

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26j53-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH PIC18FJ MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC18F47J53 family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP/VDDCORE pins (see Section 2.4 "Voltage Regulator Pins (VCAP/VDDCORE)")

These pins must also be connected if they are being used in the end application:

- PGC/PGD pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

- VREF+/VREF- pins are used when external voltage reference for analog modules is implemented
- Note: On 44-pin QFN packages, the AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used. On other package types, the AVDD and AVss pins are internally connected to the VDD/Vss pins.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED

MINIMUM CONNECTIONS

Key (all values are recommendations):

C1 through C6: 0.1 µF, 20V ceramic

C7: 10 µF, 6.3V or greater, tantalum or ceramic

R1: 10 kΩ

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pins (VCAP/VDDCORE)" for explanation of VCAP/VDDCORE connections.
 - 2: The example shown is for a PIC18F device with five VDD/VSS and AVDD/AVSS pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

4.3 Sleep Mode

The power-managed Sleep mode is identical to the legacy Sleep mode offered in all other PIC devices. It is entered by clearing the IDLEN bit (the default state on device Reset) and executing the SLEEP instruction. This shuts down the selected oscillator (Figure 4-5). All clock source status bits are cleared.

Entering the Sleep mode from any other mode does not require a clock switch. This is because no clocks are needed once the controller has entered Sleep mode. If the WDT is selected, the INTRC source will continue to operate. If the Timer1 oscillator is enabled, it will also continue to run. When a wake event occurs in Sleep mode (by interrupt, Reset or WDT time-out), the device will not be clocked until the clock source selected by the SCS<1:0> bits becomes ready (see Figure 4-6), or it will be clocked from the internal oscillator if either the Two-Speed Start-up or the FSCM is enabled (see Section 28.0 "Special Features of the CPU"). In either case, the OSTS bit is set when the primary clock is providing the device clocks. The IDLEN and SCS bits are not affected by the wake-up.

5.0 RESET

The PIC18F47J53 family of devices differentiates among various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Configuration Mismatch (CM)
- f) Brown-out Reset (BOR)
- g) RESET Instruction
- h) Stack Full Reset
- i) Stack Underflow Reset
- j) Deep Sleep Reset

This section discusses Resets generated by $\overline{\text{MCLR}}$, POR and BOR, and covers the operation of the various start-up timers.

For information on WDT Resets, see Section 28.2 "Watchdog Timer (WDT)". For Stack Reset events, see Section 6.1.4.4 "Stack Full and Underflow Resets" and for Deep Sleep mode, see Section 4.6 "Deep Sleep Mode".

Figure 5-1 provides a simplified block diagram of the on-chip Reset circuit.

5.1 RCON Register

Device Reset events are tracked through the RCON register (Register 5-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be set by the event and must be cleared by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 5.7 "Reset State of Registers"**.

The RCON register also has a control bit for setting interrupt priority (IPEN). Interrupt priority is discussed in **Section 9.0 "Interrupts"**.

FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

2: The VDDCORE monitoring BOR circuit is only implemented on "F" devices. It is always used, except while in Deep Sleep mode. The VDDCORE monitoring BOR circuit has a trip point threshold of VBOR (parameter D005).

6.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as 2 bytes or 4 bytes in program memory. The Least Significant Byte (LSB) of an instruction word is always stored in a program memory location with an even address (LSB = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 6.1.3 "Program Counter").

Figure 6-5 provides an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 6-5 displays how the instruction, GOTO 0006h, is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 29.0 "Instruction Set Summary" provides further details of the instruction set.

		_		LSB = 1	LSB = 0	Word Address ↓
	Program Memory Byte Locations \rightarrow					000000h
						000002h
						000004h
						000006h
Instruction 1:	MOVLW	055h		0Fh	55h	000008h
Instruction 2:	GOTO	0006h		EFh	03h	00000Ah
				F0h	00h	00000Ch
Instruction 3:	MOVFF	123h,	456h	C1h	23h	00000Eh
				F4h	56h	000010h
						000012h
						000014h
					•	

FIGURE 6-5: INSTRUCTIONS IN PROGRAM MEMORY

6.2.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits (MSbs); the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence immediately after the first word, the data in the second word is accessed and

EXAMPLE 6-4: TWO-WORD INSTRUCTIONS

used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 illustrates how this works.

Note: See Section 6.5 "Program Memory and the Extended Instruction Set" for information on two-word instructions in the extended instruction set.

CASE 1:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, REG2	; No, skip this word
1111 0100 0101 0110		; Execute this word as a NOP
0010 0100 0000 0000	ADDWF REG3	; continue code
CASE 2:		
Object Code	Source Code	
0110 0110 0000 0000	TSTFSZ REG1	; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, REG2	; Yes, execute this word
1111 0100 0101 0110		; 2nd word of instruction
0010 0100 0000 0000	ADDWF REG3	; continue code

PIC18F47J53

						`	- /
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	SSP2IE: Mas	ter Synchronou	is Serial Port 2	2 Interrupt Enab	ole bit		
	1 = Enabled						
	0 = Disabled						
bit 6	BCL2IE: Bus	Collision Interr	upt Enable bit	(MSSP2 modu	le)		
	1 = Enabled						
6.4. <i>C</i>				- 1-14			
DIT 5	RC2IE: EUSA	AR12 Receive I	nterrupt Enabl	e dit			
	1 = Enabled 0 = Disabled						
bit 4	TX2IE: EUSA	RT2 Transmit I	nterrupt Enabl	le bit			
	1 = Enabled		·				
	0 = Disabled						
bit 3	TMR4IE: TM	R4 to PR4 Mate	h Interrupt En	able bit			
	1 = Enabled						
	0 = Disabled						
bit 2	CTMUIE: Cha	arge Time Meas	surement Unit	(CTMU) Interru	pt Enable bit		
	1 = Enabled						
bit 1		mor ³ Cata Into	rrunt Enable b	i+			
	0 = Disabled						
bit 0	RTCCIE: RTC	CC Interrupt En	able bit				
	1 = Enabled						
	0 = Disabled						

REGISTER 9-11: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3 (ACCESS FA3h)

REGISTER 10-4: PADCFG1: PAD CONFIGURATION CONTROL REGISTER 1 (BANKED F3Ch)

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	_	—	_	_	RTSECSEL1 ⁽¹⁾	RTSECSEL0 ⁽¹⁾	PMPTTL
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read a	as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3	Unimplemented: Read as '0'
bit 2-1	RTSECSEL<1:0>: RTCC Seconds Clock Output Select bits ⁽¹⁾
	 11 = Reserved; do not use 10 = RTCC source clock is selected for the RTCC pin (can be INTRC, T1OSC or T1CKI depending upon the RTCOSC (CONFIG3L<1>) and T1OSCEN (T1CON<3>) bit settings) 01 = RTCC seconds clock is selected for the RTCC pin 00 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit 1 = PMP module uses TTL input buffers 0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RTCCFG<2>) bit needs to be set.

10.2 PORTA, TRISA and LATA Registers

PORTA is a 7-bit wide, bidirectional port. It may function as a 5-bit port, depending on the oscillator mode selected. Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a High-impedance mode). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it, will write to the port latch.

The Data Latch (LATA) register is also memory mapped. Read-modify-write operations on the LATA register read and write the latched output value for PORTA.

The other PORTA pins are multiplexed with analog inputs, the analog VREF+ and VREF- inputs and the comparator voltage reference output. The operation of pins, RA<3:0> and RA5, as A/D Converter inputs is selected by clearing or setting the control bits in the ADCON0 register (A/D Port Configuration Register 0).

Pins, RA0, RA2, and RA3, may also be used as comparator inputs and by setting the appropriate bits in the CMCON register. To use RA<3:0> as digital inputs, it is also necessary to turn off the comparators.

Note: On a Power-on Reset (POR), RA5 and RA<3:0> are configured as analog inputs and read as '0'.

All PORTA pins have TTL input levels and full CMOS output drivers.

The TRISA register controls the direction of the PORTA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

EXAMPLE 10-2: INITIALIZING PORTA

CLRF	PORTA	; Initialize PORTA by
		; clearing output
		; data latches
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	07h	; Configure A/D
MOVWF	ADCON0	; for digital inputs
MOVWF	07h	; Configure comparators
MOVWF	CMCON	; for digital input
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<3:0> as inputs
		; RA<5:4> as outputs

11.0 PARALLEL MASTER PORT (PMP)

The Parallel Master Port module (PMP) is an 8-bit parallel I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable. The PMP module can be configured to serve as either a PMP or as a Parallel Slave Port (PSP).

Note: The PMP module is not implemented on 28-pin devices. It is available only on the PIC18F46J53, PIC18F47J53, PIC18LF46J53 and PIC18LF47J53.

Key features of the PMP module are:

- Up to 16 bits of addressing when using data/address multiplexing
- Up to 8 Programmable Address Lines
- One Chip Select Line
- Programmable Strobe Options:
 - Individual Read and Write Strobes or;
 Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep, Auto-Incrementing Buffer
- · Programmable Wait States
- · Selectable Input Voltage Levels

FIGURE 11-1: PMP MODULE OVERVIEW

PIC18F47J53

REGISTER 11-9: PMADDRH: PARALLEL PORT ADDRESS REGISTER HIGH BYTE (MASTER MODES ONLY) (ACCESS F6Fhh)⁽¹⁾

U0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W	/-0 R/W	/- 0
	CS1		Parallel	Master Port Add	ess High B	yte<13:8>	•	
bit 7								bit 0
Legend:								
R = Readable	e bit	W = Writable bit		U = Unimpleme	nted bit, rea	ad as 'O'	r = Reserved	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleare	ed	x = Bit i	is unknown	
bit 7	Unimpleme	nted: Read as '0'						
bit 6	CS1: Chip S	Select bit						
If PMCON<7:6> = 10:								
1 = Chip select is active								
0 = Chip select is inactive								
	<u>If PMCON<7:6> = 11_or 00:</u>							
	Bit functions as ADDR<14>.							

bit 5-0 Parallel Master Port Address: High Byte<13:8> bits

Note 1: In Enhanced Slave mode, PMADDRH functions as PMDOUT1H, one of the Output Data Buffer registers.

REGISTER 11-10: PMADDRL: PARALLEL PORT ADDRESS REGISTER LOW BYTE (MASTER MODES ONLY) (ACCESS F6Eh)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		Parallel	Master Port A	Address Low Byte	<7:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpleme	nted bit, read	d as '0' r = R	Reserved
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unk	known

bit 7-0 Parallel Master Port Address: Low Byte<7:0> bits

Note 1: In Enhanced Slave mode, PMADDRL functions as PMDOUT1L, one of the Output Data Buffer registers.

18.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP4IE bit (PIE4<1>) clear to avoid false interrupts and should clear the flag bit, CCP4IF, following any such change in operating mode.

18.2.4 CCP PRESCALER

There are four prescaler settings in Capture mode. They are specified as part of the operating mode selected by the mode select bits (CCP4M<3:0>). Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Doing that also will not clear the prescaler counter – meaning the first capture may be from a non-zero prescaler.

Example 18-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 18-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP4CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and CCP ON
MOVWF	CCP4CON	;	Load CCP4CON with
		;	this value

18.3 Compare Mode

In Compare mode, the 16-bit CCPR4 register value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the CCP4 pin can be:

- Driven high
- Driven low
- Toggled (high-to-low or low-to-high)
- Unchanged (that is, reflecting the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCP4M<3:0>). At the same time, the interrupt flag bit, CCP4IF, is set.

Figure 18-2 gives the Compare mode block diagram

18.3.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRIS bit.

Note:	Clearing the CCP4CON register will force				
	the RB4 compare output latch (depending				
	on device configuration) to the default low				
	level. This is not the PORTB I/O data				
	latch.				

18.3.2 TIMER1/3/5 MODE SELECTION

If the CCP module is using the compare feature in conjunction with any of the Timer1/3/5 timers, the timers must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the compare operation may not work.

```
Note: Details of the timer assignments for the CCP modules are given in Table 18-2 and Table 18-3.
```

18.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCP4M<3:0> = 1010), the CCP4 pin is not affected. Only a CCP interrupt is generated, if enabled, and the CCP4IE bit is set.

18.3.4 SPECIAL EVENT TRIGGER

Both CCP modules are equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCP4M<3:0> = 1011).

For either CCP module, the Special Event Trigger resets the Timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a programmable period register for either timer.

The Special Event Trigger for CCP4 cannot start an A/D conversion.

Note: The Special Event Trigger of ECCP1 can start an A/D conversion, but the A/D Converter must be enabled. For more information, see Section 19.0 "Enhanced Capture/Compare/PWM (ECCP) Module".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
RCON	IPEN	_	CM	RI	TO	PD	POR	BOR
PIR4	CCP10IF	CCP9IF	CCP8IF	CCP7IF	CCP6IF	CCP5IF	CCP4IF	CCP3IF
PIE4	CCP10IE	CCP9IE	CCP8IE	CCP7IE	CCP6IE	CCP5IE	CCP4IE	CCP3IE
IPR4	CCP10IP	CCP9IP	CCP8IP	CCP7IP	CCP6IP	CCP5IP	CCP4IP	CCP3IP
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
TRISC	TRISC7	TRISC6	_	—	_	TRISC2	TRISC1	TRISC0
TRISE	RDPU	REPU	_	—	_	TRISE2	TRISE1	TRISE0
TMR1L	Timer1 Regi	ster Low Byte	9					
TMR1H	Timer1 Regi	ster High Byt	е					
TMR3L	Timer3 Regi	ster Low Byte	Э					
TMR3H	Timer3 Regi	ster High Byt	е					
TMR5L	Timer5 Regi	ster Low Byte	Э					
TMR5H	Timer5 Regi	ster High Byt	е					
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	RD16	TMR10N
T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	RD16	TMR3ON
T5CON	TMR5CS1	TMR5CS0	T5CKPS1	T5CKPS0	T5OSCEN	T5SYNC	RD16	TMR5ON
CCPR4L	CCPR4L7	CCPR4L6	CCPR4L5	CCPR4L4	CCPR4L3	CCPR4L2	CCPR4L1	CCPR4L0
CCPR4H	CCPR4H7	CCPR4H6	CCPR4H5	CCPR4H4	CCPR4H3	CCPR4H2	CCPR4H1	CCPR4H0
CCPR5L	CCPR5L7	CCPR5L6	CCPR5L5	CCPR5L4	CCPR5L3	CCPR5L2	CCPR5L1	CCPR5L0
CCPR5H	CCPR5H7	CCPR5H6	CCPR5H5	CCPR5H4	CCPR5H3	CCPR5H2	CCPR5H1	CCPR5H0
CCPR6L	CCPR6L7	CCPR6L6	CCPR6L5	CCPR6L4	CCPR6L3	CCPR6L2	CCPR6L1	CCPR6L0
CCPR6H	CCPR6H7	CCPR6H6	CCPR6H5	CCPR6H4	CCPR6H3	CCPR6H2	CCPR6H1	CCPR6H0
CCPR7L	CCPR7L7	CCPR7L6	CCPR7L5	CCPR7L4	CCPR7L3	CCPR7L2	CCPR7L1	CCPR7L0
CCPR7H	CCPR7H7	CCPR7H6	CCPR7H5	CCPR7H4	CCPR7H3	CCPR7H2	CCPR7H1	CCPR7H0
CCPR8L	CCPR8L7	CCPR8L6	CCPR8L5	CCPR8L4	CCPR8L3	CCPR8L2	CCPR8L1	CCPR8L0
CCPR8H	CCPR8H7	CCPR8H6	CCPR8H5	CCPR8H4	CCPR8H3	CCPR8H2	CCPR8H1	CCPR8H0
CCPR9L	CCPR9L7	CCPR9L6	CCPR9L5	CCPR9L4	CCPR9L3	CCPR9L2	CCPR9L1	CCPR9L0
CCPR9H	CCPR9H7	CCPR9H6	CCPR9H5	CCPR9H4	CCPR9H3	CCPR9H2	CCPR9H1	CCPR9H0
CCPR10L	CCPR10L7	CCPR10L6	CCPR10L5	CCPR10L4	CCPR10L3	CCPR10L2	CCPR10L1	CCPR10L0
CCPR10H	CCPR10H7	CCPR10H6	CCPR10H5	CCPR10H4	CCPR10H3	CCPR10H2	CCPR10H1	CCPR10H0
CCP4CON	—	_	DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0
CCP5CON	—	_	DC5B1	DC5B0	CCP5M3	CCP5M2	CCP5M1	CCP5M0
CCP6CON	—	_	DC6B1	DC6B0	CCP6M3	CCP6M2	CCP6M1	CCP6M0
CCP7CON	—	—	DC7B1	DC7B0	CCP7M3	CCP7M2	CCP7M1	CCP7M0
CCP8CON	—	—	DC8B1	DC8B0	CCP8M3	CCP8M2	CCP8M1	CCP8M0
CCP9CON	_	—	DC9B1	DC9B0	CCP9M3	CCP9M2	CCP9M1	CCP9M0
CCP10CON	_		DC10B1	DC10B0	CCP10M3	CCP10M2	CCP10M1	CCP10M0
CCPTMRS1	C7TSEL1	C7TSEL0	_	C6TSEL0	_	C5TSEL0	C4TSEL1	C4TSEL0
CCPTMRS2	_	_	_	C10TSEL0	_	C9TSEL0	C8TSEL1	C8TSEL0

	TABLE 18-4:	REGISTERS ASSOCIATED W	ITH CAPTURE,	COMPARE.	TIMER1/3/5/7
--	-------------	-------------------------------	--------------	----------	--------------

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Capture/Compare or Timer1/3/5.

PIC18F47J53

PIC18F47J53

19.4.3 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

Note:	When the microcontroller is released from
	Reset, all of the I/O pins are in the
	high-impedance state. The external
	circuits must keep the power switch
	devices in the OFF state until the micro-
	controller drives the I/O pins with the
	proper signal levels or activates the PWM
	oulpul(S).

The CCPxM<1:0> bits of the CCPxCON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (PxA/PxC and PxB/PxD). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enabled is not recommended, since it may result in damage to the application circuits.

The PxA, PxB, PxC and PxD output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF or TMR4IF bit of the PIR1 or PIR3 register being set as the second PWM period begins.

19.4.4 ENHANCED PWM AUTO-SHUTDOWN MODE

The PWM mode supports an Auto-Shutdown mode that will disable the PWM outputs when an external shutdown event occurs. Auto-Shutdown mode places the PWM output pins into a predetermined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are selected using the ECCPxAS<2:0> bits (ECCPxAS<6:4>). A shutdown event may be generated by:

- A logic '0' on the pin that is assigned to the FLT0 input function
- Comparator C1
- Comparator C2
- · Setting the ECCPxASE bit in firmware

A shutdown condition is indicated by the ECCPxASE (Auto-Shutdown Event Status) bit (ECCPxAS<7>). If the bit is a '0', the PWM pins are operating normally. If the bit is a '1', the PWM outputs are in the shutdown state.

FIGURE 21-7: ASYNCHRONOUS RECEPTION

TABLE 21-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP
RCSTAx	SPEN	RX9 SREN CREN ADDEN FERR OERR						RX9D
RCREGx	EUSARTx R	Receive Regist	er					
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCONx	ABDOVF	RCIDL	RXDTP	TXCKP	TXCKP BRG16 — V		WUE	ABDEN
SPBRGHx	EUSARTx B	Baud Rate Ger	nerator High	Byte				
SPBRGx	EUSARTx B	Baud Rate Ger	erator Low I	Byte				

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: These bits are only available on 44-pin devices.

21.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the BRG is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RXx/DTx line while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCONx<1>). Once set, the typical receive sequence on RXx/DTx is disabled and the EUSART remains in an Idle state, monitoring for a

wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RXx/DTx line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 protocol.)

Following a wake-up event, the module generates an RCxIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 21-8) and asynchronously if the device is in Sleep mode (Figure 21-9). The interrupt condition is cleared by reading the RCREGx register.

23.4.4 PING-PONG BUFFERING

An endpoint is defined to have a ping-pong buffer when it has two sets of BD entries: one set for an Even transfer and one set for an Odd transfer. This allows the CPU to process one BD while the SIE is processing the other BD. Double-buffering BDs in this way allows for maximum throughput to/from the USB.

The USB module supports four modes of operation:

- · No ping-pong support
- Ping-pong buffer support for OUT Endpoint 0 only
- · Ping-pong buffer support for all endpoints
- Ping-pong buffer support for all other endpoints except Endpoint 0

The ping-pong buffer settings are configured using the PPB<1:0> bits in the UCFG register.

The USB module keeps track of the Ping-Pong Pointer individually for each endpoint. All pointers are initially reset to the Even BD when the module is enabled. After the completion of a transaction (UOWN cleared by the SIE), the pointer is toggled to the Odd BD. After the completion of the next transaction, the pointer is toggled back to the Even BD and so on.

The Even/Odd status of the last transaction is stored in the PPBI bit of the USTAT register. The user can reset all Ping-Pong Pointers to Even using the PPBRST bit.

Figure 23-6 shows the four different modes of operation and how USB RAM is filled with the BDs.

BDs have a fixed relationship to a particular endpoint, depending on the buffering configuration. Table 23-2 provides the mapping of BDs to endpoints. This relationship also means that gaps may occur in the BDT if endpoints are not enabled contiguously. This, theoretically, means that the BDs for disabled endpoints could be used as buffer space. In practice, users should avoid using such spaces in the BDT unless a method of validating BD addresses is implemented.

FIGURE 23-6: BUFFER DESCRIPTOR TABLE MAPPING FOR BUFFERING MODES

25.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 25-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution. The equations used to calculate the output of the comparator voltage reference are as follows:

EQUATION 25-1: CALCULATING OUTPUT OF THE COMPARATOR VOLTAGE REFERENCE

<u>When CVRR = 1 and CVRSS = 0:</u> CVREF = ((CVR<3:0>)/24) x (CVRSRC) <u>When CVRR = 0 and CVRSS = 0:</u> CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) x (CVRSRC) <u>When CVRR = 1 and CVRSS = 1:</u> CVREF = ((CVR<3:0>)/24) x (CVRSRC) + VREF-<u>When CVRR = 0 and CVRSS = 1:</u> CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) x (CVRSRC) + VREF-) The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF- that are multiplexed with RA2 and RA3. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 31-2 in **Section 31.0** "**Electrical Characteristics**").

REGISTER 25-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER (F53h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE ⁽¹⁾	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	CVREN: Corr	parator Voltage	e Reference E	nable bit			
	1 = CVREF ci	rcuit is powered	d on				
	0 = CVREF ci	rcuit is powered	d down				
bit 6	CVROE: Com	nparator VREF C	Dutput Enable	bit ⁽¹⁾			
	1 = CVREF VC	oltage level is a	lso output on t	he RA2/AN2//C	2INB/C1IND/C	3INB/VREF-/C	/REF pin
	0 = CVREF VC	oltage is discon	nected from th	e RA2/AN2//C2	2INB/C1IND/C3	BINB/VREF-/CV	REF pin
bit 5	CVRR: Comp	arator VREF Ra	inge Selection	bit			
	1 = 0 to 0.66	7 CVRSRC with	CVRSRC/24 st	ep size (low ran	ige)		
	0 = 0.25 CVR	SRC to 0.75 C	RSRC with CV	RSRC/32 step si	ze (high range)	
bit 4	CVRSS: Com	parator VREF S	Source Selection	on bit			
	1 = Compara	tor reference s	ource, CVRSR	C = (VREF+) – (\	/REF-)		
	0 = Compara	tor reference s	ource, CVRSR	c = AVDD – AVs	S		
bit 3-0	CVR<3:0>: C	omparator VRE	F Value Select	ion bits ($0 \le (C^{1})$	VR<3:0>) ≤ 15))	
	When CVRR	<u>= 1:</u>					
	CVREF = ((CV	′R<3:0>)/24) •	(CVRSRC)				
	When CVRR	<u>= 0:</u>					
	CVREF = (CVF	RSRC/4) + ((CVI	≺<3:0>)/32) ●	(CVRSRC)			

Note 1: CVROE overrides the TRIS bit setting.

REGISTER 27-2: CTMUCONL: CTMU CONTROL REGISTER LOW (ACCESS FB2h)

					-	-			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	R/W-x		
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT		
bit 7			•		•	•	bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	is unknown		
bit 7	EDG2POL: E	dge 2 Polarity	Select bit						
	1 = Edge 2 is	programmed f	or a positive e	dge response					
	0 = Edge 2 is	programmed f	for a negative	edge response					
bit 6-5	EDG2SEL<1:	:0>: Edge 2 So	urce Select bit	S					
	11 = CTED1	pin							
	10 = CTED2 01 = ECCP1	pin output compare	module						
	00 = Timer1 r	nodule	module						
bit 4	EDG1POL: E	dge 1 Polarity	Select bit						
	1 = Edge 1 p	rogrammed for	a positive edg	je response					
	0 = Edge 1 p	rogrammed for	a negative ed	ge response					
bit 3-2	EDG1SEL<1:	:0>: Edge 1 So	urce Select bit	S					
	11 = CTED1	pin							
	10 = CTED2 01 = FCCP1	pin output compare	emodule						
	00 = Timer1 r	nodule	modulo						
bit 1	EDG2STAT: E	Edge 2 Status b	oit						
	1 = Edge 2 e	vent has occur	red						
	0 = Edge 2 e	vent has not oc	curred						
bit 0	EDG1STAT: E	Edge 1 Status b	pit						
	1 = Edge 1 e	vent has occur	red						
	0 = Edge 1 e	vent has not oc	curred						

REGISTER 28-5: CONFIG3L: CONFIGURATION REGISTER 3 LOW (BYTE ADDRESS 300004h)

R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1		
DSWDTPS3 ⁽¹	DSWDTPS2 ⁽¹⁾	DSWDTPS1 ⁽¹⁾	DSWDTPS0(1	DSWDTEN ⁽¹⁾	DSBOREN	RTCOSC	DSWDTOSC ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Readable	bit	WO = Write-Or	nce bit	U = Unimplem	ented bit, rea	id as '0'	as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is ur	nknown		
bit 7-4	DSWDTPS<3: The DSWDT p 1111 = 1:2,147 1110 = 1:536,8 1101 = 1:134,2 1100 = 1:33,55 1011 = 1:8,388 1010 = 1:2,097 1001 = 1:524,2 1000 = 1:131,0 0111 = 1:32,76 0110 = 1:8,192 0101 = 1:2,048 0100 = 1:512 (0011 = 1:128 (0010 = 1:32 (3) 0001 = 1:8 (8.3)	0>: Deep Sleep rescaler is 32. T 7,483,648 (25.7 370,912 (6.4 day 217,728 (38.5 hd 54,432 (9.6 hours 7,152 (36 minute 288 (9 minutes) 072 (135 seconds) 2 (8.5 seconds) 3 (2.1 seconds) 528 ms) 132 ms) 3 ms) 3 ms)	Watchdog Tin 'his creates an days) ys) ours) 's) es) ds)	ner Postscale Se approximate ba	elect bits ⁽¹⁾ ase time unit d	of 1 ms.			
bit 3	DSWDTEN: De 1 = DSWDT is 0 = DSWDT is	eep Sleep Watc enabled disabled	hdog Timer Er	able bit ⁽¹⁾					
bit 2 bit 1 bit 0	DSBOREN: "F For "F" Devices 1 = VDD sensin 0 = VDD sensin For "LF" Device 1 = VDD sensin 0 = VDD sensin RTCOSC: RTC 1 = RTCC uses 0 = RTCC uses DSWDTOSC: 1 1 = DSWDT use	" Device Deep S <u>s:</u> log BOR is enable log BOR circuit is <u>es:</u> log BOR circuit is log BOR circuit is CC Reference C s T1OSC/T1CKI s INTRC as the DSWDT Reference DSWDT Reference Ses INTRC as the	Sleep BOR En ed in Deep Sle always disabl always disabl lock Select bit as reference reference cloc nce Clock Sele e reference clo	able bit, "LF" De eep ed ed clock k ect bit ⁽¹⁾ ock	vice VDD BOI	R Enable bi	t		

Note 1: Functions are not available on "LF" devices.

29.0 INSTRUCTION SET SUMMARY

The PIC18F47J53 family of devices incorporate the standard set of 75 PIC18 core instructions, as well as an extended set of 8 new instructions for the optimization of code that is recursive or that utilizes a software stack. The extended set is discussed later in this section.

29.1 Standard Instruction Set

The standard PIC18 MCU instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from these PIC MCU instruction sets. Most instructions are a single program memory word (16 bits), but there are four instructions that require two program memory locations.

Each single-word instruction is a 16-bit word divided into an opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into four basic categories:

- Byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

The PIC18 instruction set summary in Table 29-2 lists **byte-oriented**, **bit-oriented**, **literal** and **control** operations. Table 29-1 shows the opcode field descriptions.

Most byte-oriented instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The destination of the result (specified by 'd')
- 3. The accessed memory (specified by 'a')

The file register designator, 'f', specifies which file register is to be used by the instruction. The destination designator, 'd', specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the WREG register. If 'd' is one, the result is placed in the file register specified in the instruction.

All **bit-oriented** instructions have three operands:

- 1. The file register (specified by 'f')
- 2. The bit in the file register (specified by 'b')
- 3. The accessed memory (specified by 'a')

The bit field designator, 'b', selects the number of the bit affected by the operation, while the file register designator, 'f', represents the number of the file in which the bit is located. The **literal** instructions may use some of the following operands:

- A literal value to be loaded into a file register (specified by 'k')
- The desired FSR register to load the literal value into (specified by 'f')
- No operand required (specified by '—')

The **control** instructions may use some of the following operands:

- A program memory address (specified by 'n')
- The mode of the CALL or RETURN instructions (specified by 's')
- The mode of the table read and table write instructions (specified by 'm')
- No operand required (specified by '—')

All instructions are a single word, except for four double-word instructions. These instructions were made double-word to contain the required information in 32 bits. In the second word, the 4 MSbs are '1's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

All single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP.

The double-word instructions execute in two instruction cycles.

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true, or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Two-word branch instructions (if true) would take 3 μ s.

Figure 29-1 shows the general formats that the instructions can have. All examples use the convention 'nnh' to represent a hexadecimal number.

The Instruction Set Summary, shown in Table 29-2, lists the standard instructions recognized by the Microchip MPASM[™] Assembler.

Section 29.1.1 "Standard Instruction Set" provides a description of each instruction.

тоте	sz	Test f, Skip	Test f, Skip if 0						
Synta	ax:	TSTFSZ f {,	,a}						
Oper	ands:	0 ≤ f ≤ 255							
		a ∈ [0,1]							
Oper	ation:	skip if f = 0							
Statu	s Affected:	None							
Enco	ding:	0110	011a fff	f ffff					
Desc	ription:	If 'f' = 0, the during the c is discarded making this	If 'f' = 0, the next instruction fetched during the current instruction execution is discarded and a NOP is executed, making this a 2-cycle instruction.						
		lf 'a' is '0', th If 'a' is '1', th GPR bank (If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).						
If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details									
Word	ls:								
Cycle	es:	1(2) Note: 3 cy by a	1(2)Note: 3 cycles if skip and followed by a 2-word instruction.						
QC	vcle Activitv:	, , ,							
	Q1	Q2	Q3	Q4					
	Decode	Read	Process	No					
		register 'f'	Data	operation					
lf sk	ip:								
	Q1	Q2	Q3	Q4					
	No	No	No	No					
lf als	operation	operation	operation	operation					
II SK				04					
	No	Q2	Q3	Q4					
	operation	operation	operation	operation					
	No	No	No	No					
	operation	operation	operation	operation					
<u>Exan</u>	<u>nple:</u>	HERE T NZERO : ZERO :	ISTFSZ CNT	r, 1					
	Before Instruction								
	PC = Address (HERE)								
	After Instructio	n	(,					
	If CNT	= 00	h,						
	PC If CNT	= Ad ≠ 00I	dress (ZERO h.)					
	PC	= Ad	dress (NZER	C)					

XOR	LW	Ex	Exclusive OR Literal with W						
Synt	ax:	XO	XORLW k						
Oper	rands:	0 ≤	k ≤ 25	5					
Oper	ration:	(W)) .XOR	$k \to W$					
Statu	is Affected:	N, 2	Z						
Enco	oding:	0	000	1010	kkk	ck	kkkk		
Description:			e conte 8-bit li V.	ents of W iteral 'k'. T	are X he re	ORe sult	ed with is placed		
Words:		1							
Cycl	es:	1							
QC	ycle Activity:								
	Q1	G	2	Q3		Q4			
	Decode		ad al 'k'	Proce: Data	Process Data		Vrite to W		
Exar	<u>nple:</u>	XOI	RLW	0AFh					
	Before Instruc	tion							
	W	= E	35h						
	After Instructio W	on = ^	1Ah						

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	М	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		0.65 BSC				
Overall Height	A	0.80	0.90	1.00			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3	0.20 REF					
Overall Width	E	6.00 BSC					
Exposed Pad Width	E2	3.65	3.70	4.20			
Overall Length	D	6.00 BSC					
Exposed Pad Length	D2	3.65	3.70	4.20			
Terminal Width	b	0.23	0.30	0.35			
Terminal Length	L	0.50	0.55	0.70			
Terminal-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105C Sheet 2 of 2