

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.75K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf6720t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:	
PREINC2	Uses conter (not a physic	nts of FSR2 to cal register)	address data	memory – val	ue of FSR2 pr	e-incremented	1		n/a	57	
PLUSW2	Uses conter (not a physic	nts of FSR2 to cal register) – v	address data value of FSR2	memory – val 2 offset by valu	ue of FSR2 pi ie in WREG	e-incremented	ł		n/a	57	
FSR2H	—	—	-	—	Indirect Data	Memory Addr	ess Pointer 2 I	High Byte	0000	33, 57	
FSR2L	Indirect Data	a Memory Add	ress Pointer 2	2 Low Byte		-		-	xxxx xxxx	33, 57	
STATUS	—	—	—	Ν	OV	Z	DC	С	x xxxx	33, 59	
TMR0H	Timer0 Regi	limer0 Register High Byte									
TMR0L	Timer0 Regi	ster Low Byte							xxxx xxxx	33, 133	
TOCON	TMROON T08BIT TOCS TOSE PSA TOPS2 TOPS1 TOPS0 :						1111 1111	33, 131			
OSCCON	—	_	_	—	_	—	_	SCS	0	25, 33	
LVDCON	—	_	IRVST	LVDEN	LVDL3	LVDL2	LVDL1	LVDL0	00 0101	33, 235	
WDTCON	—	—	—	—	—	—		SWDTE	0	33, 250	
RCON	IPEN	—	—	RI	TO	PD	POR	BOR	01 11qq	33, 60, 101	
TMR1H	Timer1 Regi	xxxx xxxx	33, 135								
TMR1L	Timer1 Register Low Byte								xxxx xxxx	33, 135	
T1CON	RD16	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00 0000	33, 135	
TMR2	Timer2 Register									33, 141	
PR2	Timer2 Period Register									33, 142	
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	33, 141	
SSPBUF	SSP Receiv	e Buffer/Trans	mit Register						xxxx xxxx	33, 157	
SSPADD	SSP Addres	s Register in I	² C Slave mod	le. SSP Baud	Rate Reload I	Register in I ² C	Master mode		0000 0000	33, 166	
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	33, 158	
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	33, 168	
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	33, 169	
ADRESH	A/D Result F	Register High I	Byte						xxxx xxxx	34, 215	
ADRESL	A/D Result F	Register Low E	Byte						xxxx xxxx	34, 215	
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	34, 213	
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0000	34, 214	
ADCON2	ADFM	_	_	_	—	ADCS2	ADCS1	ADCS0	0000	34, 215	
CCPR1H	Capture/Cor	mpare/PWM R	egister 1 High	n Byte					XXXX XXXX	34, 151, 152	
CCPR1L	Capture/Cor	mpare/PWM R	egister 1 Low	Byte					XXXX XXXX	34, 151, 152	
CCP1CON	—	—	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	34, 149	
CCPR2H	Capture/Cor	mpare/PWM R	egister 2 High	n Byte					XXXX XXXX	34, 151, 152	
CCPR2L	Capture/Cor	mpare/PWM R	egister 2 Low	Byte					XXXX XXXX	34, 151, 152	
CCP2CON	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	34, 149	

TABLE 4-3: REGISTER FILE SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition

Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator modes only and read '0' in all other oscillator modes.

2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

3: These registers are unused on PIC18F6X20 devices; always maintain these clear.

EXAMPLE 5-3:	WRI	TING TO	FLASH PROG	R/	AM MEMORY (CONTINUED)
PROGRAM_MEMORY					
	BSF	EECON1,	EEPGD	;	point to Flash program memory
	BCF	EECON1,	CFGS	;	access Flash program memory
	BSF	EECON1,	WREN	;	enable write to memory
	BCF	INTCON,	GIE	;	disable interrupts
Required Sequence	MOVLW MOVWF MOVWF BSF NOP	55h EECON2 AAh EECON2 EECON1,	WR	; ; ;	write 55H write AAH start program (CPU stall)
	BSF DECFSZ BRA BCF	INTCON, COUNTER PROGRAM EECON1,	GIE _HI _LOOP WREN	; ; ;	re-enable interrupts loop until done disable write to memory

5.5.2 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

5.5.3 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed if needed. The WRERR bit is set when a write operation is interrupted by a MCLR Reset, or a WDT Time-out Reset during normal operation. In these situations, users can check the WRERR bit and rewrite the location.

5.5.4 PROTECTION AGAINST SPURIOUS WRITES

To protect against spurious writes to Flash program memory, the write initiate sequence must also be followed. See Section 23.0 "Special Features of the CPU" for more detail.

5.6 Flash Program Operation During Code Protection

See **Section 23.0 "Special Features of the CPU"** for details on code protection of Flash program memory.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TBLPTRU	—	—	bit 21	Program (TBLPTR	Memory Tal <20:16>)		00 0000	00 0000		
TBPLTRH	Program N	lemory Table		0000 0000	0000 0000					
TBLPTRL	Program Memory Table Pointer High Byte (TBLPTR<7:0>)									0000 0000
TABLAT	Program N	lemory Table	e Latch						0000 0000	0000 0000
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 0000	0000 0000
EECON2	EEPROM	Control Regi	ster 2 (not	a physica	l register)				—	_
EECON1	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD	xx-0 x000	uu-0 u000
IPR2	—	CMIP		EEIP	BCLIP	LVDIP	TMR3IP	CCP2IP	1 1111	1 1111
PIR2	_	CMIF	_	EEIF	BCLIF	LVDIF	TMR3IF	CCP2IF	0 0000	0 0000
PIE2	_	CMIE	_	EEIE	BCLIE	LVDIE	TMR3IE	CCP2IE	0 0000	0 0000

TABLE 5-2: REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented, read as '0'.

Shaded cells are not used during Flash/EEPROM access.

9.3 **PIE Registers**

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are three Peripheral Interrupt Enable registers (PIE1, PIE2 and PIE3). When the IPEN bit (RCON<7>) is '0', the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 9-7:	PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1											
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PSPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSPIE	CCP1IE	TMR2IE	TMR1IE				
	bit 7							bit 0				
bit 7	PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit ⁽¹⁾ 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt											
bit 6	ADIE: A/D 1 = Enables 0 = Disable	ADIE: A/D Converter Interrupt Enable bit 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt										
bit 5	RC1IE: USART1 Receive Interrupt Enable bit 1 = Enables the USART1 receive interrupt 0 = Disables the USART1 receive interrupt											
bit 4	TX1IE: USART1 Transmit Interrupt Enable bit 1 = Enables the USART1 transmit interrupt 0 = Disables the USART1 transmit interrupt											
bit 3	SSPIE: Master Synchronous Serial Port Interrupt Enable bit 1 = Enables the MSSP interrupt 0 = Disables the MSSP interrupt											
bit 2	CCP1IE: CCP1 Interrupt Enable bit 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt											
bit 1	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt											
bit 0	TMR1IE: TI 1 = Enables 0 = Disable	MR1 Overfles the TMR1 s the TMR1 s the TMR1	ow Interrupt overflow int overflow in	Enable bit errupt terrupt								

Note 1: Enabled only in Microcontroller mode for PIC18F8X20 devices.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.6 INT0 Interrupt

External interrupts on the RB0/INT0, RB1/INT1, RB2/INT2 and RB3/INT3 pins are edge-triggered: either rising, if the corresponding INTEDGx bit is set in the INTCON2 register, or falling, if the INTEDGx bit is clear. When a valid edge appears on the RBx/INTx pin, the corresponding flag bit, INTxF, is set. This interrupt can be disabled by clearing the corresponding enable bit, INTxE. Flag bit, INTxF, must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt. All external interrupts (INT0, INT1, INT2 and INT3) can wake-up the processor from Sleep if bit INTxIE was set prior to going into Sleep. If the Global Interrupt Enable bit, GIE, is set, the processor will branch to the interrupt vector following wake-up.

The interrupt priority for INT, INT2 and INT3 is determined by the value contained in the interrupt priority bits: INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and INT3IP (INTCON2<1>). There is no priority bit associated with INT0; it is always a high priority interrupt source.

9.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh \rightarrow 00h) will set flag bit TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L registers (FFFFh \rightarrow 0000h) will set flag bit TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit, TMR0IE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit, TMR0IP (INTCON2<2>). See Section 11.0 "Timer0 Module" for further details on the Timer0 module.

9.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit, RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

9.9 Context Saving During Interrupts

During an interrupt, the return PC value is saved on the stack. Additionally, the WREG, Status and BSR registers are saved on the fast return stack. If a fast return from interrupt is not used (see **Section 4.3 "Fast Register Stack"**), the user may need to save the WREG, Status and BSR registers in software. Depending on the user's application, other registers may also need to be saved. Example 9-1 saves and restores the WREG, Status and BSR registers during an Interrupt Service Routine.

LAMIFLE 5-1. SAVING STATUS, WILL AND DON REGISTERS IN RA	EXAMPLE 9-1:	SAVING STATUS, WREG AND BSR REGISTERS IN RAM
--	--------------	--

MOVWF MOVFF MOVFF	W_TEMP STATUS, STATUS_TEMP BSR, BSR_TEMP	; W_TEMP is in virtual bank ; STATUS_TEMP located anywhere ; BSR located anywhere
; ; USER ;	ISR CODE	
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	; Restore STATUS

			i
Name	Bit#	Buffer	Function
RB0/INT0	bit 0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input 0. Internal software programmable weak pull-up.
RB1/INT1	bit 1	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input 1. Internal software programmable weak pull-up.
RB2/INT2	bit 2	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input 2. Internal software programmable weak pull-up.
RB3/INT3/CCP2 ⁽³⁾	bit 3	TTL/ST ⁽⁴⁾	Input/output pin or external interrupt input 3. Capture2 input/Compare2 output/PWM output (when CCP2MX configuration bit is enabled, all PIC18F8X20 operating modes except Microcontroller mode). Internal software programmable weak pull-up.
RB4/KBI0	bit 4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5/KBI1/PGM	bit 5	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Low-voltage ICSP enable pin.
RB6/KBI2/PGC	bit 6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7/KBI3/PGD	bit 7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

TABLE 10-3 PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

- 2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
- 3: RC1 is the alternate assignment for CCP2 when CCP2MX is not set (all operating modes except Microcontroller mode).
- 4: This buffer is a Schmitt Trigger input when configured as the CCP2 input.

INT2IE

	04. 00									
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
LATB	LATB Data	a Output Reg		xxxx xxxx	uuuu uuuu					
TRISB	PORTB Da	ata Directior	n Register						1111 1111	1111 1111
INTCON	GIE/ GIEH	PEIE/ GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INTOIF	RBIF	0000 0000	0000 0000
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	1111 1111	1111 1111

INT1IE

INT3IF

INT2IF

INT1IF

TARI E 10-1. SUMMARY OF REGISTERS ASSOCIATED WITH PORTR

INT3IE x = unknown, u = unchanged. Shaded cells are not used by PORTB. Legend:

INTCON3

INT2IP

INT1IP

1100 0000

1100 0000

I/O pins have diode protection to VDD and VSS.

SS Input

Note:

17.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower 6 bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 17-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7							bit 0
bit 7	SMP: Sam	ple bit						
	SPI Master	mode:						
	1 = Input d	ata sampled	l at end of da	ata output tir	ne			
	0 = Input d	ata sampled	at middle of	r data outpu	ttime			
	SPI Slave r	<u>node:</u>						
	SMP must	be cleared \	when SPI is i	used in Slav	e mode.			
bit 6	CKE: SPI (Clock Select	bit					
	1 = Transm	nit occurs on	transition fr	om active to	Idle clock s	state		
	0 = Iransm	nit occurs on	transition fro	om Idle to a	ctive clock s	state		
	Note:	Polarity of	clock state is	set by the	CKP bit (SS	PCON1<4>)).	
bit 5	D/A: Data/	Address bit						
	Used in I ² C	mode only.						
bit 4	P: Stop bit							
	Used in I ² C	mode only.	This bit is c	leared wher	the MSSP	module is di	isabled,	
	SSPEN is a	cleared.					·	
bit 3	S: Start bit							
	Used in I ² C	mode only.						
bit 2	R/W: Read	/Write bit inf	ormation					
	Used in I ² C	mode only.						
bit 1	UA: Update	e Address b	it					
	Used in I ² C	c mode only.						
bit 0	BF: Buffer	Full Status k	nit (Receive i	mode only)				
bit 0		e complete	SSPRI IF is	full				
	0 = Receive	e not complete,	ete. SSPBUI	is empty				
			,					
	Legend:							
	R = Reada	ble bit	W = Writab	le bit	U = Unimp	lemented bi	t, read as '0'	
	- n = Value	at POR	'1' = Bit is s	set	'0' = Bit is	cleared	x = Bit is un	Iknown

FIGURE 17-6: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

REGISTER 17-4: SSPCON1: MSSP CONTROL REGISTER 1 (I²C MODE)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WCOL | SSPOV | SSPEN | CKP | SSPM3 | SSPM2 | SSPM1 | SSPM0 |
| bit 7 | | | | | | | bit 0 |

bit 7 WCOL: Write Collision Detect bit

In Master Transmit mode:

- 1 = A write to the SSPBUF register was attempted while the I²C conditions were not valid for a transmission to be started (must be cleared in software)
- 0 = No collision

In Slave Transmit mode:

- 1 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software)
- 0 = No collision
- In Receive mode (Master or Slave modes):

This is a "don't care" bit.

bit 6 **SSPOV:** Receive Overflow Indicator bit

- In Receive mode:
- 1 = A byte is received while the SSPBUF register is still holding the previous byte (must be cleared in software)
- 0 = No overflow

In Transmit mode:

This is a "don't care" bit in Transmit mode.

- bit 5 SSPEN: Synchronous Serial Port Enable bit
 - 1 = Enables the serial port and configures the SDA and SCL pins as the serial port pins
 - 0 = Disables serial port and configures these pins as I/O port pins

Note: When enabled, the SDA and SCL pins must be properly configured as input or output.

- bit 4 **CKP:** SCK Release Control bit
 - In Slave mode:
 - 1 = Release clock
 - 0 = Holds clock low (clock stretch), used to ensure data setup time
 - In Master mode:

Unused in this mode.

bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

- 1111 = I^2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled
- $1110 = I^2C$ Slave mode, 7-bit address with Start and Stop bit interrupts enabled
- $1011 = I^2C$ Firmware Controlled Master mode (Slave Idle)
- $1000 = I_{C}^{2}$ Master mode, clock = Fosc/(4 * (SSPADD + 1))
- 0111 = I^2C Slave mode, 10-bit address
- $0110 = I^2C$ Slave mode, 7-bit address
 - **Note:** Bit combinations not specifically listed here are either reserved or implemented in SPI mode only.

Legend:

U			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

17.4.3.2 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON1<6>) is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

If SEN is enabled (SSPCON1<0> = 1), RC3/SCK/SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting bit CKP (SSPCON<4>). See **Section 17.4.4** "**Clock Stretching**" for more detail.

17.4.3.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RC3/SCK/SCL is held low, regardless of SEN (see Section 17.4.4 "Clock Stretching", for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/ SCK/SCL should be enabled by setting bit CKP (SSPCON1<4>). The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 17-9).

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, pin RC3/SCK/SCL must be enabled by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

17.4.8 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Condition Enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low, while SCL is high, is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

Note: If at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

17.4.8.1 WCOL Status Flag

If the user writes the SSPBUF when a Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower 5 bits of SSPCON2 is disabled until the Start condition is complete.

FIGURE 17-19: FIRST START BIT TIMING

REGISTER 23-12: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)

U-0	R/P-1	U-0	U-0	U-0	U-0	U-0	U-0
—	EBTRB	—	—	—	—	—	—
bit 7							bit 0

- bit 7 Unimplemented: Read as '0'
- bit 6 **EBTRB:** Boot Block Table Read Protection bit

For PIC18FX520 devices:

- 1 = Boot Block (000000-0007FFh) not protected from table reads executed in other blocks
- 0 = Boot Block (000000-0007FFh) protected from table reads executed in other blocks
- For PIC18FX620 and PIC18FX720 devices:
- 1 = Boot Block (000000-0001FFh) not protected from table reads executed in other blocks
- 0 = Boot Block (000000-0001FFh) protected from table reads executed in other blocks
- bit 5-0 Unimplemented: Read as '0'

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device is unprogrammed		u = Unchanged from programmed state

REGISTER 23-13: DEVICE ID REGISTER 1 FOR PIC18FXX20 DEVICES (ADDRESS 3FFFFEh)

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

bit 7-5 **DEV2:DEV0:** Device ID bits

000	=	PIC18F8720
001	=	PIC18F6720
010	=	PIC18F8620
011	=	PIC18F6620

bit 4-0 REV4:REV0: Revision ID bits

These bits are used to indicate the device revision.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when devic	e is unprogrammed	u = Unchanged from programmed state

REGISTER 23-14: DEVICE ID REGISTER 2 FOR PIC18FXX20 DEVICES (ADDRESS 3FFFFFh)

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

bit 7-0 DEV10:DEV3: Device ID bits

These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the part number.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state

NOTES:

DAV	v	Decimal A	Adjust W Re	gister	DEC	CF	Decremer	nt f		
Synt	ax:	[label]	DAW		Syn	tax:	[label] [DECF f[,d	[,a]	
Ope	rands:	None			Ope	erands:	$0 \le f \le 255$	5		
Ope	Operation: If $[W<3:0>>9]$ or $[DC = 1]$ then $(W<3:0>) + 6 \rightarrow W<3:0>;$									
else $(W<3:0>) \rightarrow W<3:0>;$,	Ope	eration:	$(f) - 1 \rightarrow c$	lest				
		(W<3:0>)	\rightarrow W<3:0>;		Stat	us Affected:	C, DC, N,	OV, Z		
		lf [W<7:4>	>9] or [C =	1] then	Enc	oding:	0000	01da ff	ff ffff	
$(W<7:4>) + 6 \rightarrow W<7:4>;$ else $(W<7:4>) \rightarrow W<7:4>;$		Des	cription:	Decremen the result i the result i	it register 'f'. is stored in \ is stored bac	If 'd' is '0', N. If 'd' is '1', ck in register				
Stati	us Affected:	C ,	,				'f' (default)). If 'a' is '0',	the Access	
Enco	oding:	0000	0000 000	00 0111			Bank will b	be selected,	overriding	
Des	cription:	DAW adjus W, resultir	sts the eight-	bit value in arlier			bank will b BSR value	the BSR value. If 'a' = 1, then the bank will be selected as per the BSR value (default).		
		addition of	f two variable	es (each in	Wo	ds:	1			
		a correct p	backed BCD	na produces result.	Сус	les:	1			
Wor	ds:	1			Q	Cycle Activity	:			
Cvcl	es:	1				Q1	Q2	Q3	Q4	
QC	cycle Activity	:				Decode	Read register 'f'	Process Data	Write to destination	
	Q1	Q2	Q3	Q4			regiotor r	Dulu	dootination	
	Decode	Read	Process	Write	Exa	<u>mple</u> :	DECF (CNT, 1, 0)	
		register w	Dala	VV		Before Instru	uction			
Exa	mple1:	DAW				CNT Z	= 0x01 = 0			
	Before Instru	uction				After Instruc	tion			
	W C	= 0xA5 = 0				CNT Z	= 0x00 = 1			
	DC A ft and a stress	= 0								
	After Instruc	= 0x05								
	C DC	= 1 = 0								
Exai	<u>mple 2</u> :	- 0								
	Before Instru	uction								
	W	= 0xCE								
	ĎC	= 0								
	After Instruc	tion								
	Č	= 0x34 = 1								
	DC	= 0								

IOR	LW	Inclusive	Inclusive OR literal with W					
Synt	tax:	[label]	IORLW	k				
Ope	rands:	$0 \le k \le 2\xi$	55					
Ope	ration:	(W) .OR.	(W) .OR. $k \rightarrow W$					
State	us Affected:	N, Z						
Enco	oding:	0000	1001	kkkk	kkkk			
Des	cription:	The content the eight- placed in	ents of W bit literal W.	/ are OR 'k'. The	ed with result is			
Wor	ds:	1						
Cycl	es:	1						
QC	Cycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'k'	Proce Data	Process Write Data				
Example:		IORLW	0x35					
Before Instruc		iction						
	W	= 0x9A						
	After Instruct	ion						
	W	= 0xBF						

IORWF	Inclusive	OR W v	vith f	
Syntax:	[label]	IORWF	f [,d [,a	a]
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:	(W) .OR. ((f) \rightarrow de	st	
Status Affected:	N, Z			
Encoding:	0001	00da	ffff	ffff
	'd' is '0', th 'd' is '1', th register 'f' Access Ba riding the I the bank v BSR value	ne result (default ank will I BSR val vill be se e (defau	is placed is placed c). If 'a' is pe select ue. If 'a' : elected as	d in W. If d back in '0', the ed, over- = 1, then s per the
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	;	Q4
Decode	Read register 'f'	Proce Data	ss V a des	Vrite to stination
<u>Example</u> : Before Instru	IORWF RI	ESULT,	0, 1	

efore Instruction					
RESULT	=	0x13			
W	=	0x91			

After Instruction

RESULT	=	0x13
W	=	0x93

RET	FIE	Return from Interrupt						RETLW	
Synt	tax:	[label] RETFIE [s]						Syntax:	
Ope	rands:	s ∈ [0,1]						Operan	
Ope	ration:	$(TOS) \rightarrow PC,$ $1 \rightarrow GIE/GIEH \text{ or PEIE/GIEL,}$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$					Operati Status A Encodir		
01-1		PCLATU,		are	unc	nanged		Descrip	
Stati	us Affected:	GIE/GIEH	, PEIE/G	ilEL.		[1		
Enco	oding:	0000	0000	000	01	000s			
Des	cription:	Return from Interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If 's' = 0, no update of these registers occurs (default).						Words: Cycles: Q Cycl	
Wor	ds:	1						<u>Exampl</u>	
Cyc	les:	2						CAI	
QC	Cycle Activity:								
	Q1	Q2	Q3		_	Q4	1		
	Decode	No operation	No operati	ion	F fro Set	Pop PC om stack GIEH or GIEL		: TABLE ADI REJ REJ	
	No	No	No		_	No		:	
	operation	operation	operat	Ion	op	peration		:	
Exa	mple:	RETFIE 1	L					Re	
	After Interrup	ot						20	
	PC W BSR STATUS GIE/GIEH	I, PEIE/GIEL	= T(= W = B = S = 1	OS /S SRS TATU	ISS			Aft	

RETLW	Return Lit	Return Literal to W					
Syntax:	[label]	[<i>label</i>] RETLW k					
Operands:	$0 \le k \le 25$	$0 \le k \le 255$					
Operation:	$k \rightarrow W$, (TOS) $\rightarrow F$ PCLATU,	$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged					
Status Affected:	None						
Encoding:	0000	1100 kkł	k kkkk				
Description:	W is loade 'k'. The pro from the to address). (PCLATH)	W is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.					
Vords:	1						
Cycles:	2						
Q Cycle Activity	:						
Q1	Q2	Q3	Q4				
Decode	Read literal 'k'	Process Data	Pop PC from stack, Write to W				
No	No	No	No				
operation	operation	operation	operation				
Example:	• W contai	ing table					
	; offset v	value					
	; W now ha	as					
:	; table va	alue					
ABLE							
ADDWF PCL	; W = offs ; Begin ts	; W = offset					
RETLW k1	; beyin to	; Begin table					
:							
: RETLW kn	; End of t	able					
Before Instruction							
W	= 0x07						
	···-						

W =

er Instruction

W value of kn

26.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 26-5 apply to all timing specifications unless otherwise noted. Figure 26-6 specifies the load conditions for the timing specifications.

TABLE 26-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions (unless otherwise stated)				
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
	$-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
	Operating voltage VDD range as described in DC spec Section 26.1 and				
	Section 26.3.				
	LC parts operate for industrial temperatures only.				

FIGURE 26-6: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-25: A/D CONVERTER CHARACTERISTICS: PIC18FXX20 (INDUSTRIAL, EXTENDED) PIC18LFXX20 (INDUSTRIAL) PIC18LFXX20 (INDUSTRIAL)

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
A01	NR	Resolution	—		10	bit	
A03	EIL	Integral Linearity Error	_		<±1	LSb	Vref = Vdd = 5.0V
A04	Edl	Differential Linearity Error	—	_	<±1	LSb	VREF = VDD = 5.0V
A05	EG	Gain Error	—	_	<±1	LSb	VREF = VDD = 5.0V
A06	EOFF	Offset Error	—	_	<±1.5	LSb	VREF = VDD = 5.0V
A10	—	Monotonicity	guaranteed ⁽²⁾			_	$VSS \leq VAIN \leq VREF$
A20 A20A	Vref	Reference Voltage (VREFH – VREFL)	1.8V 3V	_		V V	Vdd < 3.0V Vdd ≥ 3.0V
A21	Vrefh	Reference Voltage High	AVss		AVDD + 0.3V	V	
A22	Vrefl	Reference Voltage Low	AVss - 0.3V ⁽⁵⁾	_	Vrefh	V	
A25	VAIN	Analog Input Voltage	AVss-0.3V ⁽⁵⁾		AVDD + 0.3V ⁽⁵⁾	V	VDD ≥ 2.5V (Note 3)
A30	ZAIN	Recommended Impedance of Analog Voltage Source	—	_	2.5	kΩ	(Note 4)
A50	IREF	VREF Input Current (Note 1)	—		5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

Note 1: Vss \leq Vain \leq Vref

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: For VDD < 2.5V, VAIN should be limited to <.5 VDD.

4: Maximum allowed impedance for analog voltage source is 10 kΩ. This requires higher acquisition times.

5: IVDD – AVDDI must be <3.0V and IAVSS – VSSI must be <0.3V.

FIGURE 26-26: A/D CONVERSION TIMING

Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.

FIGURE 27-19: TYPICAL IDD vs. Fosc OVER VDD (EC MODE) (PIC18F8520 DEVICES ONLY)

FIGURE 27-20: MAXIMUM IDD vs. Fosc OVER VDD (EC MODE) INDUSTRIAL (PIC18F8520 DEVICES ONLY)

FIGURE 27-21: MAXIMUM IDD vs. Fosc OVER VDD (EC MODE) EXTENDED (PIC18F8520 DEVICES ONLY)

FIGURE 27-22: TYPICAL IDD vs. Fosc OVER VDD (HS/PLL MODE) (PIC18F8520 DEVICES ONLY)

© 2003-2013 Microchip Technology Inc.