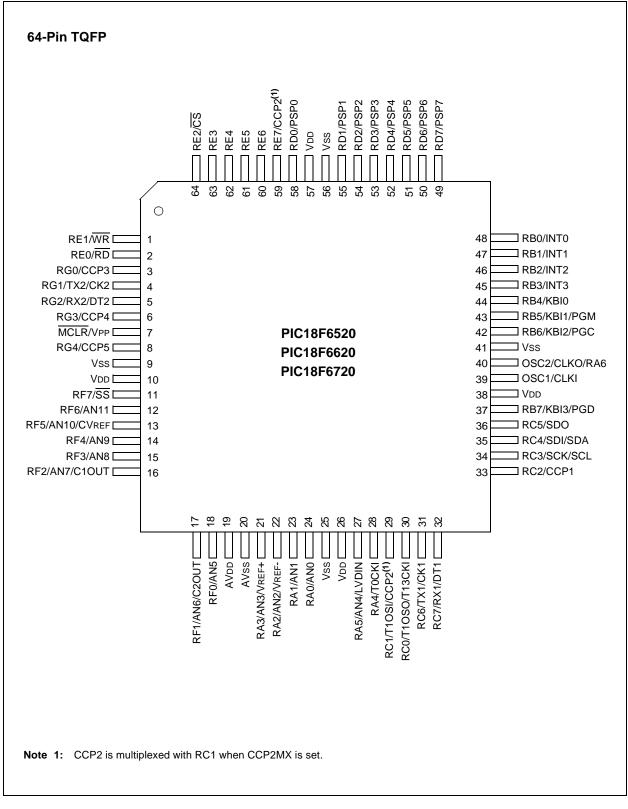


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

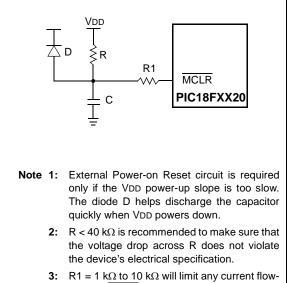

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6520-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams



3.1 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected. To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a 1 k Ω to 10 k Ω resistor to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004). For a slow rise time, see Figure 3-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

FIGURE 3-2: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

ing into MCLR from external capacitor C, in the event of MCLR/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

3.2 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (parameter #33) only on power-up from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in Reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameter #33 for details.

3.3 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset, or wake-up from Sleep.

3.4 PLL Lock Time-out

With the PLL enabled, the time-out sequence following a Power-on Reset is different from other oscillator modes. A portion of the Power-up Timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

3.5 Brown-out Reset (BOR)

A configuration bit, BOREN, can disable (if clear/ programmed), or enable (if set) the Brown-out Reset circuitry. If VDD falls below parameter D005 for greater than parameter #35, the brown-out situation will reset the chip. A Reset may not occur if VDD falls below parameter D005 for less than parameter #35. The chip will remain in Brown-out Reset until VDD rises above BVDD. If the Power-up Timer is enabled, it will be invoked after VDD rises above BVDD; it then will keep the chip in Reset for an additional time delay (parameter #33). If VDD drops below BVDD while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be initialized. Once VDD rises above BVDD, the Power-up Timer will execute the additional time delay.

3.6 Time-out Sequence

On power-up, the time-out sequence is as follows: First, PWRT time-out is invoked after the POR time delay has expired. Then, OST is activated. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all. Figures 3-3 through 3-7 depict time-out sequences on power-up.

Since the time-outs occur from the POR pulse, the time-outs will expire if MCLR is kept low long enough. Bringing MCLR high will begin execution immediately (Figure 3-5). This is useful for testing purposes, or to synchronize more than one PIC18FXX20 device operating in parallel.

Table 3-2 shows the Reset conditions for some Special Function Registers, while Table 3-3 shows the Reset conditions for all of the registers.

REGISTER 4-1: CONFIG3L CONFIGURATION BYTE R/P-1 U-0 U-0 U-0 U-0 U-0 R/P-1 R/P-1 WAIT PM1 PM0 bit 7 bit 0 bit 7 WAIT: External Bus Data Wait Enable bit 1 = Wait selections unavailable, device will not wait 0 = Wait programmed by WAIT1 and WAIT0 bits of MEMCOM register (MEMCOM<5:4>) Unimplemented: Read as '0' bit 6-2 bit 1-0 PM1:PM0: Processor Data Memory Mode Select bits 11 = Microcontroller mode 10 = Microprocessor mode 01 = Microcontroller with Boot Block mode 00 = Extended Microcontroller mode Legend: P = Programmable bit U = Unimplemented bit, read as '0' R = Readable bit - n = Value after erase '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

	Microprocessor Mode (MP)				Microproces with Boot Bl Mode (MPB	ock	Microco Mode	Extended Microcontroller Mode (EMC)			
Program Space Execution	000000h	External Program Memory	1	000000 Boot Boot+1	External Program Memory	On-Chip Program Memory	000000h Boundary Boundary+1	On-Chip Program Memory Reads '0's	000000h Boundary Boundary	+1 External Program Memory	On-Chip Program Memory
		External Memory	J On-Chip Flash	1FFFF	-n External Memory	On-Chip Flash	1FFFFFh	On-Chip Flash	1FFFFh	External Memory	On-Chip Flash
Bour	ndary Valu	es for Mi	croprocessor	with Bo	ot Block, Mic	rocontrolle	r and Extended M	licrocontroller ı	nodes ⁽¹⁾		
	Device		Boot		Boot+	·1	Boundary	Bound	lary+1	Avail Memory	
	PIC18F65	20	0007FF	h	000800	Dh	007FFFh	0080	000h	M	С
	PIC18F66	20	0001FF	h	00020	Dh	00FFFFh	0100	000h	M	С
	PIC18F6720 0001FFt		h	000200h		01FFFFh	0200	020000h		MC	

 PIC18F8720
 0001FFh
 000200h
 01FFFFh
 020000h
 MP, MPBB, MC, EMC

 Note 1:
 PIC18F6X20 devices are included here for completeness, to show the boundaries of their Boot Blocks and program memory spaces.

007FFFh

00FFFFh

008000h

010000h

000800h

000200h

0007FFh

0001FFh

PIC18F8520

PIC18F8620

MP, MPBB, MC, EMC

MP, MPBB, MC, EMC

9.1 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
bit 7							bit 0

bit 7	GIE/GIEH: Global Interrupt Enable bit
	<u>When IPEN (RCON<7>) = 0</u> :
	1 = Enables all unmasked interrupts
	0 = Disables all interrupts When IPEN (RCON<7>) = 1:
	1 = Enables all high priority interrupts
	0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit
	When IPEN (RCON<7>) = 0 :
	1 = Enables all unmasked peripheral interrupts
	0 = Disables all peripheral interrupts
	<u>When IPEN (RCON<7>) = 1</u> : 1 = Enables all low priority peripheral interrupts
	0 = Disables all low priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	1 = Enables the TMR0 overflow interrupt
	0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit
	1 = Enables the INTO external interrupt
	0 = Disables the INT0 external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit
	 Enables the RB port change interrupt Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	1 = TMR0 register has overflowed (must be cleared in software)
	0 = TMR0 register did not overflow
bit 1	INTOIF: INTO External Interrupt Flag bit
	1 = The INT0 external interrupt occurred (must be cleared in software)
	0 = The INT0 external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit
	1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
	0 = None of the RB7:RB4 pins have changed state
	Note: A mismatch condition will continue to set this bit. Reading PORTB will end the mismatch condition and allow the bit to be cleared.
	Lewey de

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

10.5 PORTE, TRISE and LATE Registers

PORTE is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISE. Setting a TRISE bit (= 1) will make the corresponding PORTE pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISE bit (= 0) will make the corresponding PORTE pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATE register, read and write the latched output value for PORTE.

PORTE is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output. PORTE is multiplexed with the CCP module (Table 10-9).

On PIC18F8X20 devices, PORTE is also multiplexed with the system bus as the external memory interface; the I/O bus is available only when the system bus is disabled, by setting the EBDIS bit in the MEMCON register (MEMCON<7>). If the device is configured in Microprocessor or Extended Microcontroller mode, then the PORTE<7:0> becomes the high byte of the address/data bus for the external program memory interface. In Microcontroller mode, the PORTE<2:0> pins become the control inputs for the Parallel Slave Port when bit PSPMODE (PSPCON<4>) is set. (Refer to Section 4.1.1 "PIC18F8X20 Program Memory Modes" for more information on program memory modes.) When the Parallel Slave Port is active, three PORTE pins (RE0/RD/AD8, RE1/WR/AD9 and RE2/CS/AD10) function as its control inputs. This automatically occurs when the PSPMODE bit (PSPCON<4>) is set. Users must also make certain that bits TRISE<2:0> are set to configure the pins as digital inputs and the ADCON1 register is configured for digital I/O. The PORTE PSP control functions are summarized in Table 10-9.

Pin RE7 can be configured as the alternate peripheral pin for CCP module 2 when the device is operating in Microcontroller mode. This is done by clearing the configuration bit, CCP2MX, in configuration register, CONFIG3H (CONFIG3H<0>).

Note:	For PIC18F8X20 (80-pin) devices operat-
	ing in Extended Microcontroller mode,
	PORTE defaults to the system bus on
	Power-on Reset.

EXAMPLE 10-5: INITIALIZING PORTE

CLRF	PORTE	; Initialize PORTE by ; clearing output
CLRF	LATE	; data latches ; Alternate method
		; to clear output ; data latches
MOVLW	0x03	; Value used to : initialize data
MOVWF	TRISE	; direction ; Set RE1:RE0 as inputs ; RE7:RE2 as outputs

Name	Bit#	Buffer Type	Function					
RG0/CCP3	bit 0	ST	Input/output port pin or Capture3 input/Compare3 output/PWM3 output.					
RG1/TX2/CK2	bit 1	ST	Input/output port pin, addressable USART2 asynchronous transmit or addressable USART2 synchronous clock.					
RG2/RX2/DT2	bit 2	ST	Input/output port pin, addressable USART2 asynchronous receive or addressable USART2 synchronous data.					
RG3/CCP4	bit 3	ST	Input/output port pin or Capture4 input/Compare4 output/PWM4 output.					
RG4/CCP5	bit 4	ST	Input/output port pin or Capture5 input/Compare5 output/PWM5 output.					

TABLE 10-13: PORTG FUNCTIONS

Legend: ST = Schmitt Trigger input

TABLE 10-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTG	_	_		Read PC	RTF pin/\	Write PO	RTF Data	Latch	x xxxx	u uuuu
LATG	—	_		LATG Da	LATG Data Output Register					u uuuu
TRISG	_	_	_	Data Dire	Data Direction Control Register for PORTG					1 1111

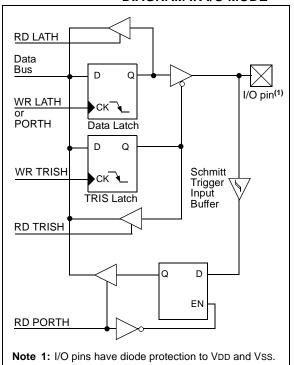
Legend: x = unknown, u = unchanged

10.8 PORTH, LATH and TRISH Registers

Note:	PORTH is available only on PIC18F8X20
	devices.

PORTH is an 8-bit wide, bidirectional I/O port. The corresponding data direction register is TRISH. Setting a TRISH bit (= 1) will make the corresponding PORTH pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISH bit (= 0) will make the corresponding PORTH pin an output (i.e., put the contents of the output latch on the selected pin).

Read-modify-write operations on the LATH register, read and write the latched output value for PORTH.


Pins RH7:RH4 are multiplexed with analog inputs AN15:AN12. Pins RH3:RH0 are multiplexed with the system bus as the external memory interface; they are the high-order address bits, A19:A16. By default, pins RH7:RH4 are enabled as A/D inputs and pins RH3:RH0 are enabled as the system address bus. Register ADCON1 configures RH7:RH4 as I/O or A/D inputs. Register MEMCON configures RH3:RH0 as I/O or system bus pins.

- Note 1: On Power-on Reset, PORTH pins RH7:RH4 default to A/D inputs and read as '0'.
 - 2: On Power-on Reset, PORTH pins RH3:RH0 default to system bus signals.

EXAMPLE 10-8: INITIALIZING PORTH

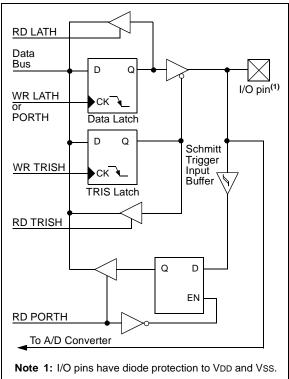

CLRF	PORTH	; Initialize PORTH by ; clearing output
		; data latches
CLRF	LATH	; Alternate method
		; to clear output
		; data latches
MOVLW	0Fh	;
MOVWF	ADCON1	;
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISH	; Set RH3:RH0 as inputs
		; RH5:RH4 as outputs
		; RH7:RH6 as inputs
1		

FIGURE 10-17: RH3:RH0 PINS BLOCK DIAGRAM IN I/O MODE

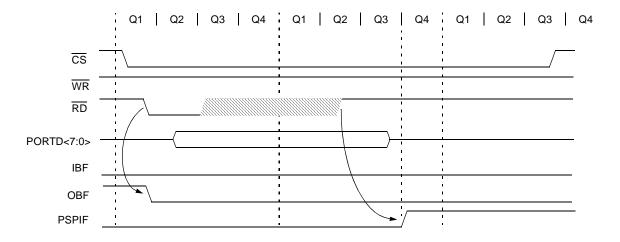


FIGURE 10-18: R

RH7:RH4 PINS BLOCK DIAGRAM IN I/O MODE

FIGURE 10-25: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 10-19: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTD	Port Data	Latch whe	n written; F	Port pins when	read				xxxx xxxx	uuuu uuuu
LATD	LATD Data	a Output b		xxxx xxxx	uuuu uuuu					
TRISD	PORTD D	ata Directi	on bits						1111 1111	1111 1111
PORTE	-	—	-	—	—	Read POR Write POR	RTE pin/ RTE Data La	itch	0000 0000	0000 0000
LATE	—	—	_	_	—	LATE Data	a Output bits	3	xxxx xxxx	uuuu uuuu
TRISE	_	_	_	_	—	PORTE Da	ata Directio	n bits	1111 1111	1111 1111
PSPCON	IBF	OBF	IBOV	PSPMODE	—	—	—	—	0000	0000
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IF	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 0000	0000 0000
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0111 1111	0111 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

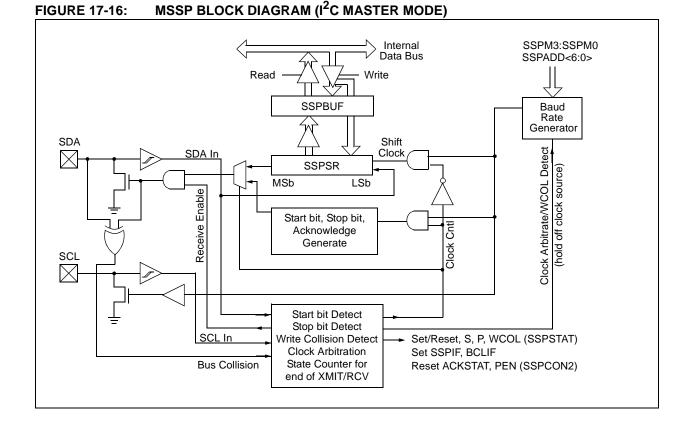
Note 1: Enabled only in Microcontroller mode for PIC18F8X20 devices.

17.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset, or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all I^2C bus operations based on Start and Stop bit conditions.


Once Master mode is enabled, the user has six options.

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I²C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP interrupt if enabled):

- Start Condition
- Stop Condition
- Data Transfer Byte Transmitted/received
- Acknowledge Transmit
- Repeated Start

© 2003-2013 Microchip Technology Inc.

18.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit SYNC (TXSTAx<4>). In addition, enable bit SPEN (RCSTAx<7>) is set in order to configure the appropriate I/O pins to CK (clock) and DT (data) lines, respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit CSRC (TXSTAx<7>).

18.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 18-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREGx register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREGx (if available). Once the TXREGx register transfers the data to the TSR register (occurs in one TCYCLE), the TXREGx is empty and interrupt bit TXxIF (PIR1<4> for USART1, PIR3<4> for USART1, PIE3<4> for USART2). Flag bit TXxIF will be

set, regardless of the state of enable bit TXxIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREGx register. While flag bit TXxIF indicates the status of the TXREGx register, another bit TRMT (TXSTAx<1>) shows the status of the TSR register. TRMT is a read-only bit, which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory, so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 18.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit TXxIE in the appropriate PIE register.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the transmission by setting bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREGx register.

Note: TXIF is not cleared immediately upon loading data into the transmit buffer TXREG. The flag bit becomes valid in the second instruction cycle following the load instruction.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 0000	0000 0000
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0111 1111	0111 1111
PIR3	_	_	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	00 0000	00 0000
PIE3	_	_	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	00 0000	00 0000
IPR3	_	_	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	11 1111	11 1111
RCSTAx ⁽¹⁾	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
TXREGx ⁽¹⁾	USART Tra	ansmit Re	gister						0000 0000	0000 0000
TXSTAx ⁽¹⁾	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRGx ⁽¹⁾	Baud Rate	Generato	r Register						0000 0000	0000 0000
1										

TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Register names generically refer to both of the identically named registers for the two USART modules, where 'x' indicates the particular module. Bit names and Reset values are identical between modules.

18.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTAx<5>) or enable bit CREN (RCSTAx<4>). Data is sampled on the RXx pin (RC7/RX1/DT1 or RG2/RX2/ DT2) on the falling edge of the clock. If enable bit SREN is set, only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence.

To set up a Synchronous Master Reception:

- 1. Initialize the SPBRGx register for the appropriate baud rate (Section 18.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.

- 4. If interrupts are desired, set enable bit RCxIE in the appropriate PIE register.
- 5. If 9-bit reception is desired, set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- 7. Interrupt flag bit RCxIF will be set when reception is complete and an interrupt will be generated if the enable bit RCxIE was set.
- 8. Read the RCSTAx register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREGx register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

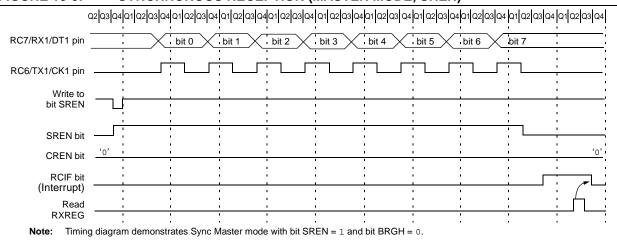

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF	0000 0000	0000 0000
PIR1	PSPIF	ADIF	RC1IF	TX1IF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
IPR1	PSPIP	ADIP	RC1IP	TX1IP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0111 1111	0111 1111
PIR3	_	_	RC2IF	TX2IF	TMR4IF	CCP5IF	CCP4IF	CCP3IF	00 0000	00 0000
PIE3	—	—	RC2IE	TX2IE	TMR4IE	CCP5IE	CCP4IE	CCP3IE	00 0000	00 0000
IPR3	_	_	RC2IP	TX2IP	TMR4IP	CCP5IP	CCP4IP	CCP3IP	11 1111	11 1111
RCSTAx ⁽¹⁾	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
RCREGx ⁽¹⁾	USART Re	ceive Registe	er						0000 0000	0000 0000
TXSTAx ⁽¹⁾	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
SPBRGx ⁽¹⁾	Baud Rate	Generator R	egister		•				0000 0000	0000 0000
Lawawala					01	II				

TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.**Note 1:**Register names generically refer to both of the identically named registers for the two USART modules, where 'x'

indicates the particular module. Bit names and Reset values are identical between modules.

FIGURE 18-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

19.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital (A/D) converter module has 12 inputs for the PIC18F6X20 devices and 16 for the PIC18F8X20 devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 19-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 19-2, configures the functions of the port pins. The ADCON2 register, shown in Register 19-3, configures the A/D clock source and justification.

REGISTER 19-1: ADCON0 REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	
bit 7							bit 0	

- bit 7-6 Unimplemented: Read as '0'
- bit 5-2 CHS3:CHS0: Analog Channel Select bits
 - 0000 = Channel 0 (AN0)
 - 0001 = Channel 1 (AN1)
 - 0010 = Channel 2 (AN2)
 - 0011 = Channel 3 (AN3)
 - 0100 = Channel 4 (AN4) 0101 = Channel 5 (AN5)
 - 0101 = Channel 6 (AN6)
 - 0111 = Channel 7 (AN7)
 - 1000 =Channel 8 (AN8)
 - 1001 = Channel 9 (AN9)
 - 1010 = Channel 10 (AN10)
 - 1011 = Channel 11 (AN11)
 - 1100 = Channel 12 (AN12)⁽¹⁾
 - 1101 =Channel 13 (AN13)⁽¹⁾
 - $1110 = Channel 14 (AN14)^{(1)}$
 - $1111 = Channel 15 (AN15)^{(1)}$

Note 1: These channels are not available on the PIC18F6X20 (64-pin) devices.

bit 1 GO/DONE: A/D Conversion Status bit

When ADON = 1:

 1 = A/D conversion in progress (setting this bit starts the A/D conversion, which is automatically cleared by hardware when the A/D conversion is complete)

0 = A/D conversion not in progress

bit 0 ADON: A/D On bit

- 1 = A/D converter module is enabled
- 0 = A/D converter module is disabled

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 19-3:	ADCON2	REGISTER	1					
	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	ADFM	_	_	_	_	ADCS2	ADCS1	ADCS0
	bit 7							bit 0
bit 7	ADFM: A/D 1 = Right ju 0 = Left jus	ustified	mat Select b	bit				
bit 6-3	Unimplem	ented: Read	d as '0'					
bit 2-0	ADCS1:AD	DCS0: A/D C	Conversion C	Clock Select	bits			
	100 = Foso 101 = Foso 110 = Foso	c/8 c/32 (clock derive c/4 c/16 c/64	ed from an F ed from an F					
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as '	0'

'1' = Bit is set

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (VDD and Vss), or the voltage level on the RA3/AN3/ VREF+ pin and RA2/AN2/VREF- pin.

- n = Value at POR

The A/D converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion is aborted. Each port pin associated with the A/D converter can be configured as an analog input (RA3 can also be a voltage reference), or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH/ADRESL registers, the GO/DONE bit (ADCON0 register) is cleared and A/D interrupt flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 19-1.

x = Bit is unknown

'0' = Bit is cleared

23.2 Watchdog Timer (WDT)

The Watchdog Timer is a free running, on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the OSC1/CLKI and OSC2/CLKO/RA6 pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device Reset (Watchdog Timer Reset). If the device is in Sleep mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer wake-up). The \overline{TO} bit in the RCON register will be cleared upon a WDT time-out.

The Watchdog Timer is enabled/disabled by a device configuration bit. If the WDT is enabled, software execution may not disable this function. When the WDTEN configuration bit is cleared, the SWDTEN bit enables/ disables the operation of the WDT.

The WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT postscaler may be assigned using the configuration bits.

- **Note 1:** The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT and prevent it from timing out and generating a device Reset condition.
 - 2: When a CLRWDT instruction is executed and the postscaler is assigned to the WDT, the postscaler count will be cleared, but the postscaler assignment is not changed.

23.2.1 CONTROL REGISTER

Register 23-15 shows the WDTCON register. This is a readable and writable register, which contains a control bit that allows software to override the WDT enable configuration bit, only when the configuration bit has disabled the WDT.

REGISTER 23-15: WDTCON REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—	—	SWDTEN
bit 7							bit 0

bit 7-1 Unimplemented: Read as '0'

bit 0 SWDTEN: Software Controlled Watchdog Timer Enable bit

1 = Watchdog Timer is on

0 = Watchdog Timer is turned off if the WDTEN configuration bit in the configuration register = 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

RLN	CF	Rotate Lo	eft f (no d	carry)	
Synt	ax:	[label]	RLNCF	f [,d [,a	a]
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	5		
Ope	ration:	$(f) \rightarrow$ $(f<7>) \rightarrow$		1>,	
Statu	us Affected:	N, Z			
Enco	oding:	0100	01da	ffff	ffff
	cription:	The conte rotated or the result the result 'f' (defaul Bank will the BSR bank will BSR valu	he bit to the is placed is stored t). If 'a' is be select value. If 'a be select	he left. If I in W. If I back in '0', the ted, over a' is '1', 'ed as pe	'd' is '0', 'd' is '1', register Access riding then the
		-	regis	ster f	┫
Wor	ds:	1			
Cycl	es:	1			
QC	cycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read register 'f'	Process Data		rite to ination
<u>Exar</u>	<u>nple</u> :	RLNCF	REG,	1, 0	
	Before Instru REG	iction = 1010 1	011		
	After Instruct REG	tion = 0101 0	111		

RRCF	Rotate Right f through Carry					
Syntax:	[label]	RRCF f[,d	l [,a]			
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5				
Operation:	$(f < n >) \rightarrow c$ $(f < 0 >) \rightarrow c$ $(C) \rightarrow des$	С,				
Status Affected:	C, N, Z					
Encoding:	0011	00da ff	ff ffff			
	is placed i is placed b (default). I Bank will b the BSR v bank will b BSR value	n W. If 'd' is back in regis f 'a' is '0', th be selected, alue. If 'a' is be selected a	e Access overriding '1', then the as per the			
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example:	RRCF	REG, 0,	0			
Refore Instru	uction					

Before Instru	uction	1		
REG	=	1110	0110	
С	=	0		
After Instruc	tion			
REG	=	1110	0110	
W	=	0111	0011	
С	=	0		

SUBWFB	Subtract	W from f with	n Borrow
Syntax:	[label]	SUBWFB f[,	d [,a]
Operands:	0 ≤ f ≤ 25 d ∈ [0,1] a ∈ [0,1]	5	
Operation:	(f) – (W) ·	$-(\overline{C}) \rightarrow dest$	
Status Affected:	N, OV, C	, DC, Z	
Encoding:	0101	10da fff	f ffff
Description:	(borrow) f plement r result is s result is s (default). Bank will BSR valu	W and the Car from register 'f' nethod). If 'd' is tored in W. If 'd tored back in r If 'a' is '0', the be selected, ov e. If 'a' is '1', th lected as per th fault).	(2's com- s '0', the d' is '1', the egister 'f' Access verriding the en the bank
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write to destination
Example 1:	SUBWFB	REG, 1, 0	
Before Instru REG C After Instruct	= 0x19 = 0x0D = 1 tion	(0001 100 (0000 110)))
REG W C Z	= 0x0C = 0x0D = 1 = 0	(0000 101 (0000 110	
Z N	= 0	; result is po	ositive
Example 2:	SUBWFB	REG, 0, 0	
Before Instru REG W C	= 0x1B = 0x1A = 0	(0001 101 (0001 101	
After Instruct REG W C	tion = 0x1B = 0x00 = 1	(0001 101	1)
C Z N	= 1 = 0	; result is ze	ro
Example 3:	SUBWFB	REG, 1, 0	
Before Instru REG W C	uction = 0x03 = 0x0E = 1	(0000 001 (0000 110	
After Instruct		(
REG W C	= 0xF5 = 0x0E = 0	(1111 010 ; [2's comp] (0000 110	
Z N	= 0 = 0 = 1	; result is ne	egative

SWAPF	Swap f		
Syntax:	[label] S	SWAPF f[,d	l [,a]
Operands:	$0 \le f \le 255$	5	
	d ∈ [0,1] a ∈ [0,1]		
Operation:		• dest<7:4>, • dest<3:0>	
Status Affected:	None		
Encoding:	0011	10da ffi	ff ffff
Description:	register 'f' '0', the res '1', the res (default). I Bank will t the BSR v	ult is placed f 'a' is '0', the pe selected, o alue. If 'a' is pe selected a	ed. If 'd' is in W. If 'd' is in register 'f' e Access overriding '1', then the
Words:	1		
Cycles:	1		
O Ousla Astivit			
Q Cycle Activity:			
Q Cycle Activity: Q1	Q2	Q3	Q4
		Q3 Process Data	Q4 Write to destination
Q1 Decode Example: Before Instru REG	Q2 Read register 'f' SWAPF R Inction = 0x53	Process	Write to
Q1 Decode Example: Before Instru	Q2 Read register 'f' SWAPF R Inction = 0x53	Process Data	Write to

TBLWT	Table Write TB
Syntax:	[<i>label</i>] TBLWT (*; *+; *-; +*) Wo
Operands:	None Cy
Operation:	if TBLWT*, Q (TABLAT) \rightarrow Holding Register; TBLPTR – No Change; if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR; (TABLAT) \rightarrow Holding Register;
Status Affected:	None Ex
Encoding:	0000 0000 0000 11nn nn=0 * =1 *+ =2 *- =3 +*
Description:	This instruction uses the 3 LSBs of TBLPTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 5.0 "Flash Program Memory" for additional details on
	Memory" for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the Program Memory. TBLPTR has a 2-Mbyte address range. The LSb of the TBLPTR selects which byte of the program memory location to access. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word
	TBLPTR[0] = 1: Most Significant Byte of Program Memory Word
	The TBLWT instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-decrement • pre-increment

• pre-increment

TBLWT Table Write (Continued)

Words:	1

Cycles: 2

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	No operation	No operation	No operation
No operation	No operation (Read TABLAT)	No operation	No operation (Write to Holding Register)

<u>xample 1</u> :	TBLWT	*+;

Before Instruction		
TABLAT TBLPTR HOLDING REGISTE	= 0x55 = 0x00A356 =R	
(0x00A356)	= 0xFF	
After Instructions (table	e write completion)	
TABLAT	= 0x55	
TBLPTR HOLDING REGISTE	= 0x00A357	
(0x00A356)	= 0x55	
Example 2: TBLWT	+*;	
Defens lastaustica		
Before Instruction		
TABLAT	= 0x34	
TABLAT TBLPTR	= 0x01389A	
TABLAT TBLPTR HOLDING REGISTE (0x01389A)	= 0x01389A ER = 0xFF	
TABLAT TBLPTR HOLDING REGISTE	= 0x01389A ER = 0xFF	
TABLAT TBLPTR HOLDING REGISTE (0x01389A) HOLDING REGISTE	= 0x01389A ER = 0xFF ER = 0xFF	
TABLAT TBLPTR HOLDING REGISTE (0x01389A) HOLDING REGISTE (0x01389B) After Instruction (table TABLAT	= 0x01389A ER $= 0xFF$ ER $= 0xFF$ write completion) $= 0x34$	
TABLAT TBLPTR HOLDING REGISTE (0x01389A) HOLDING REGISTE (0x01389B) After Instruction (table TABLAT TBLPTR	= 0x01389A $= 0xFF$ $= 0xFF$ write completion) $= 0x34$ $= 0x01389B$	
TABLAT TBLPTR HOLDING REGISTE (0x01389A) HOLDING REGISTE (0x01389B) After Instruction (table TABLAT	= 0x01389A $= 0xFF$ $= 0xFF$ write completion) $= 0x34$ $= 0x01389B$ $= 0xFF$	

26.2 DC Characteristics: Power-Down and Supply Current PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended) PIC18LF6520/8520/6620/8620/6720/8720 (Industrial) (Continued)

(Industrial)		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +85^{\circ}C$ for extended					
			Supply Current (IDD) ^(2,3)				
	PIC18FX620, PIC18FX720	9.3	15	mA	-40°C		
		9.5	15	mA	+25°C	VDD = 4.2V	
		10	15	mA	+85°C		Fosc = 25 MHz,
	PIC18FX620, PIC18FX720	11.8	20	mA	-40°C		EC oscillator
		12	20	mA	+25°C	VDD = 5.0V	
		12	20	mA	+85°C		
	PIC18FX520	16	20	mA	-40°C		
		16	20	mA	+25°C	VDD = 4.2V	
		16	20	mA	+85°C		Fosc = 40 MHz,
	PIC18FX520	19	25	mA	-40°C		EC oscillator
		19	25	mA	+25°C	VDD = 5.0V	
		19	25	mA	+85°C		
D014	PIC18FX620/X720	15	55	μA	-40°C to +85°C	VDD = 2.0V	Fosc = 32 kHz, Timer1 as clock
	PIC18LF8520	13	18	μA	-40°C to +85°C	VDD = 2.0V	
		20	35	μΑ	-40°C to +85°C	VDD = 3.0V	Fosc = 32 kHz, Timer1 as clock
		50	85	μΑ	-40°C to +85°C	VDD = 5.0V	
	PIC18FXX20	—	200	μΑ	-40°C to +85°C	VDD = 4.2V	Fosc = 32 kHz,
		_	250	μA	-40°C to +125°C	VDD = 4.2V	Timer1 as clock

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;

MCLR = VDD; WDT enabled/disabled as specified.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kΩ.

NOTES:

RH1/A1719
RH2/A1819
RH3/A19
RH4/AN12
RH5/AN1319 RH6/AN14
RH0/AN14
RJ0/ALE
RJ1/OE
RJ2/WRL
RJ3/WRH
RJ4/BA020
RJ5/ <u>CE</u> 20
RJ6/ <u>LB</u> 20
RJ7/UB
VDD
Vss
PIR Registers
PLL Clock Timing Specifications
Pointer, FSR
POP
POR. See Power-on Reset.
PORTA
Associated Registers105
Functions105
LATA Register
PORTA Register
TRISA Register
PORTB Associated Registers108
Functions
LATB Register
PORTB Register
RB0/INT Pin, External
TRISB Register
PORTC
Associated Registers110
Functions110
LATC Register109
PORTC Register 109
RC3/SCK/SCL Pin171
TRISC Register
PORTD
Associated Registers
Functions
Parallel Slave Port (PSP) Function
PORTD Register
TRISD Register
PORTE
Analog Port Pins128
Associated Registers116
Functions
Functions
Functions
Functions 116 LATE Register 114 PORTE Register 114 PSP Mode Select (PSPMODE Bit) 111, 128
Functions 116 LATE Register 114 PORTE Register 114 PSP Mode Select (PSPMODE Bit) 111, 128 RE0/RD/AN5 Pin 128
Functions 116 LATE Register 114 PORTE Register 114 PSP Mode Select (PSPMODE Bit) 111, 128 RE0/RD/AN5 Pin 128 RE1/WR/AN6 Pin 128
Functions 116 LATE Register 114 PORTE Register 114 PSP Mode Select (PSPMODE Bit) 111, 128 RE0/RD/AN5 Pin 128 RE1/WR/AN6 Pin 128 RE2/CS/AN7 Pin 128
Functions 116 LATE Register 114 PORTE Register 114 PSP Mode Select (PSPMODE Bit) 111, 128 RE0/RD/AN5 Pin 128 RE1/WR/AN6 Pin 128 RE2/CS/AN7 Pin 128 TRISE Register 114
Functions 116 LATE Register 114 PORTE Register 114 PSP Mode Select (PSPMODE Bit) 111, 128 RE0/RD/AN5 Pin 128 RE1/WR/AN6 Pin 128 RE2/CS/AN7 Pin 128 TRISE Register 114 PORTF 114
Functions 116 LATE Register 114 PORTE Register 114 PSP Mode Select (PSPMODE Bit) 111, 128 RE0/RD/AN5 Pin 128 RE1/WR/AN6 Pin 128 RE2/CS/AN7 Pin 128 TRISE Register 114 PORTF Associated Registers
Functions 116 LATE Register 114 PORTE Register 114 PSP Mode Select (PSPMODE Bit) 111, 128 RE0/RD/AN5 Pin 128 RE1/WR/AN6 Pin 128 RE2/CS/AN7 Pin 128 TRISE Register 114 PORTF 114

PORTF Register 117
TRISF Register 117
PORTG
Associated Registers 121
Functions 121
LATG Register 120
PORTG Register 120
TRISG Register 120, 197
PORTH
Associated Registers 124
Functions124
LATH Register 122
PORTH Register 122
TRISH Register 122
PORTJ
Associated Registers 127
Functions127
LATJ Register 125
PORTJ Register 125
TRISJ Register 125
Postscaler, WDT
Assignment (PSA Bit)
Rate Select (T0PS2:T0PS0 Bits) 133
Switching Between Timer0 and WDT 133
Power-down Mode. See Sleep.
Power-on Reset (POR)
Oscillator Start-up Timer (OST)
Power-up Timer (PWRT)
Time-out Sequence
Prescaler, Capture
Prescaler, Timer0
Assignment (PSA Bit)
Rate Select (TOPS2:TOPS0 Bits)
Switching Between Timer0 and WDT
Prescaler, Timer2
Product Identification System
Program Counter PCL, PCLATH and PCLATU Registers
Program Memory
Access for PIC18F8X20 Program Memory Modes 40
Instructions
Interrupt Vector
Map and Stack for PIC18FXX20
Maps for PIC18F8X20 Program Memory Modes 41
PIC18F8X20 Modes
Reset Vector
Program Memory Write Timing Requirements
Program Verification and Code Protection
Associated Registers
Configuration Register Protection
Data EEPROM Code Protection
Memory Code Protection
Programming, Device Instructions
PSP.See Parallel Slave Port.
Pulse Width Modulation. See PWM (CCP Module).
PUSH
PWM (CCP Module)154
Associated Registers 155
CCPR1H:CCPR1L Registers 154
CCPR1H:CCPR1L Registers 154 Duty Cycle
Duty Cycle
Duty Cycle
Duty Cycle