

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26j53-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18F47J53

						,	,
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-1
DSFLT	—	DSULP	DSWDT	DSRTC	DSMCLR	—	DSPOR
bit 7							bit (
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
hit 7		Sloop Fault D	atastad bit				
		Sleep Fault Mo	elected bit	ing Doon Sloo	.		
	1 = A Deep S 0 = A Deep S	Sleep Fault was	s not detected	during Deep Siee	p Sleep		
bit 6		ted: Read as '	0'	ddinig 200p (
bit 5	DSULP: Ultra I ow-Power Wake-up Status bit						
	1 = An ultra low-power wake-up event occurred during Deep Sleep						
	0 = An ultra le	ow-power wak	e-up event dic	l not occur dur	ing Deep Sleep		
bit 4	DSWDT: Deep Sleep Watchdog Timer Time-out bit						
	1 = The Deep	o Sleep Watch	dog Timer tim	ed out during [Deep Sleep		
	0 = The Deep Sleep Watchdog Timer did not time out during Deep Sleep						
bit 3	DSRTC: Real	-Time Clock a	nd Calendar A	larm bit			
	1 = The Real	-Time Clock/C	alendar trigge	red an alarm d	luring Deep Slee	ep	
1.11.0			alendar did n	ot trigger an ai	arm during Dee	p Sleep	
bit 2	DSMCLR: MO						
	$1 = \text{Ine } \frac{\text{MCL}}{\text{MCL}}$	<u>R</u> pin was ass R pin was not	erted during L	eep Sleep In Deen Sleen			
hit 1	Inimplemented: Read as '0'						
bit 0	DSDOP: Power on Resat Event hit						
			venit was activ	a and a POP a	went was deter	tod(1)	
	1 = The VDD	supply FOR cli	cuit was activ	ctive. or was a	active, but did no	ot detect a POF	Revent

REGISTER 4-6: DSWAKEL: DEEP SLEEP WAKE LOW BYTE REGISTER (BANKED F4Ah)

Note 1: Unlike the other bits in this register, this bit can be set outside of Deep Sleep.

6.0 MEMORY ORGANIZATION

There are two types of memory in PIC18 Flash microcontrollers:

- Program Memory
- Data RAM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces.

Section 7.0 "Flash Program Memory" provides additional information on the operation of the Flash program memory.

6.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address returns all '0's (a NOP instruction).

The PIC18F47J53 family offers a range of on-chip Flash program memory sizes, from 64 Kbytes (up to 32,768 single-word instructions) to 128 Kbytes (65,536 single-word instructions).

Figure 6-1 provides the program memory maps for individual family devices.

7.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

The TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, the TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The LSb of the address selects between the high and low bytes of the word.

Figure 7-4 illustrates the interface between the internal program memory and the TABLAT.

FIGURE 7-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 7-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW MOVWF MOVLW	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH	; ;	Load TBLPTR with the base address of the word
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*-	+	;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*-	÷	;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_ODD		

REGISTER 9-10: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (ACCESS FA0h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OSCFIE	CM2IE	CM1IE	USBIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE
oit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	OSCFIE: Osc	illator Fail Inter	rupt Enable bi	t			
	1 = Enabled						
bit 6	CM2IE: Com	parator 2 Interru	upt Enable bit				
	1 = Enabled						
	0 = Disabled						
bit 5	CM1IE: Comp	parator 1 Interru	upt Enable bit				
	1 = Enabled						
L:1 4			- 1-:4				
DIT 4	USBIE: USB	Interrupt Enabl	e dit				
	0 = Disabled						
bit 3	BCL1IE: Bus	Collision Interr	upt Enable bit	(MSSP1 modul	le)		
	1 = Enabled						
	0 = Disabled						
bit 2	HLVDIE: High	/Low-Voltage	Detect Interrup	t Enable bit			
	1 = Enabled						
hit 1		22 Overflow Int	orrunt Enable	hit			
DILI	1 = Enabled	Co Overnow Inc	enupt Enable	DIL			
	0 = Disabled						
bit 0	CCP2IE: ECC	P2 Interrupt E	nable bit				
	1 = Enabled						
	0 = Disabled						

Pin	Function	TRIS Setting	I/O	l/O Type	Description
RC6/CCP9/	RC6	1	Ι	ST	PORTC<6> data input.
PMA5/TX1/		0	0	DIG	LATC<6> data output.
CK1/RP17	CCP9	1	Ι	ST	Capture input.
		0	0	DIG	Compare/PWM output.
	PMA5 ⁽²⁾	1	Ι	ST/TTL	Parallel Master Port io_addr_in<5>.
		0	0	DIG	Parallel Master Port address.
	TX1	0	0	DIG	Asynchronous serial transmit data output (EUSART module); takes priority over port data. User must configure as an output.
	CK1	1	Ι	ST	Synchronous serial clock input (EUSART module).
RP17		0	0	DIG	Synchronous serial clock output (EUSART module); takes priority over port data.
		1	Ι	ST	Remappable Peripheral Pin 17 input.
		0	0	DIG	Remappable Peripheral Pin 17 output.
RC7/CCP10/	RC7	1	I	ST	PORTC<7> data input.
PMA4/RX1/		0	0	DIG	LATC<7> data output.
RP18	CCP10	1	Ι	ST	Capture input.
		0	0	DIG	Compare/PWM output.
	PMA4 ⁽²⁾	х	I/O	ST/TTL/ DIG	Parallel Master Port address.
	RX1	1	I	ST	Asynchronous serial receive data input (EUSART module).
	DT1	1	1	ST	Synchronous serial data input (EUSART module). User must configure as an input.
		0	0	DIG	Synchronous serial data output (EUSART module); takes priority over port data.
	SDO1	0	0	DIG	SPI data output (MSSP1 module).
	RP18	1	Ι	ST	Remappable Peripheral Pin 18 input.
		0	0	DIG	Remappable Peripheral Pin 18 output.

 TABLE 10-7:
 PORTC I/O SUMMARY⁽¹⁾ (CONTINUED)

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; $I^2C/SMB = I^2C/SMB$ us input buffer; x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: Enhanced PWM output is available only on PIC18F4XJ53 devices.

2: This bit is only available on 44-pin devices (PIC18F46J53, PIC18F47J53, PIC18LF46J53 and PIC18LF47J53).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PORTC	RC7	RC6	RC5	RC4	_	RC2	RC1	RC0
LATC	LATC7	LATC6	—	—		LATC2	LATC1	LATC0
TRISC	TRISC7	TRISC6	—	—	_	TRISC2	TRISC1	TRISC0
ANCON1	VBGEN	—	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
CM2CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
UCON	_	PPBRST	SE0	PKTDIS	USBEN	RESUME	SUSPND	—
UCFG	UTEYE	UOEMON	—	UPUEN	UTRDIS	FSEN	PPB1	PPB0
RTCCFG	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0

© 2009-2016 Microchip Technology Inc.

REGISTER 10-8: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3 (BANKED EE3h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INTR3R4	INTR3R3	INTR3R2	INTR3R1	INTR3R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 INTR3R<4:0>: Assign External Interrupt 3 (INT3) to the Corresponding RPn Pin bits

REGISTER 10-9: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4 (BANKED EE4h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T0CKR4	T0CKR3	T0CKR2	T0CKR1	T0CKR0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5	Unimplemented: Read as '0'
bit 4-0	TOCKR<4:0>: Timer0 External Clock Input (T0CKI) to the Corresponding RPn Pin bits

REGISTER 10-10: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6 (BANKED EE6h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 7							bit 0

Legend:	R/W = Readable bit, Writable bit if IOLOCK = 0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T3CKR<4:0>: Timer3 External Clock Input (T3CKI) to the Corresponding RPn Pin bits

11.1 Module Registers

The PMP module has a total of 14 Special Function Registers (SFRs) for its operation, plus one additional register to set configuration options. Of these, eight registers are used for control and six are used for PMP data transfer.

11.1.1 CONTROL REGISTERS

The eight PMP Control registers are:

- PMCONH and PMCONL
- PMMODEH and PMMODEL
- PMSTATL and PMSTATH
- PMEH and PMEL

The PMCON registers (Register 11-1 and Register 11-2) control basic module operations, including turning the module on or off. They also configure address multiplexing and control strobe configuration.

The PMMODE registers (Register 11-3 and Register 11-4) configure the various Master and Slave modes, the data width and interrupt generation.

The PMEH and PMEL registers (Register 11-5 and Register 11-6) configure the module's operation at the hardware (I/O pin) level.

The PMSTAT registers (Register 11-5 and Register 11-6) provide status flags for the module's input and output buffers, depending on the operating mode.

REGISTER 11-1: PMCONH: PARALLEL PORT CONTROL REGISTER HIGH BYTE (BANKED F5Fh)⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPEN	—	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7 PM	PEN: Parallel Master Port Enable	bit	
1 =	PMP enabled		
0 =	PMP disabled, no off-chip access	performed	
bit 6 Un	mplemented: Read as '0'		

- bit 5 **PSIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 4-3 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = Reserved
 - 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins (only eight bits of address are available in this mode)
 - 00 = Address and data appear on separate pins (only eight bits of address are available in this mode)
- bit 2 **PTBEEN:** Byte Enable Port Enable bit (16-Bit Master mode)
 - 1 = PMBE port enabled
 - 0 = PMBE port disabled
- bit 1 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port enabled
 - 0 = PMWR/PMENB port disabled
- bit 0 PTRDEN: Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port enabled
 - 0 = PMRD/PMWR port disabled

Note 1: This register is only available on 44-pin devices.

11.2 Slave Port Modes

The primary mode of operation for the module is configured using the MODE<1:0> bits in the PMMODEH register. The setting affects whether the module acts as a slave or a master, and it determines the usage of the control pins.

11.2.1 LEGACY MODE (PSP)

In Legacy mode (PMMODEH<1:0> = 00 and PMPEN = 1), the module is configured as a Parallel Slave Port (PSP) with the associated enabled module

pins dedicated to the module. In this mode, an external device, such as another microcontroller or microprocessor, can asynchronously read and write data using the 8-bit data bus (PMD<7:0>), the read (PMRD), write (PMWR) and chip select (PMCS1) inputs. It acts as a slave on the bus and responds to the read/write-control signals.

Figure 11-2 displays the connection of the PSP. When chip select is active and a write strobe occurs (PMCSx = 1 and PMWR = 1), the data from PMD<7:0> is captured into the PMDIN1L register.

FIGURE 11-2: LEGACY PARALLEL SLAVE PORT EXAMPLE

REGISTER 17-5:	ALRMRPT: ALARM REPEAT COUNTER (ACCESS F46h

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ARPT7 | ARPT6 | ARPT5 | ARPT4 | ARPT3 | ARPT2 | ARPT1 | ARPT0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits 1111111 = Alarm will repeat 255 more times .

00000000 = Alarm will not repeat

The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to FFh unless CHIME = 1.

EXAMPLE OF

19.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In half-bridge applications, where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable, dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. For an illustration, see Figure 19-14. The lower seven bits of the associated ECCPxDEL register (Register 19-5) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

HALF-BRIDGE PWM OUTPUT

FIGURE 19-14:

FIGURE 19-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS

The analog reference voltage is software selectable to either the device's positive and negative supply voltage (AVDD and AVSS), or the voltage level on the RA3/AN3/C1INB/VREF+ and RA2/AN2/C2INB/C1IND/C3INB/VREF-/CVREF pins.

The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in **Sleep**, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

The output of the sample and hold is the input into the Converter, which generates the result via successive approximation.

Each port pin associated with the A/D Converter can be configured as an analog input or as a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF, is set.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted. The value in the ADRESH:ADRESL register pair is not modified for a Power-on Reset (POR). These registers will contain unknown data after a POR.

Figure 22-1 provides the block diagram of the A/D module.

24.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional, if enabled. This interrupt will wake-up the device from Sleep mode when enabled. Each operational comparator will consume additional current. To minimize power consumption while in Sleep mode, turn off the comparators (CON = 0) before entering Sleep. If the device wakes up from Sleep, the contents of the CMxCON register are not affected.

24.8 Effects of a Reset

A device Reset forces the CMxCON registers to their Reset state. This forces both comparators and the voltage reference to the OFF state.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR2	OSCFIF	CM2IF	CM1IF	USBIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF
PIR5	—	—	CM3IF	TMR8IF	TMR6IF	TMR5IF	TMR5GIF	TMR1GIF
PIE2	OSCFIE	CM2IE	CM1IE	USBIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE
PIE5	_	—	CM3IE	TMR8IE	TMR6IE	TMR5IE	TMR5GIE	TMR1GIE
IPR2	OSCFIP	CM2IP	CM1IP	USBIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP
IPR5	—	—	CM3IP	TMR8IP	TMR6IP	TMR5IP	TMR5GIP	TMR1GIP
CMxCON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0
CMSTAT	_	—	—	—	_	COUT3	COUT2	COUT1
ANCON0	PCFG7 ^{(Leg} end:)	PCFG6 ^{(Leg-} end:)	PCFG5 ^{(Le} gend:)	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
ANCON1	VBGEN		_	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
TRISA	TRISA7	TRISA6	TRISA5	_	TRISA3	TRISA2	TRISA1	TRISA0

TABLE 24-3: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are not related to comparator operation.

26.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

26.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HLVDCON	VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR2	OSCFIF	CM2IF	CM1IF	USBIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF
PIE2	OSCFIE	CM2IE	CM1IE	USBIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE
IPR2	OSCFIP	CM2IP	CM1IP	USBIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

27.5 Measuring Time with the CTMU Module

Time can be precisely measured after the ratio (C/I) is measured from the current and capacitance calibration step by following these steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT.
- 3. Set EDG2STAT.
- 4. Perform an A/D conversion.
- 5. Calculate the time between edges as T = (C/I) * V, where *I* is calculated in the current calibration step (Section 27.3.1 "Current Source Calibration"), *C* is calculated in the capacitance calibration step (Section 27.3.2 "Capacitance Calibration") and *V* is measured by performing the A/D conversion.

It is assumed that the time measured is small enough that the capacitance, *C*OFFSET, provides a valid voltage to the A/D Converter. For the smallest time measurement, always set the A/D Channel Select register (AD1CHS) to an unused A/D channel; the corresponding pin for which is not connected to any circuit board trace. This minimizes added stray capacitance, keeping the total circuit capacitance close to that of the A/D Converter itself (4-5 pF). To measure longer time intervals, an external capacitor may be connected to an A/D channel and this channel selected when making a time measurement.

FIGURE 27-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

PIC18F47J53

ΒZ		Branch if Z	Branch if Zero				
Synta	ax:	BZ n					
Operands:		-128 ≤ n ≤ 1	127				
Oper	ation:	if Zero bit is (PC) + 2 + 2	; '1', 2n → PC				
Statu	s Affected:	None					
Enco	ding:	1110	0000 nni	nn nnnn			
Description:		If the Zero b will branch.	oit is '1', then t	he program			
		The 2's con added to the incremented instruction, PC + 2 + 2r 2-cycle inst	nplement num e PC. Since the d to fetch the r the new addre n. This instruct ruction.	ber '2n' is e PC will have next ess will be ion is then a			
Word	ls:	1					
Cycle	es:	1(2)					
Q C If Ju	ycle Activity: mp:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No operation	No operation	No operation	No operation			
lf No	o Jump:						
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	No operation			
Exam	<u>nple:</u>	HERE	BZ Jump				
	Before Instruc PC After Instructio	tion = ade on	dress (HERE)			
	If Zero PC If Zero PC	= 1; = add = 0; = add	dress (Jump dress (HERE) + 2)			

	Subroutine	Subroutine Call					
Syntax:	CALL k {,s	CALL k {,s}					
Operands:	0 ≤ k ≤ 104 s ∈ [0,1]	8575					
Operation:	$\begin{array}{l} (PC) + 4 \rightarrow \\ k \rightarrow PC < 20 \\ \text{if } s = 1 \\ (W) \rightarrow WS, \\ (STATUS) \rightarrow \\ (BSR) \rightarrow B \end{array}$	TOS,):1>; → STATU SRS	JSS,				
Status Affected:	None						
Encoding: 1st word (k<7:0>) 2nd word(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈			
Words:	(PC+ 4) is p If 's' = 1, th registers an respective STATUSS a update occ 20-bit value CALL is a 2 2	oushed o e W, STA re also pu shadow i and BSR urs (defa e 'k' is loa 2-cycle in	nto the rei ATUS and ushed into registers, S. If 's' = ult). Then ded into F struction.	turn stack BSR o their WS, 0, no 1, the PC<20:1>			
Cycles:	2						
Q Cycle Activity:							
Q1	Q2	Q3	8	Q4			
Decode	Read literal 'k'<7:0>,	Push P stac	C to Re k 'k Wr	ad literal <19:8>, ite to PC			
No operation	No operation	No operat	ion o	No peration			
Example:	HERE	CALL	THERE,	1			
Before Instruct PC After Instructio PC	tion = address n = address	G (HERE) E)				

31.2 DC Characteristics: Power-Down and Supply Current PIC18F47J53 Family (Industrial) (Continued)

PIC18LF47J53 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F47J53 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
Param. No.	Device	Тур.	Max.	Units	Conditions				
	PIC18LFXXJ53	9	45	μA	-40°C				
		9	45	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V			
		12	61	μA	+85°C				
	PIC18FXXJ53	24	95	μA	-40°C	VDD = 2.15V,	Fosc = 32 kHz ⁽³⁾ SEC_RUN mode, (SOSCSEL<1:0> = 01)		
		28	95	μA	+25°C	VDDCORE = 10 μ F			
		35	105	μA	+85°C	Capacitor			
	PIC18FXXJ53	27	110	μA	-40°C	VDD = 3.3V,			
		31	110	μA	+25°C	VDDCORE = 10 μ F			
		35	150	μA	+85°C	Capacitor			
	PIC18LFXXJ53	2.5	31	μA	-40°C				
		3.0	31	μA	+25°C	VDD = 2.5V, $VDDCORE = 2.5V$			
		6.1	50	μA	+85°C	VBBOOKE 2.0V			
	PIC18FXXJ53	19	87	μA	-40°C	VDD = 2.15V,	Fosc = 32 kHz ⁽³⁾ SEC_IDLE mode,		
		24	89	μA	+25°C	VDDCORE = 10 μ F			
		31	97	μA	+85°C	Capacitor	(SOSCSEL<1:0> = 01)		
	PIC18FXXJ53	21	100	μA	-40°C	VDD = 3.3V,			
		25	100	μA	+25°C	VDDCORE = 10 μ F			
		31	140	μA	+85°C	Capacitor			

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (USB module, WDT, etc.). The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/Vss;

MCLR = VDD; WDT disabled unless otherwise specified.

- **3:** Low-power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: This is the module differential current when the USB module is enabled and clocked at 48 MHz, but with no USB cable attached. When the USB cable is attached or data is being transmitted, the current consumption may be much higher (see Section 23.6.4 "USB Transceiver Current Consumption"). During USB Suspend mode (USBEN = 1, SUSPND = 1, bus in Idle state), the USB module current will be dominated by the D+ or D- pull-up resistor. The integrated pull-up resistors use "resistor switching" according to the resistor_ecn supplement to the USB 2.0 Specifications, and therefore, may be as low as 900Ω during Idle conditions.

31.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 31-9 apply to all timing specifications unless otherwise noted. Figure 31-4 specifies the load conditions for the timing specifications.

TABLE 31-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions (unless otherwise stated)						
AC CHARACTERISTICS	Operating temperature	$\text{-40}^\circ C \leq \text{TA} \leq \text{+85}^\circ C$	for industrial				
	Operating voltage VDD range as described in Section 31.1 and Section 31.3.						

FIGURE 31-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

31.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

TABLE 31-31: 10-BIT A/D CONVERSION REQUIREMENTS

Param. No.	Symbol	Characteristic		Max.	Units	Conditions
130	Tad	A/D Clock Period	0.7	25.0 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
131	TCNV	Conversion Time (not including acquisition time) ⁽²⁾	11	12	Tad	
132	TACQ	Acquisition Time ⁽³⁾	1.4	—	μS	-40°C to +85°C
135	Tswc	Switching Time from Convert \rightarrow Sample	—	(Note 4)		
137	TDIS	Discharge Time	0.2	—	μS	

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES registers may be read on the following TCY cycle.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50W.

4: On the following cycle of the device clock.

TABLE 31-32: 12-BIT A/D CONVERSION REQUIREMENTS

Param. No.	Symbol	Characteristic		Max.	Units	Conditions
130	TAD	A/D Clock Period	0.8	12.5 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
131	TCNV	Conversion Time (not including acquisition time) ⁽²⁾	13	14	Tad	
132	TACQ	Acquisition Time ⁽³⁾	1.4	—	μS	
135	Tswc	Switching Time from Convert \rightarrow Sample		(Note 4)		
137	TDIS	Discharge Time	0.2		μS	

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES registers may be read on the following TCY cycle.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD). The source impedance (Rs) on the input channels is 50Ω.

4: On the following cycle of the device clock.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	N	44				
Pitch	е	0.65 BSC				
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.25	6.45	6.60		
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2