

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26j53t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Nu	ımber			
Pin Name	28-SPDIP/ SSOP/ SOIC	28-QFN	Pin Type	Buffer Type	Description
Vss1	8	5	Р		Ground reference for logic and I/O pins.
Vss2	19	16	—	—	
Vdd	20	17	Ρ	_	Positive supply for peripheral digital logic and I/O pins.
VDDCORE/VCAP	6	3	—	—	Core logic power or external filter capacitor connection.
VDDCORE			Р	—	Positive supply for microcontroller core logic (regulator disabled).
VCAP			Р	—	External filter capacitor connection (regulator enabled).
VUSB	14	11	Р	_	USB voltage input pin.
Legend: TTL = TTL compati ST = Schmitt Trigg I = Input P = Power DIG = Digital outpu	ble input ger input wi t	th CMOS	levels	CI Ar O OI I ² (MOS = CMOS compatible input or output nalog = Analog input = Output D = Open-Drain (no P diode to VDD) C = Open-Drain, I ² C specific

TABLE 1-3: PIC18F2XJ53 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

2: 5.5V tolerant.

TABLE 1-4: PIC18F4XJ53 PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin N	umber	D .	D	
Pin Name	44- QFN	44- TQFP	Ріп Туре	Butter Type	Description
RB4/CCP4/PMA1/KBI0/SCK1/	14 ⁽³⁾	14 ⁽³⁾			PORTB (continued)
RB4 CCP4 ⁽²⁾ PMA1 ⁽²⁾			I/O I/O I/O	TTL/DIG ST/DIG ST/TTL/ DIG	Digital I/O. Capture/Compare/PWM input/output. Parallel Master Port address.
KBI0 SCK1 SCL1 RP7			 /O /O /O	TTL ST/DIG I ² C ST/DIG	Interrupt-on-change pin. Synchronous serial clock input/output. I ² C clock input/output. Remappable Peripheral Pin 7 input/output.
RB5/CCP5/PMA0/KBI1/SDI1/	15 ⁽³⁾	15 ⁽³⁾			
RB5 CCP5 PMA0 ⁽²⁾			I/O I/O I/O	TTL/DIG ST/DIG ST/TTL/	Digital I/O. Capture/Compare/PWM input/output. Parallel Master Port address.
KBI1 SDI1 SDA1 RP8			 /O /O	TTL ST I ² C ST/DIG	Interrupt-on-change pin. SPI data input. I ² C data input/output. Remappable Peripheral Pin 8 input/output.
RB6/CCP6/KBI2/PGC/RP9 RB6 CCP6 KBI2 PGC RP9	16 ⁽³⁾	16 ⁽³⁾	I/O I/O I I I/O	TTL/DIG ST/DIG TTL ST ST/DIG	Digital I/O. Capture/Compare/PWM input/output. Interrupt-on-change pin. ICSP™ clock input. Remappable Peripheral Pin 9 input/output.
RB7/CCP7/KBI3/PGD/RP10 RB7 CCP7 KBI3 PGD	17 ⁽³⁾	17 ⁽³⁾	I/O I/O I I/O	TTL/DIG ST/DIG TTL ST/DIG	Digital I/O. Capture/Compare/PWM input/output. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming
RP10			I/O	ST/DIG	data pin. Remappable Peripheral Pin 10 input/output.
Legend: TTL = TTL compatible in ST = Schmitt Trigger in I = Input P = Power DIG = Digital output	nput iput wit	h CMO	S level	S .	CMOS= CMOS compatible input or outputAnalog= Analog inputO= OutputOD= Open-Drain (no P diode to VDD) l^2C = Open-Drain, l^2C specific
 Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function. 2: Available only on 44-pin devices (PIC18F46J53, PIC18F47J53, PIC18LF46J53 and PIC18LF47J53). 					

3: 5.5V tolerant.

4.2 Run Modes

In the Run modes, clocks to both the core and peripherals are active. The difference between these modes is the clock source.

4.2.1 PRI_RUN MODE

The PRI_RUN mode is the normal, full-power execution mode of the microcontroller. This is also the default mode upon a device Reset unless Two-Speed Start-up is enabled (see **Section 28.4 "Two-Speed Start-up"** for details). In this mode, the OSTS bit is set (see **Section 3.5.1 "Oscillator Control Register"**).

4.2.2 SEC_RUN MODE

The SEC_RUN mode is the compatible mode to the "clock switching" feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the Timer1 oscillator. This gives users the option of low-power consumption while still using a high-accuracy clock source.

SEC_RUN mode is entered by setting the SCS<1:0> bits to '01'. The device clock source is switched to the Timer1 oscillator (see Figure 4-1), the primary oscillator is shut down, the SOSCRUN bit (OSC-CON2<6>) is set and the OSTS bit is cleared. Note: The Timer1 oscillator should already be running prior to entering SEC_RUN mode. If the T1OSCEN bit is not set when the SCS<1:0> bits are set to '01', entry to SEC_RUN mode will not occur. If the Timer1 oscillator is enabled, but not yet running, device clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

On transitions from SEC_RUN mode to PRI_RUN mode, the peripherals and CPU continue to be clocked from the Timer1 oscillator while the primary clock is started. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see Figure 4-2). When the clock switch is complete, the SOSCRUN bit is cleared, the OSTS bit is set and the primary clock would be providing the clock. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run.

FIGURE 4-1: TRANSITION TIMING FOR ENTRY TO SEC_RUN MODE

© 2009-2016 Microchip Technology Inc.

6.6 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different. This is due to the introduction of a new addressing mode for the data memory space. This mode also alters the behavior of Indirect Addressing using FSR2 and its associated operands.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect Addressing with FSR0 and FSR1 also remains unchanged.

6.6.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of Indirect Addressing using the FSR2 register pair and its associated file operands. Under proper conditions, instructions that use the Access Bank, that is, most bit and byte-oriented instructions, can invoke a form of Indexed Addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0); and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in Direct Addressing) or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

6.6.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use Direct Addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte and bit-oriented instructions are not affected if they use the Access Bank (Access RAM bit is '1') or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is provided in Figure 6-9.

Those who desire to use byte or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 29.2.1 "Extended Instruction Syntax"**.

COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED FIGURE 6-9: INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

When a = 0 and $f \ge 60h$:

The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and FFFh. This is the same as locations, F60h to FFFh (Bank 15), of data memory.

Locations below 060h are not available in this addressing mode.

The instruction executes in Indexed Literal Offset mode. 'f' is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space.

Note that in this mode, the correct syntax is: ADDWF [k], d where 'k' is the same as 'f'.

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

8.0 8 x 8 HARDWARE MULTIPLIER

8.1 Introduction

All PIC18 devices include an 8 x 8 hardware multiplier as part of the ALU. The multiplier performs an unsigned operation and yields a 16-bit result that is stored in the product register pair, PRODH:PRODL. The multiplier's operation does not affect any flags in the STATUS register.

Making multiplication a hardware operation allows it to be completed in a single instruction cycle. This has the advantages of higher computational throughput and reduced code size for multiplication algorithms and allows the PIC18 devices to be used in many applications previously reserved for digital signal processors. Table 8-1 provides a comparison of various hardware and software multiply operations, along with the savings in memory and execution time.

8.2 Operation

Example 8-1 provides the instruction sequence for an 8×8 unsigned multiplication. Only one instruction is required when one of the arguments is already loaded in the WREG register.

Example 8-2 provides the instruction sequence for an 8 x 8 signed multiplication. To account for the sign bits of the arguments, each argument's Most Significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 UNSIGNED MULTIPLY ROUTINE

MOVF	ARG1, W	;
MULWF	ARG2	; ARG1 * ARG2 ->
		; PRODH:PRODL

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY

ROUTINE

MOVF	ARG1, W		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH:PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVF	ARG2, W		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG2

		Program	Cycles	Time			
Routine	Multiply Method	Memory (Words)	(Max)	@ 48 MHz	@ 10 MHz	@ 4 MHz	
9 x 9 upgigpod	Without hardware multiply	13	69	5.7 μs	27.6 μs	69 μs	
8 x 8 unsigned	Hardware multiply	1	1	83.3 ns	400 ns	1 μs	
8 x 8 signed	Without hardware multiply	33	91	7.5 μs	36.4 μs	91 μs	
	Hardware multiply	6	6	500 ns	2.4 μs	6 μs	
16 x 16 uppigpod	Without hardware multiply	21	242	20.1 μs	96.8 μs	242 μs	
To x To unsigned	Hardware multiply	28	28	2.3 μs	11.2 μs	28 μs	
16 x 16 signed	Without hardware multiply	52	254	21.6 μs	102.6 μs	254 μs	
TO X TO SIGNED	Hardware multiply	35	40	3.3 μs	16.0 μs	40 μs	

TABLE 8-1: PERFORMANCE COMPARISON FOR VARIOUS MULTIPLY OPERATIONS

9.6 INTx Pin Interrupts

External interrupts on the INT0, INT1, INT2 and INT3 pins are edge-triggered. If the corresponding INTEDGx bit in the INTCON2 register is set (= 1), the interrupt is triggered by a rising edge; if the bit is clear, the trigger is on the falling edge. When a valid edge appears on the INTx pin, the corresponding flag bit and INTxIF are set. This interrupt can be disabled by clearing the corresponding enable bit, INTxIE. Flag bit, INTxIF, must be cleared in software in the Interrupt Service Routine before re-enabling the interrupt.

All external interrupts (INT0, INT1, INT2 and INT3) can wake up the processor from the Sleep and Idle modes if bit, INTxIE, was set prior to going into the power-managed modes. Deep Sleep mode can wake up from INT0, but the processor will start execution from the power-on reset vector rather than branch to the interrupt vector.

Interrupt priority for INT1, INT2 and INT3 is determined by the value contained in the Interrupt Priority bits, INT1IP (INTCON3<6>), INT2IP (INTCON3<7>) and INT3IP (INTCON2<1>). There is no priority bit associated with INT0; It is always a high-priority interrupt source.

9.7 TMR0 Interrupt

In 8-bit mode (which is the default), an overflow in the TMR0 register (FFh \rightarrow 00h) will set flag bit, TMR0IF. In 16-bit mode, an overflow in the TMR0H:TMR0L register

pair (FFFFh \rightarrow 0000h) will set TMR0IF. The interrupt can be enabled/disabled by setting/clearing enable bit, TMR0IE (INTCON<5>). Interrupt priority for Timer0 is determined by the value contained in the interrupt priority bit, TMR0IP (INTCON2<2>). See Section 12.0 "Timer0 Module" for further details on the Timer0 module.

9.8 PORTB Interrupt-on-Change

An input change on PORTB<7:4> sets flag bit, RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit, RBIE (INTCON<3>). Interrupt priority for PORTB interrupt-on-change is determined by the value contained in the interrupt priority bit, RBIP (INTCON2<0>).

9.9 Context Saving During Interrupts

During interrupts, the return PC address is saved on the stack. Additionally, the WREG, STATUS and BSR registers are saved on the Fast Return Stack. If a fast return from interrupt is not used (see **Section 6.3 "Data Memory Organization"**), the user may need to save the WREG, STATUS and BSR registers on entry to the Interrupt Service Routine. Depending on the user's application, other registers may also need to be saved. Example 9-1 saves and restores the WREG, STATUS and BSR registers during an Interrupt Service Routine.

EXAMPLE 9-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM

MOVWF MOVFF MOVFF	W_TEMP STATUS, STATUS_TEMP BSR, BSR_TEMP	; W_TEMP is in virtual bank ; STATUS_TEMP located anywhere ; BSR_TMEP located anywhere
;		
; USER	ISR CODE	
'		
MOVFF	BSR_TEMP, BSR	; Restore BSR
MOVF	W_TEMP, W	; Restore WREG
MOVFF	STATUS_TEMP, STATUS	; Restore STATUS

REGISTER 10-17: RPINR16: PERIPHERAL PIN SELECT INPUT REGISTER 16 (BANKED EF7h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	—	RX2DT2R4	RX2DT2R3	RX2DT2R2	RX2DT2R1	RX2DT2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RX2DT2R<4:0>:** EUSART2 Synchronous/Asynchronous Receive (RX2/DT2) to the Corresponding RPn Pin bits

REGISTER 10-18: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (BANKED EE7h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0
bit 7							bit 0

Legend:	R/W = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	V = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T5CKR<4:0>: Timer5 External Clock Input (T5CKI) to the Corresponding RPn Pin bits

REGISTER 10-19: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17 (BANKED EF8h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	CK2R4	CK2R3	CK2R2	CK2R1	CK2R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 7-5 Unimplemented: Read as '	it 7-5	Unimplemented: Read as '0'
----------------------------------	--------	----------------------------

bit 4-0 CK2R<4:0>: EUSART2 Clock Input (CK2) to the Corresponding RPn Pin bits

REGISTER 10-20: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21 (BANKED EFCh)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:	R/W = Readable bit, Writab	R/W = Readable bit, Writable bit if IOLOCK = 0							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'							
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						

bit 7-5 Unimplemented: Read as '0'

bit 4-0 SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits

FIGURE 11-24: WRITE TIMING, 16-BIT MULTIPLEXED DATA, PARTIALLY MULTIPLEXED ADDRESS

FIGURE 11-26: WRITE TIMING, 16-BIT MULTIPLEXED DATA, FULLY MULTIPLEXED 16-BIT ADDRESS

	Q1 Q2 Q3 Q4	Q1	Q2 Q3	Q4	Q1	Q2 Q3	Q4	Q1	Q2 Q3	Q4	Q1	Q2 Q3	Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
PMCS1			1 1 1	1 1 1		1 1 1	1 1 1	1 1 1	, , , ,		I 1			<u> </u>	
PMD<7:0>		Ac	dress<7:	0>	Ad	dress<13	8:8>	X	LSB			MSB)	
PMWR		1	1 1	1 1		1 1	1 1							1	
PMRD		 	1 1 1	 	1 1	1 1 1	1 1 1	1 1	1 1		1 1 1 1			1 1	
PMBE		1	1	I I	1	1	1	<u> </u>	1 1					Y	
PMALH				<u> </u>	1 1	1 1 1	1 1 1		1 1 1		 	I I		1 1	<u> </u>
PMALL				, , ,			<u>\</u>		1	I					
PMPIF		1	1	1 1	:	1 1	1	1 1	1 1	1	1 I 1 I	1	1	:	
BUSY]		1 	1 1 1 1		· • •	1 1 1	1 1 1	, , , ,		<u> </u>	 	 	1 1 1 1	
			•	•			•								

19.3 Compare Mode

In Compare mode, the 16-bit CCPRx register pair value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the ECCPx pin can be:

- Driven high
- · Driven low
- Toggled (high-to-low or low-to-high)
- Unchanged (that is, reflecting the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCPxM<3:0>). At the same time, the interrupt flag bit, CCPxIF, is set.

19.3.1 ECCP PIN CONFIGURATION

Users must configure the ECCPx pin as an output by clearing the appropriate TRIS bit.

Note:	Clea	ring the C	CPxCON re	gister wil	l force
	the	ECCPx	compare	output	latch
	(dep	ending on	device conf	iguration)	to the
	defa	ult low lev	el. This is i	not the P	ORTx
	I/O c	lata latch.			

19.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode or Synchronized Counter mode if the ECCP module is using the compare feature. In Asynchronous Counter mode, the compare operation will not work reliably.

19.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCPxM<3:0> = 1010), the ECCPx pin is not affected; only the CCPxIF interrupt flag is affected.

19.3.4 SPECIAL EVENT TRIGGER

The ECCP module is equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCPxM<3:0> = 1011).

The Special Event Trigger resets the Timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a Programmable Period register for either timer.

The Special Event Trigger can also start an A/D conversion. In order to do this, the A/D Converter must already be enabled.

FIGURE 19-2: COMPARE MODE OPERATION BLOCK DIAGRAM

					SYNC	= 0, BRGH	i = 0, BRG	16 = 1				
BAUD	Fosc	= 40.000) MHz	Fosc	Fosc = 20.000 N		Fosc	= 10.00	0 MHz	Fosc = 8.000 MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	0.300	0.00	8332	0.300	0.02	4165	0.300	0.02	2082	0.300	-0.04	1665
1.2	1.200	0.02	2082	1.200	-0.03	1041	1.200	-0.03	520	1.201	-0.16	415
2.4	2.402	0.06	1040	2.399	-0.03	520	2.404	0.16	259	2.403	-0.16	207
9.6	9.615	0.16	259	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—	—	_

TABLE 21-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED	TABLE 21-3:	BAUD RATES FOR	ASYNCHRONOUS	MODES (CONTINUED)
--	-------------	----------------	---------------------	-------------------

			S	YNC = 0, E	BRGH = (, BRG16 =	1			
BAUD	Foso	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.04	832	0.300	-0.16	415	0.300	-0.16	207	
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51	
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25	
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_	
19.2	19.231	0.16	12	_	_	_	_	_	_	
57.6	62.500	8.51	3	_	_	_	_	_	_	
115.2	125.000	8.51	1	—	_	—	—	_	_	

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1											
BAUD	Fosc	= 40.000) MHz	Fosc = 20.000 MHz		Fosc	= 10.000) MHz	Foso	Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	
0.3	0.300	0.00	33332	0.300	0.00	16665	0.300	0.00	8332	0.300	-0.01	6665	
1.2	1.200	0.00	8332	1.200	0.02	4165	1.200	0.02	2082	1.200	-0.04	1665	
2.4	2.400	0.02	4165	2.400	0.02	2082	2.402	0.06	1040	2.400	-0.04	832	
9.6	9.606	0.06	1040	9.596	-0.03	520	9.615	0.16	259	9.615	-0.16	207	
19.2	19.193	-0.03	520	19.231	0.16	259	19.231	0.16	129	19.230	-0.16	103	
57.6	57.803	0.35	172	57.471	-0.22	86	58.140	0.94	42	57.142	0.79	34	
115.2	114.943	-0.22	86	116.279	0.94	42	113.636	-1.36	21	117.647	-2.12	16	

		SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1										
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz					
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)			
0.3	0.300	0.01	3332	0.300	-0.04	1665	0.300	-0.04	832			
1.2	1.200	0.04	832	1.201	-0.16	415	1.201	-0.16	207			
2.4	2.404	0.16	415	2.403	-0.16	207	2.403	-0.16	103			
9.6	9.615	0.16	103	9.615	-0.16	51	9.615	-0.16	25			
19.2	19.231	0.16	51	19.230	-0.16	25	19.230	-0.16	12			
57.6	58.824	2.12	16	55.555	3.55	8	—	_	_			
115.2	111.111	-3.55	8	_	—		_	_	_			

REGISTER 28-4: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

U-1	U-1	U-1	U-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1
	_		_	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7	-						bit 0
l egend:							

Legenu.			
R = Readable bit	WO = Write-Once bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Program the corresponding Flash Configuration bit to '1'

	g
bit 3-0	WDTPS<3:0>: Watchdog Timer Postscale Select bits
	1111 = 1:32,768
	1110 = 1:16,384
	1101 = 1:8,192
	1100 = 1:4,096
	1011 = 1:2,048
	1010 = 1:1,024
	1001 = 1:512
	1000 = 1:256
	0111 = 1:128
	0110 = 1:64
	0101 = 1:32
	0100 = 1:16
	0011 = 1 :8
	0010 = 1:4
	0001 = 1:2
	0000 = 1:1

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

Field	Description
a	RAM access bit:
	a = 0: RAM location in Access RAM (BSR register is ignored)
	a = 1: RAM bank is specified by BSR register
bbb	Bit address within an 8-bit file register (0 to 7).
BSR	Bank Select Register. Used to select the current RAM bank.
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.
d	Destination select bit:
	d = 0: store result in WREG
d a a b	u = 1. store result in the register T
dest	2 bit Designation. ether the WREG register of the specified register file location.
1 	0-bit Register file address (000 to FFI), 01 2-bit FSR designator (011 to 51).
L _S	12-bit Register file address (000h to FFFI). This is the destination address.
	Clebal Interrupt Enable bit
GIE 1-	Giobal Interrupt Enable bit.
Labal	
Taber	The mode of the TPI PTP register for the table read and table write instructions
	Only used with table read and table write instructions:
*	No Change to register (such as TBLPTR with table reads and writes)
*+	Post-Increment register (such as TBLPTR with table reads and writes)
*_	Post-Decrement register (such as TBLPTR with table reads and writes)
+*	Pre-Increment register (such as TBLPTR with table reads and writes)
n	The relative address (2's complement number) for relative branch instructions or the direct address for
	Call/Branch and Return instructions.
PC	Program Counter.
PCL	Program Counter Low Byte.
PCH	Program Counter High Byte.
PCLATH	Program Counter High Byte Latch.
PCLATU	Program Counter Upper Byte Latch.
PD	Power-Down bit.
PRODH	Product of Multiply High Byte.
PRODL	Product of Multiply Low Byte.
s	Fast Call/Return mode select bit:
	s = 0: do not update into/from shadow registers
	s = 1: certain registers loaded into/from shadow registers (Fast mode)
TBLPTR	2 1-bit Table Pointer (points to a Program Memory location).
TABLAT	o-bit Table Latch.
10	Time-out bit.
105	Top-OI-Stack.
u MDW	Wetebdeg Timer
WDI	Watchdog Tillel.
WREG	Don't care ($\frac{1}{2}$) The accomplex will concrete code with $x = 0$. It is the recommended form of use for
X	compatibility with all Microchip software tools
Za	7-bit offset value for Indirect Addressing of register files (source).
Zd	7-bit offset value for Indirect Addressing of register files (destination).
{ }	Optional argument.
[text]	Indicates an Indexed Address.
(text)	The contents of text.

TBLWT	Table Wri	te						
Syntax:	TBLWT (*; *+; *-; +*)							
Operands:	None							
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR if TBLWT+*, (TABLAT) \rightarrow Holding Register; (TABLAT) \rightarrow Holding Register;							
Status Affected:	None	,	9 9					
Encoding:	0000	None 0000 0000 0000 11nn nn=0 * =1 *- =2 *-						
Description:	This instruction uses the 3 LSBs of TBLPTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 6.0 "Memory Organization" for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. The LSb of the TBLPTR selects which byte of the program memory location to access. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word							
	The TBLW value of T	⊤ instruct BLPTR as	Word tion can m follows:	odify the				
	 no change post-increment post-decrement pre-increment 							
Words:	1							
Cycles:	2							
Q Cycle Activity:	<i>c :</i>			<i></i>				
	Q1	Q2	Q3	Q4				
	Decode	No operation	NO operation	NO operation				
	No	No	No	No				
	operation	operation	operation	operation				
	(Read (Write to TABLAT) Holding							

Register)

TBLWT Table Write (Continued)

Example 1: TBLWT *+;			
Before Instruction			
TABLAT TBLPTR HOLDING REGISTER	= =	55h 00A356h	
(00A356h)	=	FFh	
After Instructions (table write	completion)		
TABLAT TBLPTR HOLDING REGISTER	= =	55h 00A357h	
(00A356h)	=	55h	
Example 2: TBLWT +*;			
Before Instruction			
TABLAT	=	34h	
	=	01389Ah	
(01389Ah) HOLDING REGISTER	=	FFh	
(01389Bh)	=	FFh	
After Instruction (table write of	omple	etion)	
TABLAT	=	34h	
	=	01389Bh	
(01389Ah) HOLDING REGISTER	=	FFh	
(01389Bh)	=	34h	

Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
A01	NR	Resolution	—	_	12	bit	$\Delta VREF \ge 3.0V$
A03	EIL	Integral Linearity Error	—	<±1	±2	LSb	$\Delta VREF \ge 3.0V$
A04	Edl	Differential Linearity Error	—	<±1	1.5	LSb	$\Delta \text{VREF} \geq 3.0 \text{V}$
A06	EOFF	Offset Error	—	<±1	5	LSb	$\Delta VREF \ge 3.0V$
A07	Egn	Gain Error	—	_	<±3.5	LSb	$\Delta VREF \ge 3.0V$
A10		Monotonicity	G	uarantee	d ⁽¹⁾	_	$VSS \leq VAIN \leq VREF$
A20	$\Delta VREF$	Reference Voltage Range (VREFH – VREFL)	2.0 3	_		V V	$\begin{array}{l} VDD < 3.0V \\ VDD \geq 3.0V \end{array}$
A21	Vrefh	Reference Voltage High For 10-bit resolution For 12-bit resolution	VREFL Vss + 3V	_	VDD + 0.3V VDD + 0.3V	V V	
A22	Vrefl	Reference Voltage Low For 10-bit resolution For 12-bit resolution	Vss – 0.3V Vss – 0.3V	_	Vrefh Vdd - 3V	V V	
A25	VAIN	Analog Input Voltage	VREFL	_	VREFH	V	
A30	ZAIN	Recommended Impedance of Analog Voltage Source For 10-bit resolution For 12-bit resolution		_	10 2.5	kΩ kΩ	
A50	IREF	VREF Input Current ⁽²⁾		_	5 150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREFH current is from RA3/AN3/VREF+/C1INB pin or VDD, whichever is selected as the VREFH source.

VREFL current is from RA2/AN2/VREF-/CVREF/C2INB pin or VSS, whichever is selected as the VREFL source.

FIGURE 31-22: A/D CONVERSION TIMING

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	N		44			
Pitch	е		0.65 BSC			
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.25 6.45 6.60				
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20 0.30 0.35				
Terminal Length	L	0.30 0.40 0.50				
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-076C Sheet 1 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Leads	N		44		
Lead Pitch	е		0.80 BSC		
Overall Height	A	1.20			
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.00	1.05	
Overall Width	E	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Width	b	0.30	0.37	0.45	
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45 0.60 0.75			
Footprint	L1	1.00 REF			
Foot Angle	θ	0° 3.5° 7°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2