bit	W = W	ritable bit	U = Unin	plemented	bit, read as	'0'
	1							


'1' = Bit is set


'0' = Bit is cleared

REGISTER 9-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2


- n = Value at POR

x = Bit is unknown

FIGURE 10-4: BLOCK DIAGRAM OF RA6 PIN (WHEN ENABLED AS I/O)

13.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- 8-bit period register (PR2)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match of PR2
- SSP module optional use of TMR2 output to generate clock shift

Timer2 has a control register shown in Register 13-1. Timer2 can be shut-off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption. Figure 13-1 is a simplified block diagram of the Timer2 module. Register 13-1 shows the Timer2 Control register. The prescaler and postscaler selection of Timer2 are controlled by this register.

13.1 Timer2 Operation

Timer2 can be used as the PWM time base for the PWM mode of the CCP module. The TMR2 register is readable and writable and is cleared on any device Reset. The input clock (FOSC/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits, T2CKPS1:T2CKPS0 (T2CON<1:0>). The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit, TMR2IF (PIR1<1>)).

The prescaler and postscaler counters are cleared when any of the following occurs:

- · a write to the TMR2 register
- a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	
bit 7							bit 0	

bit 7 Unimplemented: Read as '0'

bit 6-3 T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits

		Postscale Postscale	
•			
•			
•			

1111 = 1:16 Postscale

- bit 2 TMR2ON: Timer2 On bit
 - 1 = Timer2 is on
 - 0 = Timer2 is off

bit 1-0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits

- 00 =Prescaler is 1
- 01 =Prescaler is 4
- 1x = Prescaler is 16

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

19.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 12 TAD per 10-bit conversion. The source of the A/D conversion clock is software selectable. There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

Table 19-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

19.3 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS3:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert as an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin defined as a digital input may cause the input buffer to consume current out of the device's specification limits.

TABLE 19-1: TAD VS. DEVICE OPERATING FREQUENCIES

AD Clock S	ource (TAD)	Maximum Device Frequency			
Operation	ADCS2:ADCS0	PIC18FXX20	PIC18LFXX20		
2 Tosc	000	1.25 MHz	666 kHz		
4 Tosc	100	2.50 MHz	1.33 MHz		
8 Tosc	001	5.00 MHz	2.67 MHz		
16 Tosc	101	10.0 MHz	5.33 MHz		
32 Tosc	010	20.0 MHz	10.67 MHz		
64 Tosc	110	40.0 MHz	21.33 MHz		
RC	x11	_	—		

REGISTER 23-7:	CONFIG5	L: CONFIC	JURATION	REGISTE	R 5 LOW (E	BYTE ADD	RESS 3000	08h)
	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
	CP7 ⁽¹⁾	CP6 ⁽¹⁾	CP5 ⁽¹⁾	CP4 ⁽¹⁾	CP3	CP2	CP1	CP0
	bit 7							bit 0
h:4 7		Protection	ь:µ(1)					
bit 7				landa proto	otod			
				t code-proted de-protected				
bit 6		Protection						
	1 = Block 6	5 (018000-0 ⁻	1BFFFh) not	code-protec	cted			
				de-protected				
bit 5		Protection						
				code-protec	ted			
bit 4		Protection	17FFFh) coc հit (1)	le-protected				
Dit 4				code-protec	tod			
		•	13FFFh) coc	•	leu			
bit 3		Protection	-	·				
	For PIC18F	X520 devic	es:					
	1 = Block 3 (006000-007FFFh) not code-protected							
	0 = Block 3 (006000-007FFh) code-protected							
	For PIC18FX620 and PIC18FX720 devices: 1 = Block 3 (00C000-00FFFFh) not code-protected							
				de-protected				
bit 2		Protection		•				
	For PIC18F	X520 devic	es:					
	1 = Block 2 (004000-005FFFh) not code-protected							
	0 = Block 2 (004000-005FFFh) code-protected							
	For PIC18FX620 and PIC18FX720 devices: 1 = Block 2 (008000-00BFFFh) not code-protected							
		•		de-protected	lou			
bit 1	CP1: Code	Protection	bit					
		X520 devic						
				code-protec	ted			
		-	03FFFh) coc <u>PIC18FX720</u>	-				
				code-protec	ted			
) 7FFFh) coc					
bit 0	CP0: Code	Protection	bit					
	For PIC18FX520 devices:							
	 1 = Block 0 (000800-001FFFh) not code-protected 0 = Block 0 (000800-001FFFh) code-protected 							
		-	PIC18FX720	-				
				code-protec	ted			
			03FFFh) coc					
	Note 1:	Unimpleme	ented in PIC	18FX520 and	d PIC18FX6	20 devices;	maintain this	s bit set.
	Legend:]

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state

CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

	R/C-1 CPD	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
				00	0-0	0-0	0-0	0-0
	GFD	CPB	_	—	—		—	—
	bit 7							bit 0
bit 7	1 = Data El	EPROM not	Code Protect code-protected	cted				
bit 6	 0 = Data EEPROM code-protected CPB: Boot Block Code Protection bit For PIC18FX520 devices: 1 = Boot Block (000000-0007FFh) not code-protected 0 = Boot Block (000000-0007FFh) code-protected For PIC18FX620 and PIC18FX720 devices: 1 = Boot Block (000000-0001FFh) not code-protected 0 = Boot Block (000000-0001FFh) not code-protected 0 = Boot Block (000000-0001FFh) code-protected 							
bit 5-0	Unimplem	ented: Read	d as '0'					
	Legend:							
	R = Reada	ble bit	C = Clear	able bit	U = Unin	nplemented	bit, read as 'C)'

u = Unchanged from programmed state

- n = Value when device is unprogrammed

REGISTER 23-8:

	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
	WRT7 ⁽¹⁾	WRT6 ⁽¹⁾	WRT5 ⁽¹⁾	WRT4 ⁽¹⁾	WRT3	WRT2	WRT1	WRT0
	bit 7							bit C
bit 7	WR7: Write	Protection	bit ⁽¹⁾					
		•	,	write-protected	ted			
bit 6		Protection		•				
			,	write-protec te-protected	ted			
bit 5	WR5: Write	Protection	bit ⁽¹⁾					
			17FFFh) not 17FFFh) writ	write-protected	ted			
bit 4	WR4: Write	Protection	bit ⁽¹⁾					
			13FFFh) not 13FFFh) writ	write-protect e-protected	ted			
bit 3	WR3: Write	Protection	bit					
	1 = Block 3	•		write-protect	ted			
	1 = Block 3	(00C000-0		write-protec	ted			
bit 2		•		te-protected				
Dit 2	WR2: Write Protection bit <u>For PIC18FX520 devices:</u> 1 = Block 2 (004000-005FFFh) not write-protected							
	For PIC18F 1 = Block 2	X620 and F (008000-00	-	•	ted			
bit 1		Protection	•					
	For PIC18F 1 = Block 1	X520 devic (002000-00	<u>es:</u>	write-protected	ted			
	For PIC18F 1 = Block 1	X620 and F (004000-00	PIC18FX720	devices: write-protect	ted			
bit 0		Protection		•				
	1 = Block 0	•		write-protected	ted			
	1 = Block 0	(000200-00	PIC18FX720 03FFFh) not 03FFFh) writ	write-protect	ted			

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state

32 Kbytes	Address Range	Block Code Protection Controlled By:
Boot Block	000000h 0007FFh	CPB, WRTB, EBTRB
Block 0	000800h 001FFFh	CP0, WRT0, EBTR0
Block 1	002000h 003FFFh	CP1, WRT1, EBTR1
Block 2	004000h 005FFFh	CP2, WRT2, EBTR2
Block 3	006000h 007FFFh	CP3, WRT3, EBTR3
Unimplemented Read 'o's	008000h 1FFFFFh	

FIGURE 23-4: CODE-PROTECTED PROGRAM MEMORY FOR PIC18FX620/X720 DEVICES

MEMORY SIZE/DEVICE			Block Code Protection
64 Kbytes (PIC18FX620)	128 Kbytes (PIC18FX720)	Address Range	Controlled By:
Boot Block	Boot Block	000000h 0001FFh	CPB, WRTB, EBTRB
Block 0	Block 0	000200h 003FFFh	CP0, WRT0, EBTR0
Block 1	Block 1	004000h 007FFFh	CP1, WRT1, EBTR1
Block 2	Block 2	008000h 00BFFFh	CP2, WRT2, EBTR2
Block 3	Block 3	00C000h 00FFFFh	CP3, WRT3, EBTR3
	Block 4	010000h 013FFFh	CP4, WRT4, EBTR4
Unimplemented	Block 5	014000h 017FFFh	CP5, WRT5, EBTR5
Read '0's	Block 6	018000h 01BFFFh	CP6, WRT6, EBTR6
	Block 7	01C000h 01FFFFh	CP7, WRT7, EBTR7

GOT	ю	Unconditional Branch					
Synt	ax:	[label]	GOTO	k			
Ope	rands:	$0 \le k \le 10$	048575				
Ope	ration:	$k \rightarrow PC < 20:1 >$					
Statu	us Affected:	None					
1st v	oding: vord (k<7:0>) word(k<19:8>) 1110) 1111	1111 k ₁₉ kkk	k ₇ kk kkkł	0		
Description:		GOTO allows an unconditional branch anywhere within the entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.					
Wor	ds:	2	2				
Cycl	es:	2	2				
QC	cycle Activity:						
	Q1	Q2	Q	3	Q4		
	Decode	Read literal 'k'<7:0>	No operat	ion	Read literal 'k'<19:8>, Write to PC		

Example:	GOTO	THERE	

Example:

No

operation

After Instruction

PC = Address (THERE)

No

operation

No

operation

No

operation

INCF	Incremen	Increment f				
Syntax:	[label] INCF f [,d [,a]					
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5				
Operation:	(f) + 1 \rightarrow c	dest				
Status Affected:	C, DC, N,	OV, Z				
Encoding:	0010	10da f	fff	ffff		
Description:	increment is placed i is placed b (default). I Bank will b the BSR v	nts of regis ed. If 'd' is n W. If 'd' is back in reg f 'a' is '0', t be selected alue. If 'a' be selected (default).	'0', the s '1', the ister 'f the Ac d, over = 1, th	e result he result ccess riding hen the		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Process Data		Vrite to stination		
Example:	INCF	CNT, 1,	0			
Before Instru CNT C C DC After Instruct	= 0xFF = 0 = ? = ?					

CNT Z C DC

= = = =

SUBWFB	Subtract W from f with Borrow					
Syntax:	[label]	SUBWFB f[JBWFB f [,d [,a]			
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	255 1]				
Operation:	(f) – (W) ·	$-(\overline{C}) \rightarrow dest$				
Status Affected:	N, OV, C	, DC, Z				
Encoding:	0101	0101 10da ffff ffff				
Description:	Subtract W and the Carry flag (borrow) from register 'f' (2's com- plement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default).					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example 1:	SUBWFB	REG, 1, 0				
Before Instru REG C After Instruct	= 0x19 = 0x0D = 1 tion	(0001 100 (0000 110)))			
REG W C Z	= 0x0C = 0x0D = 1 = 0	(0000 101 (0000 110				
Z N	= 0	; result is po	ositive			
Example 2:	SUBWFB	REG, 0, 0				
Before Instru REG W C	= 0x1B = 0x1A = 0	(0001 101 (0001 101				
After Instruct REG W C	tion = 0x1B = 0x00 = 1	(0001 101	1)			
C Z N	= 1 = 0	; result is ze	ro			
Example 3:	SUBWFB	REG, 1, 0				
Before Instru REG W C	uction = 0x03 = 0x0E = 1	(0000 001 (0000 110				
After Instruct		(
REG W C	= 0xF5 = 0x0E = 0	(1111 010 ; [2's comp] (0000 110				
Z N	= 0 = 0 = 1	; result is ne	egative			

SWAPF	Swap f			
Syntax:	[label] S	SWAPF f[,c	l [,a]	
Operands:		$0 \leq f \leq 255$		
	d ∈ [0,1] a ∈ [0,1]			
Operation:		→ dest<7:4>, → dest<3:0>		
Status Affected:	None			
Encoding:	0011	10da ff:	ff ffff	
Description:	register 'f' '0', the res '1', the res (default). I Bank will t the BSR v	ult is placed f 'a' is '0', the pe selected, alue. If 'a' is pe selected a	yed. If 'd' is in W. If 'd' is in register 'f' e Access overriding '1', then the	
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q Cycle Activity: Q1	Q2	Q3	Q4	
		Q3 Process Data	Q4 Write to destination	
Q1 Decode Example: Before Instru REG	Q2 Read register 'f' SWAPF R Inction = 0x53	Process	Write to	
Q1 Decode Example: Before Instru	Q2 Read register 'f' SWAPF R Inction = 0x53	Process Data	Write to	

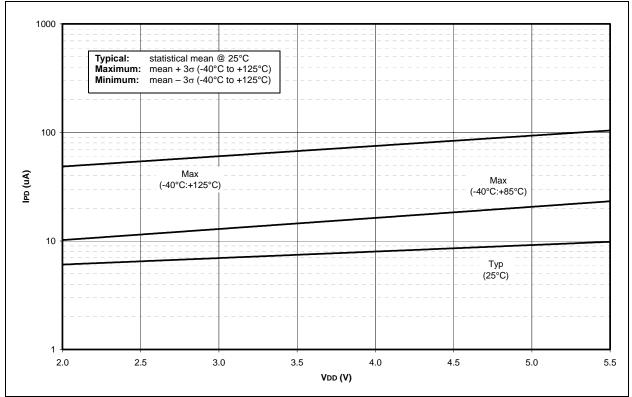
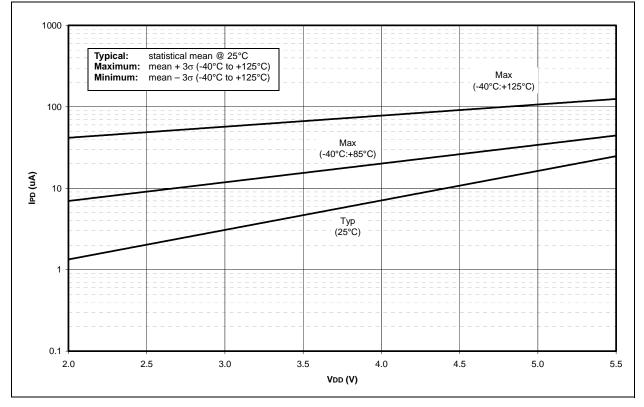



FIGURE 27-16: TYPICAL AND MAXIMUM Alwdt vs. Vdd OVER TEMPERATURE (WDT ENABLED)

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC17C756 to a PIC18F8720.

Not Currently Available

APPENDIX D: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442".* The changes discussed, while device specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

NOTES: