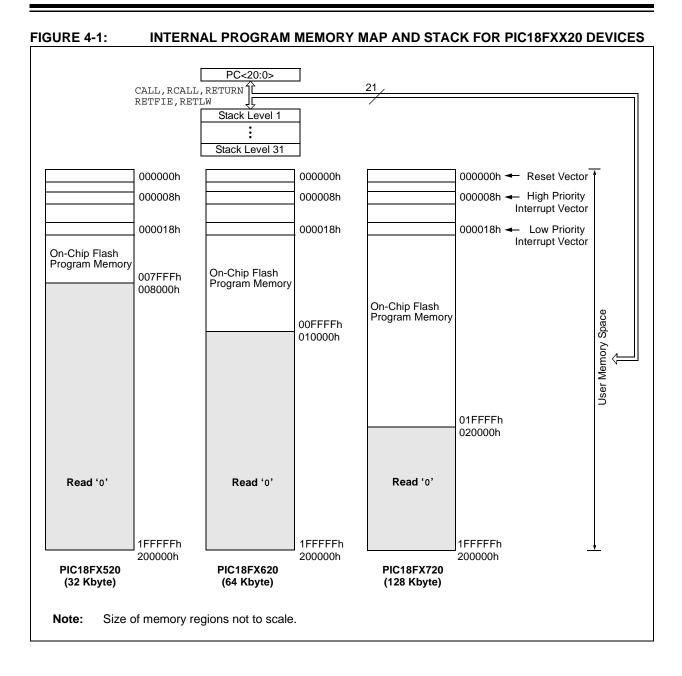


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

2000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.75K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP
Supplier Device Package	80-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf8620t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Inte	rnal Program Men	nory	External Program Memory				
Operating Mode	Execution From	Table Read From	Table Write To	Execution From	Table Read From	Table Write To		
Microprocessor	No Access	No Access	No Access	Yes	Yes	Yes		
Microprocessor with Boot Block	Yes	Yes	Yes	Yes	Yes	Yes		
Microcontroller	Yes	Yes	Yes	No Access	No Access	No Access		
Extended Microcontroller	Yes	Yes	Yes	Yes	Yes	Yes		

REGISTER 4-1: CONFIG3L CONFIGURATION BYTE R/P-1 U-0 U-0 U-0 U-0 U-0 R/P-1 R/P-1 WAIT PM1 PM0 bit 7 bit 0 bit 7 WAIT: External Bus Data Wait Enable bit 1 = Wait selections unavailable, device will not wait 0 = Wait programmed by WAIT1 and WAIT0 bits of MEMCOM register (MEMCOM<5:4>) Unimplemented: Read as '0' bit 6-2 bit 1-0 PM1:PM0: Processor Data Memory Mode Select bits 11 = Microcontroller mode 10 = Microprocessor mode 01 = Microcontroller with Boot Block mode 00 = Extended Microcontroller mode Legend: P = Programmable bit U = Unimplemented bit, read as '0' R = Readable bit - n = Value after erase '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

	Microprocessor Mode (MP)				Microproces with Boot Bl Mode (MPB	ock	Microco Mode	Extended Microcontroller Mode (EMC)			
Program Space Execution	000000h	External Program Memory	1	000000 Boot Boot+1	External Program Memory	On-Chip Program Memory	000000h Boundary Boundary+1	On-Chip Program Memory Reads '0's	000000h Boundary Boundary	+1 External Program Memory	On-Chip Program Memory
		External Memory	J On-Chip Flash	1FFFF	-n External Memory	On-Chip Flash	1FFFFFh	On-Chip Flash	1FFFFh	External Memory	On-Chip Flash
Bour	ndary Valu	es for Mi	croprocessor	with Bo	ot Block, Mic	rocontrolle	r and Extended M	licrocontroller ı	nodes ⁽¹⁾		
	Device		Boot		Boot+	·1	Boundary	Bound	lary+1	Avail Memory	
	PIC18F65	20	0007FF	h	000800	Dh	007FFFh	0080	000h	M	С
	PIC18F66	20	0001FF	h	00020	Dh	00FFFFh	0100	000h	M	С
	PIC18F67	20	0001FF	h	00020	0h	01FFFFh	0200	000h	Μ	С

 PIC18F8720
 0001FFh
 000200h
 01FFFFh
 020000h
 MP, MPBB, MC, EMC

 Note 1:
 PIC18F6X20 devices are included here for completeness, to show the boundaries of their Boot Blocks and program memory spaces.

007FFFh

00FFFFh

008000h

010000h

000800h

000200h

0007FFh

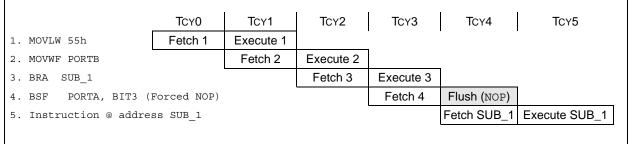
0001FFh

PIC18F8520

PIC18F8620

MP, MPBB, MC, EMC

MP, MPBB, MC, EMC


4.6 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined, such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 4-2).

A fetch cycle begins with the program counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register" (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

EXAMPLE 4-2: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline, while the new instruction is being fetched and then executed.

4.7 Instructions in Program Memory

The program memory is addressed in bytes. Instructions are stored as two bytes or four bytes in program memory. The Least Significant Byte of an instruction word is always stored in a program memory location with an even address (LSB = 0). Figure 4-5 shows an example of how instruction words are stored in the program memory. To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 4.4 "PCL, PCLATH and PCLATU").

The CALL and GOTO instructions have an absolute program memory address embedded into the instruction. Since instructions are always stored on

word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 4-5 shows how the instruction "GOTO 00006h" is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. **Section 24.0 "Instruction Set Summary"** provides further details of the instruction set.

FIGURE 4-5: INSTRUCTIONS IN PROGRAM MEMORY

			LSB = 1	LSB = 0	Word Address \downarrow
	Program I				000000h
	Byte Loca	tions \rightarrow			000002h
					000004h
					000006h
Instruction 1:		055h	0Fh	55h	000008h
Instruction 2:	GOTO	000006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456h	Clh	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page:
TOSU	_	_	_	Top-of-Stack	Upper Byte (T	OS<20:16>)		•	0 0000	32, 42
TOSH	Top-of-Stack	High Byte (TO	DS<15:8>)						0000 0000	32, 42
TOSL	Top-of-Stack	Top-of-Stack Low Byte (TOS<7:0>)								
STKPTR	STKFUL	STKUNF	—	Return Stack	Pointer				00-0 0000	32, 43
PCLATU	—		bit 21	Holding Regi	ster for PC<20):16>			10 0000	32, 44
PCLATH	Holding Reg	Holding Register for PC<15:8>								
PCL	PC Low Byte (PC<7:0>)									32, 44
TBLPTRU	—	_	bit 21 ⁽²⁾	Program Mer	nory Table Poi	nter Upper By	te (TBLPTR<2	0:16>)	00 0000	32, 64
TBLPTRH	Program Me	mory Table Po	ointer High By	te (TBLPTR<	15:8>)				0000 0000	32, 64
TBLPTRL	Program Me	mory Table Po	ointer Low Byt	e (TBLPTR<7	':0>)				0000 0000	32, 64
TABLAT	Program Me	mory Table La	itch						0000 0000	32, 64
PRODH	Product Reg	ister High Byte	Э						xxxx xxxx	32, 85
PRODL	Product Reg	ister Low Byte)						xxxx xxxx	32, 85
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 0000	32, 89
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP	1111 1111	32, 90
INTCON3	INT2IP	INT1IP	INT3IE	INT2IE	INT1IE	INT3IF	INT2IF	INT1IF	1100 0000	32, 91
INDF0	Uses conten	ts of FSR0 to a	iddress data n	nemory – value	e of FSR0 not o	changed (not a	physical regis	ter)	n/a	57
POSTINC0		Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)								57
POSTDEC0									n/a	57
PREINC0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)								n/a	57
PLUSW0	Uses conten		address data	memory – val	ue of FSR0 pr			<u> </u>	n/a	57
FSR0H	—	_	_	_		Memory Addr	ess Pointer 0	High Byte	0000	32, 57
FSR0L	Indirect Data	Memory Add	ress Pointer (Low Byte		,		<u> </u>	xxxx xxxx	32, 57
WREG	Working Reg	gister							xxxx xxxx	32
INDF1		-	address data	memory – val	ue of FSR1 no	t changed (no	t a physical re	gister)	n/a	57
POSTINC1		ts of FSR1 to		-	ue of FSR1 po			<u> </u>	n/a	57
POSTDEC1		ts of FSR1 to	address data	memory – val	ue of FSR1 po	st-decrement	ed		n/a	57
PREINC1	Uses conten (not a physic		address data	memory – val	ue of FSR1 pr	e-incremented	1		n/a	57
PLUSW1		ts of FSR1 to al register) – v			ue of FSR1 pr ie in WREG	e-incremented	1		n/a	57
FSR1H	—	—	—	—		Memory Addr	ess Pointer 1	High Byte	0000	33, 57
FSR1L	Indirect Data	Memory Add	ress Pointer 1	Low Byte					xxxx xxxx	33, 57
BSR		—	—	—	Bank Select I	Register			0000	33, 56
INDF2	Uses conten	ts of FSR2 to	address data	memory – val	ue of FSR2 no	t changed (no	ot a physical re	egister)	n/a	57
POSTINC2	Uses conten (not a physic		address data	memory – val	ue of FSR2 po	st-incremente	ed		n/a	57
POSTDEC2		ts of FSR2 to	address data	memory – val	ue of FSR2 po	st-decrement	ed		n/a	57

TABLE 4-3: REGISTER FILE SUMMARY

Note 1: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator modes only and read '0' in all other oscillator modes.

2: Bit 21 of the TBLPTRU allows access to the device configuration bits.

3: These registers are unused on PIC18F6X20 devices; always maintain these clear.

4.13 Status Register

bit 7-5 bit 4

bit 3

bit 2

The Status register, shown in Register 4-3, contains the arithmetic status of the ALU. The Status register can be the destination for any instruction, as with any other register. If the Status register is the destination for an instruction that affects the Z, DC, C, OV or N bits, then the write to these five bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the Status register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the Status register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF, MOVFF and MOVWF instructions are used to alter the Status register, because these instructions do not affect the Z, C, DC, OV or N bits from the Status register. For other instructions not affecting any status bits, see Table 24-1.

Note:	The C and DC bits operate as a borrow	2							
	and digit borrow bit respectively, in								
	subtraction.								

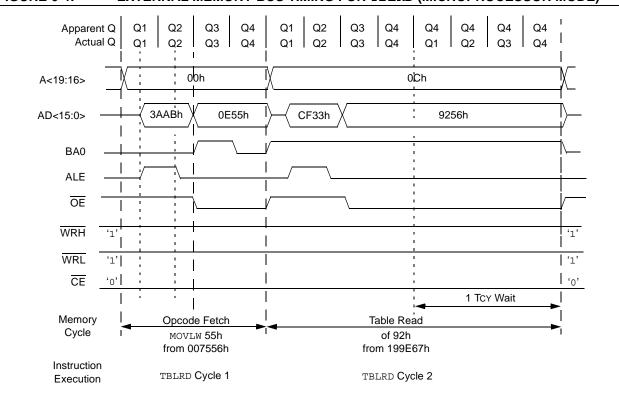
REGISTER 4-3: STATUS REGISTER

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	Ν	OV	Z	DC	С
bit 7							bit C
Unimplem	ented: Read	as '0'					
N: Negativ							
0		ed arithmeti	c (2's comp	ement). It ir	dicates whe	ther the resi	ult was
	LU MSB = 1		- (= - o omp				
•	was negative	,					
	was positive						
OV: Overflo	•						
		ed arithmeti	c (2's comp	ement). It ir	ndicates an o	overflow of th	ne
	itude, which		· ·	,			
1 = Overfloor	w occurred	for signed a	rithmetic (in	this arithme	tic operation	l)	
	rflow occurre	0	(7	
Z: Zero bit							
1 = The rest	sult of an arit	hmetic or lo	aic operatio	n is zero			
	sult of an arit		• .		0		
	arrv/borrow						

bit 1 **DC:** Digit carry/borrow bit

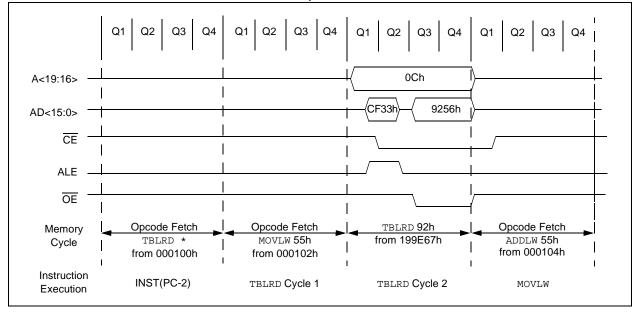
- For ADDWF, ADDLW, SUBLW and SUBWF instructions:
- 1 = A carry-out from the 4th low-order bit of the result occurred
- 0 = No carry-out from the 4th low-order bit of the result
 - **Note:** For borrow, the polarity is reversed. A subtraction is executed by adding the 2's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either bit 4 or bit 3 of the source register.

bit 0 C: Carry/borrow bit


For ADDWF, ADDLW, SUBLW and SUBWF instructions:

- 1 = A carry-out from the Most Significant bit of the result occurred
- 0 = No carry-out from the Most Significant bit of the result occurred
 - **Note:** For borrow, the polarity is reversed. A subtraction is executed by adding the 2's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the source register.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


6.2.4 16-BIT MODE TIMING

The presentation of control signals on the external memory bus is different for the various operating modes. Typical signal timing diagrams are shown in Figure 6-4 through Figure 6-6.

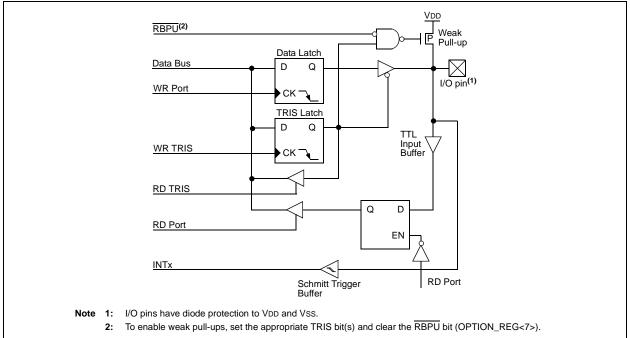


FIGURE 6-4: EXTERNAL MEMORY BUS TIMING FOR TBLRD (MICROPROCESSOR MODE)

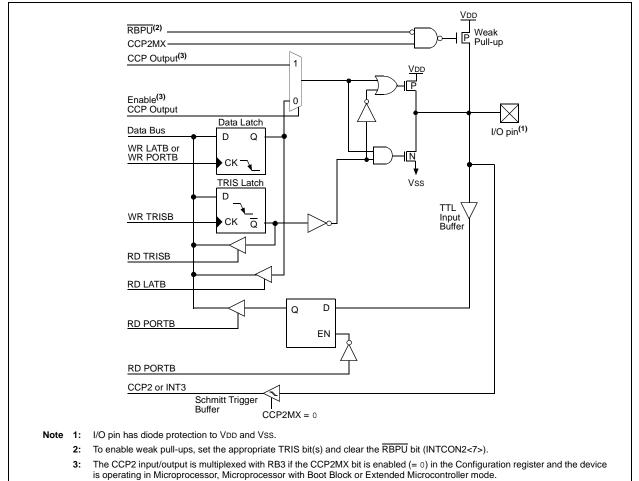

FIGURE 6-5: EXTERNAL MEMORY BUS TIMING FOR TBLRD (EXTENDED MICROCONTROLLER MODE)

FIGURE 10-6: BLOCK DIAGRAM OF RB2:RB0 PINS

FIGURE 10-7: BLOCK DIAGRAM OF RB3 PIN

EXAMPLE	12-1:	IMPLEMENTIN	IG A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE
RTCinit			
	MOVLW	0x80	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T10SC	; Asynchronous operation, external oscillator
	CLRF	secs	; Initialize timekeeping registers
	CLRF	mins	;
	MOVLW	.12	
	MOVWF	hours	
	BSF	PIE1, TMR1IE	; Enable Timer1 interrupt
	RETURN		
RTCisr			
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	
	INCF	secs, F	; Increment seconds
	MOVLW	.59	; 60 seconds elapsed?
	CPFSGT		
	RETURN		; No, done
	CLRF	secs	; Clear seconds
	INCF	mins, F	; Increment minutes
	MOVLW	.59	; 60 minutes elapsed?
	CPFSGT		
	RETURN		; No, done
	CLRF	mins	; clear minutes
	INCF	hours, F	; Increment hours
	MOVLW	.23	; 24 hours elapsed?
	CPFSGT		
	RETURN		; No, done
	MOVLW	.01	; Reset hours to 1
	MOVWF	hours	
	RETURN		; Done
J			

EXAMPLE 12-1: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR		Value on all other Resets	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000	0000	0000	0000
PIR1	PSPIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
PIE1	PSPIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
IPR1	PSPIP	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	0111	1111	0111	1111
TMR1L	Holding Reg	gister for the	Least Signi	ficant Byte o	of the 16-bit	TMR1 Regi	ster		xxxx	xxxx	uuuu	uuuu
TMR1H	Holding Reg	gister for the	Most Signif	icant Byte o	f the 16-bit T	MR1 Regis	ster		xxxx	xxxx	uuuu	uuuu
T1CON	RD16	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0-00	0000	u-uu	uuuu

 $\label{eq:logend: Legend: Legend: u = unchanged, -= unimplemented, read as `0`. Shaded cells are not used by the Timer1 module.$

17.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

17.1 Master SSP (MSSP) Module Overview

The Master Synchronous Serial Port (MSSP) module is a serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)
 - Full Master mode
 - Slave mode (with general address call)

The I²C interface supports the following modes in hardware:

- Master mode
- Multi-Master mode
- Slave mode

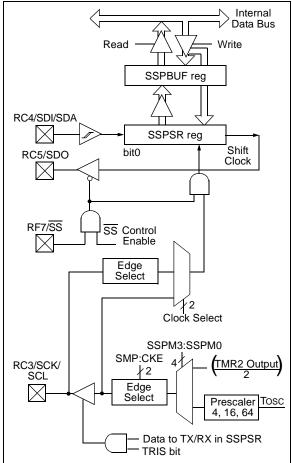
17.2 Control Registers

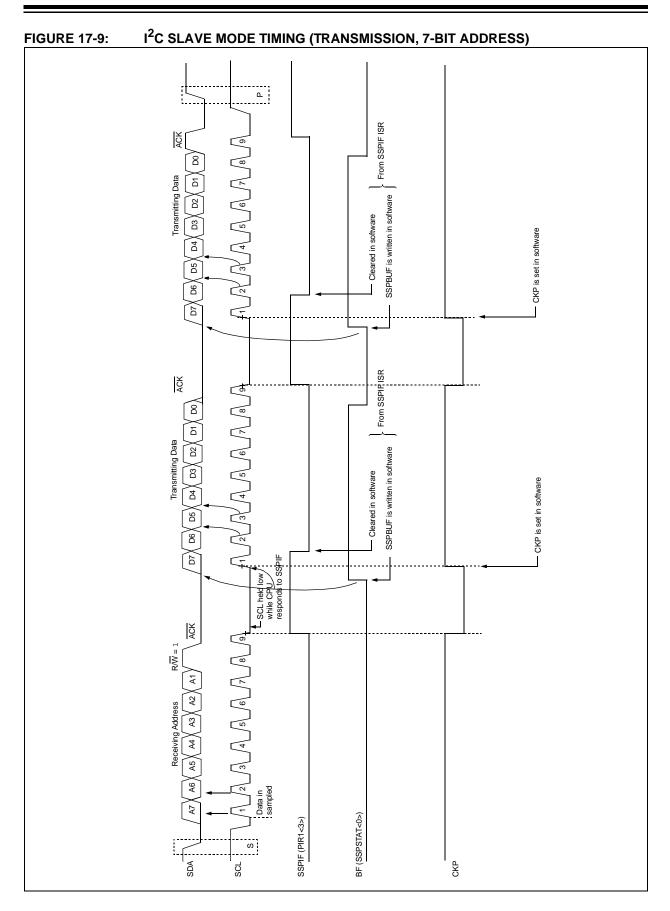
The MSSP module has three associated registers. These include a status register (SSPSTAT) and two control registers (SSPCON1 and SSPCON2). The use of these registers and their individual configuration bits differ significantly, depending on whether the MSSP module is operated in SPI or I^2C mode.

Additional details are provided under the individual sections.

17.3 SPI Mode

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:


- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL


Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS) – RF7/SS

Figure 17-1 shows the block diagram of the MSSP module when operating in SPI mode.

18.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USARTs. It is a dedicated 8-bit Baud Rate Generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTAx<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 18-1 shows the formula for computation of the baud rate for different USART modes, which only apply in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRGx register can be calculated using the formula in Table 18-1. From this, the error in baud rate can be determined. Example 18-1 shows the calculation of the baud rate error for the following conditions:

- Fosc = 16 MHz
- Desired Baud Rate = 9600
- BRGH = 0
- SYNC = 0

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the equation in Example 18-1 can reduce the baud rate error in some cases.

Writing a new value to the SPBRGx register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

18.1.1 SAMPLING

The data on the RXx pin (either RC7/RX1/DT1 or RG2/ RX2/DT2) is sampled three times by a majority detect circuit to determine if a high or a low level is present at the pin.

Desired Baud Rate	= Fosc/(64 (X + 1))
Solving for X:	
Х	= $((FOSC/Desired Baud Rate)/64) - 1$
Х	= ((16000000/9600)/64) - 1
Х	= [25.042] $=$ 25
Calculated Baud Rate	= 1600000/(64 (25 + 1)) = 9615
Error	= (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate
	= (9615 - 9600)/9600
	= 0.16%

TABLE 18-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X + 1))	Baud Rate = Fosc/(16(X + 1))
1	(Synchronous) Baud Rate = Fosc/(4(X + 1))	N/A

Legend: X = value in SPBRGx (0 to 255)

TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
TXSTAx	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
SPBRGx	Baud Rate Generator Register							0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

Note 1: Register names generically refer to both of the identically named registers for the two USART modules, where 'x' indicates the particular module. Bit names and Reset values are identical between modules.

NOTES:

23-10:	CONFIG6	H: CONFIG	URATION	REGISTE	R 6 HIGH (E	STIEADD	RE223000	JUBN)
	R/P-1	R/P-1	R-1	U-0	U-0	U-0	U-0	U-0
	WRTD	WRTB	WRTC ⁽¹⁾	—				—
	bit 7							bit 0
bit 7	WRTD: Da	ta EEPRON	Write Prote	ection bit				
	1 = Data E	EPROM not	write-protect	cted				
	0 = Data E	EPROM writ	e-protected					
bit 6	WRTB: Bo	ot Block Wri	te Protection	n bit				
		X520 devic						
		`	,	not write-pro				
		•		write-protec	ted			
		FX620 and F			te ete el			
		•	,	not write-pro write-protec				
bit 5			-	te Protection				
C IIC		0	0					
	•	•	•	0-3000FFh) 0-3000FFh)				
	•	•	,		•			
	Note 1:	i his dit is r	ead-only and	d cannot be	changed in	user mode.		
bit 4-0	Unimplem	ented: Read	as '0'					

REGISTER 23-10: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device	e is unprogrammed	u = Unchanged from programmed state

23.3 Power-down Mode (Sleep)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared, but keeps running, the $\overline{\text{PD}}$ bit (RCON<3>) is cleared, the $\overline{\text{TO}}$ (RCON<4>) bit is set and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low or high-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are high-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

23.3.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or a peripheral interrupt.

The following peripheral interrupts can wake the device from Sleep:

- 1. PSP read or write.
- 2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. TMR3 interrupt. Timer3 must be operating as an asynchronous counter.
- 4. CCP Capture mode interrupt.
- 5. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 6. MSSP (Start/Stop) bit detect interrupt.
- MSSP transmit or receive in Slave mode (SPI/l²C).
- 8. USART RX or TX (Synchronous Slave mode).
- 9. A/D conversion (when A/D clock source is RC).
- 10. EEPROM write operation complete.
- 11. LVD interrupt.

Other peripherals cannot generate interrupts, since during Sleep, no on-chip clocks are present.

External MCLR Reset will cause a device Reset. All other events are considered a continuation of program execution and will cause a "wake-up". The TO and PD bits in the RCON register can be used to determine the cause of the device Reset. The PD bit, which is set on power-up, is cleared when Sleep is invoked. The TO bit is cleared if a WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 2) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

23.3.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If an interrupt condition (interrupt flag bit and interrupt enable bits are set) occurs before the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt condition occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

RET	URN	Return from Subroutine						
Synt	ax:	[label]	RETURN	[s]				
Ope	rands:	$s \in [0,1]$	s ∈ [0,1]					
Ope	ration:	$(TOS) \rightarrow PC,$ if s = 1 $(WS) \rightarrow W,$ $(STATUSS) \rightarrow STATUS,$ $(BSRS) \rightarrow BSR,$ PCLATU, PCLATH are unchanged						
Statu	us Affected:	None						
Enco	oding:	0000	0000	0001	001s			
Desc	cription:	is popped (TOS) is le counter. If the shado STATUSS into their o W, Status	and subrout and the to baded into a 's' = 1, th w registers and BSR correspond and BSR. these regi	op of th the pro- e conte s, WS, S, are l ding req If 's' =	e stack ogram ents of loaded gisters, 0, no			
Wor	ds:	1						
Cycl	es:	2						
QC	cycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	No	Process		op PC			
		operation	Data	fro	m stack			
	No	No	No		No			
	operation	operation	operation	n op	peration			

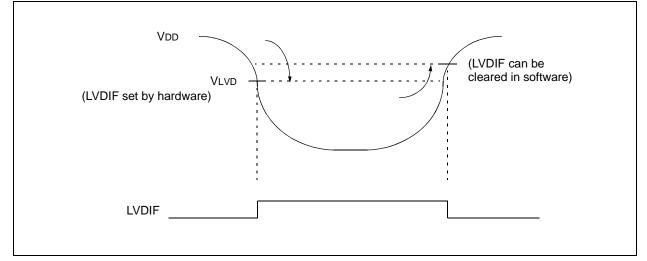
Example:	RETURN

After Interrupt PC = TOS

Syntax:	[label]	RLCF f	[,d [,a]	
Operands:	$0 \le f \le 25$ $d \in [0,1]$ $a \in [0,1]$	5		
Operation:	$(f < n >) \rightarrow$ $(f < 7 >) \rightarrow$ $(C) \rightarrow de$		',	
Status Affected:	C, N, Z			
Encoding:	0011	01da :	Efff	ffff
	the Carry is placed is stored (default).	he bit to the flag. If 'd' i in W. If 'd' i back in reg If 'a' is '0',	s '0', t s '1', t ister 'f the Ac	he resu he resu
	the BSR bank will	be selecte value. If 'a' be selected e (default). registe	= 1, tł d as pe	nen the
Words:	the BSR bank will BSR valu	value. If 'a' be selected e (default).	= 1, tł d as pe	nen the
Words: Cycles:	the BSR bank will BSR valu	value. If 'a' be selected e (default).	= 1, tł d as pe	nen the
	the BSR bank will BSR valu	value. If 'a' be selected e (default).	= 1, tł d as pe	nen the
Cycles:	the BSR bank will BSR valu	value. If 'a' be selected e (default).	= 1, tł d as pe	nen the
Cycles: Q Cycle Activity:	the BSR bank will BSR valu C 1 1	value. If 'a' be selected e (default). registe	= 1, th d as pe er f	hen the er the
Cycles: Q Cycle Activity: Q1	the BSR bank will BSR valu C 1 1 1 2 2 Read	value. If 'a' be selected e (default). registe Q3 Process	= 1, th d as per er f W des	Q4 Vrite to

A

After Instru			
REG	=	1110	0110
W	=	1100	1100
С	=	1	


26.1 DC Characteristics: Supply Voltage PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended) PIC18LF6520/8520/6620/8620/6720/8720 (Industrial)

PIC18LF6520/8520/6620/8620/6720/8720 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for industrial						
	PIC18F6520/8520/6620/8620/6720/8720 (Industrial, Extended)			tandard Operating Conditions (unless otherwise stated)perating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param No.	Symbol	Characteristic	Min	Nin Typ Max Units Conditions				
D001	Vdd	Supply Voltage						
		PIC18LFXX20	2.0	_	5.5	V	HS, XT, RC and LP Oscillator mode	
		PIC18FXX20	4.2	_	5.5	V		
D001A	AVdd	Analog Supply Voltage	Vdd - 0.3	_	VDD + 0.3	V		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	-	V		
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	—	0.7	V	See section on Power-on Reset for details	
D004	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	_	V/ms	See section on Power-on Reset for details	
D005	VBOR	Brown-out Reset Voltage	_					
		BORV1:BORV0 = 11	N/A		N/A	V	Reserved	
		BORV1:BORV0 = 10	2.64	_	2.92	V		
		BORV1:BORV0 = 01	4.11	_	4.55	V		
		BORV1:BORV0 = 00	4.41		4.87	V		

Legend: Shading of rows is to assist in readability of the table.

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

FIGURE 26-5: LOW-VOLTAGE DETECT CHARACTERISTICS

TABLE 26-3: LOW-VOLTAGE DETECT CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)

Operating temperature $~-40^\circ C \le TA \le +85^\circ C$ for industrial $-40^\circ C ~\le TA \le +125^\circ C$ for extended

Param No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
D420		LVD Voltage on VDD	LVV = 0001	1.96	2.06	2.16	V	
		Transition high-to-low	LVV = 0010	2.16	2.27	2.38	V	
			LVV = 0011	2.35	2.47	2.59	V	
			LVV = 0100	2.45	2.58	2.71	V	
			LVV = 0101	2.64	2.78	2.92	V	
			LVV = 0110	2.75	2.89	3.03	V	
			LVV = 0111	2.95	3.1	3.26	V	
			LVV = 1000	3.24	3.41	3.58	V	
			LVV = 1001	3.43	3.61	3.79	V	
			LVV = 1010	3.53	3.72	3.91	V	
			LVV = 1011	3.72	3.92	4.12	V	
			LVV = 1100	3.92	4.13	4.34	V	
			LVV = 1101	4.11	4.33	4.55	V	
			LVV = 1110	4.41	4.64	4.87	V	
D423	Vbg	Band Gap Reference V	oltage Value		1.22	—	V	

† Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.

APPENDIX E: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway and differences between the high-end MCU devices (i.e., PIC17CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration*". This Application Note is available as Literature Number DS00726.

Q

u
Q Clock
R
RAM. See Data Memory
RC Oscillator
RCALL
RCON Registers 101
RCSTA Register
SPEN Bit 197
Reader Response
Register File
Registers
ADCON0 (A/D Control 0)
ADCON1 (A/D Control 1)
ADCON2 (A/D Control 2)
CCPxCON (Capture/Compare/PWM Control)
CMCON (Comparator Control)
CONFIG1H (Configuration 1 High)240
CONFIG2H (Configuration 2 High)241
CONFIG2L (Configuration 2 Low) 241
CONFIG3H (Configuration 3 High)242
CONFIG3L (Configuration 3 Low)
CONFIG3L (Configuration Byte)
CONFIG4L (Configuration 4 Low)
CONFIG5H (Configuration 5 High)
CONFIG5L (Configuration 5 Low)
CONFIG6H (Configuration 6 High)247
CONFIG6L (Configuration 6 Low) 246
CONFIG7H (Configuration 7 High)249
CONFIG7L (Configuration 7 Low)248
CVRCON (Comparator Voltage Reference Control) 229
Device ID 1
Device ID 2
EECON1 (Data EEPROM Control 1)
INTCON (Interrupt Control)
INTCON2 (Interrupt Control 2)
INTCON3 (Interrupt Control 3)
IPR1 (Peripheral Interrupt Priority 1)
IPR2 (Peripheral Interrupt Priority 2)
IPR3 (Peripheral Interrupt Priority 3)100
LVDCON (Low-Voltage Detect Control)
MEMCON (Memory Control)71
OSCCON
PIE1 (Peripheral Interrupt Enable 1)
PIE2 (Peripheral Interrupt Enable 2)
PIE2 (Peripheral Interrupt Enable 3)
PIR1 (Peripheral Interrupt Request 1)
PIR2 (Peripheral Interrupt Request 2)
PIR3 (Peripheral Interrupt Request 3)
PSPCON (Parallel Slave Port Control) Register 129
RCON
RCON (Reset Control)60, 101
RCSTAx (Receive Status and Control) 199
SSPCON2 (MSSP Control 2, I ² C Mode)
SSPSTAT (MSSP Status, I ² C Mode)
SSFSTAT (MSSF Status, TC Wode)
SSPSTAT (MSSP Status, SPI Mode)
Statis
STKPTR (Stack Pointer)43
Summary52-55
T1CON (Timer 1 Control)135
T3CON (Timer3 Control) 143
TXSTAx (Transmit Status and Control)
WDTCON (Watchdog Timer Control)
RESET
Reset

Brown-out Reset (BOR)	239
MCLR Reset	29
MCLR Reset during Sleep	29
Oscillator Start-up Timer (OST)	239
Power-on Reset (POR)	. 29, 239
Power-up Timer (PWRT)	239
Programmable Brown-out Reset (PBOR)	29
Reset Instruction	29
Stack Full Reset	
Stack Underflow Reset	
Watchdog Timer (WDT) Reset	29
Reset, Watchdog Timer, Oscillator Start-up Timer, F	'ower-up
Timer and Brown-out Reset Requirements	325
RETFIE	290
RETLW	290
RETURN	291
Return Address Stack	
and Associated Registers	43
Revision History	361
RLCF	291
RLNCF	292
RRCF	292
RRNCF	293

S

SCI. See USART	
SCK	. 157
SDI	. 157
SDO	. 157
Serial Clock, SCK	. 157
Serial Communication Interface. See USART.	
Serial Data In, SDI	. 157
Serial Data Out, SDO	. 157
Serial Peripheral Interface. See SPI	
SETF	. 293
Slave Select, SS	
SLEEP	
Sleep	, 252
Software Simulator (MPLAB SIM)	. 303
Special Event Trigger. See Compare	
Special Features of the CPU	. 239
Configuration Registers 240	-249
Special Function Registers	47
Мар	50
SPI	
Serial Clock	. 157
Serial Data In	. 157
Serial Data Out	
Slave Select	. 157
SPI Mode	
SPI Master/Slave Connection	. 161
SPI Module	
Associated Registers	
Bus Mode Compatibility	
Effects of a Reset	
Master/Slave Connection	
Slave Mode	
Sleep Operation	
<u>SS</u>	. 157
SSP	
TMR2 Output for Clock Shift 141	
TMR4 Output for Clock Shift	
SSPOV Status Flag	. 187
SSPSTAT Register	
R/W Bit	, 171
Status Bits	_
Significance and Initialization Condition for RCON	Reg-

© 2003-2013 Microchip Technology Inc.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820