

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f26j53t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-4: PIC18F4XJ53 PINOUT I/O DESCRIPTIONS (CONTINUED)

	Pin N	umber	D .	D	
Pin Name	44- QFN	44- TQFP	Ріп Туре	Butter Type	Description
RB4/CCP4/PMA1/KBI0/SCK1/	14 ⁽³⁾	14 ⁽³⁾			PORTB (continued)
RB4 CCP4 ⁽²⁾ PMA1 ⁽²⁾			I/O I/O I/O	TTL/DIG ST/DIG ST/TTL/ DIG	Digital I/O. Capture/Compare/PWM input/output. Parallel Master Port address.
KBI0 SCK1 SCL1 RP7			 /O /O /O	TTL ST/DIG I ² C ST/DIG	Interrupt-on-change pin. Synchronous serial clock input/output. I ² C clock input/output. Remappable Peripheral Pin 7 input/output.
RB5/CCP5/PMA0/KBI1/SDI1/	15 ⁽³⁾	15 ⁽³⁾			
RB5 CCP5 PMA0 ⁽²⁾			I/O I/O I/O	TTL/DIG ST/DIG ST/TTL/	Digital I/O. Capture/Compare/PWM input/output. Parallel Master Port address.
KBI1 SDI1 SDA1 RP8			 /O /O	TTL ST I ² C ST/DIG	Interrupt-on-change pin. SPI data input. I ² C data input/output. Remappable Peripheral Pin 8 input/output.
RB6/CCP6/KBI2/PGC/RP9 RB6 CCP6 KBI2 PGC RP9	16 ⁽³⁾	16 ⁽³⁾	I/O I/O I I I/O	TTL/DIG ST/DIG TTL ST ST/DIG	Digital I/O. Capture/Compare/PWM input/output. Interrupt-on-change pin. ICSP™ clock input. Remappable Peripheral Pin 9 input/output.
RB7/CCP7/KBI3/PGD/RP10 RB7 CCP7 KBI3 PGD	17 ⁽³⁾	17 ⁽³⁾	I/O I/O I I/O	TTL/DIG ST/DIG TTL ST/DIG	Digital I/O. Capture/Compare/PWM input/output. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming
RP10			I/O	ST/DIG	data pin. Remappable Peripheral Pin 10 input/output.
Legend: TTL = TTL compatible in ST = Schmitt Trigger in I = Input P = Power DIG = Digital output	nput iput wit	h CMO	S level	S .	CMOS= CMOS compatible input or outputAnalog= Analog inputO= OutputOD= Open-Drain (no P diode to VDD) l^2C = Open-Drain, l^2C specific
Note 1: RA7 and RA6 will be dis 2: Available only on 44-pin	abled if device	f OSC1 s (PIC1	and O 8F46J	SC2 are 1 53, PIC18	used for the clock function. 3F47J53, PIC18LF46J53 and PIC18LF47J53).

3: 5.5V tolerant.

	DSCONH<7>	oscco	N<7.1:0>	Module	Clocking	
Mode	DSEN ⁽¹⁾	IDLEN ⁽¹⁾	SCS<1:0>	CPU Peripherals		Available Clock and Oscillator Source
Sleep	0	0	N/A	Off	Off	Timer1 oscillator and/or RTCC may optionally be enabled
Deep Sleep ⁽³⁾	1	0	N/A	Powered off ⁽²⁾	Powered off	RTCC can run uninterrupted using the Timer1 or internal low-power RC oscillator
PRI_RUN	0	N/A	00	Clocked	Clocked	The normal, full-power execution mode; primary clock source (defined by FOSC<2:0>)
SEC_RUN	0	N/A	01	Clocked	Clocked	Secondary – Timer1 oscillator
RC_RUN	0	N/A	11	Clocked	Clocked	Postscaled internal clock
PRI_IDLE	0	1	00	Off	Clocked	Primary clock source (defined by FOSC<2:0>)
SEC_IDLE	0	1	01	Off	Clocked	Secondary – Timer1 oscillator
RC_IDLE	0	1	11	Off	Clocked	Postscaled internal clock

TABLE 4-1:LOW-POWER MODES

Note 1: IDLEN and DSEN reflect their values when the SLEEP instruction is executed.

2: Deep Sleep turns off the internal core voltage regulator to power down core logic. See Section 4.6 "Deep Sleep Mode" for more information.

3: Deep Sleep mode is only available on "F" devices, not "LF" devices.

4.1.3 CLOCK TRANSITIONS AND STATUS INDICATORS

The length of the transition between clock sources is the sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Two bits indicate the current clock source and its status: OSTS (OSCCON<3>) and SOSCRUN (OSC-CON2<6>). In general, only one of these bits will be set in a given power-managed mode. When the OSTS bit is set, the primary clock would be providing the device clock. When the SOSCRUN bit is set, the Timer1 oscillator would be providing the clock. If neither of these bits is set, INTRC would be clocking the device.

Note:	Executing a SLEEP instruction does not
	necessarily place the device into Sleep
	mode. It acts as the trigger to place the
	controller into either the Sleep or Deep
	Sleep mode, or one of the Idle modes,
	depending on the setting of the IDLEN bit.

4.1.4 MULTIPLE SLEEP COMMANDS

The power-managed mode that is invoked with the SLEEP instruction is determined by the setting of the IDLEN and DSEN bits at the time the instruction is executed. If another SLEEP instruction is executed, the device will enter the power-managed mode specified by IDLEN and DSEN at that time. If IDLEN or DSEN have changed, the device will enter the new power-managed mode specified by the new setting.

4.4 Idle Modes

The Idle modes allow the controller's CPU to be selectively shut down while the peripherals continue to operate. Selecting a particular Idle mode allows users to further manage power consumption.

If the IDLEN bit is set to '1' when a SLEEP instruction is executed, the peripherals will be clocked from the clock source selected using the SCS<1:0> bits; however, the CPU will not be clocked. The clock source status bits are not affected. Setting IDLEN and executing a SLEEP instruction provides a quick method of switching from a given Run mode to its corresponding Idle mode.

If the WDT is selected, the INTRC source will continue to operate. If the Timer1 oscillator is enabled, it will also continue to run.

Since the CPU is not executing instructions, the only exits from any of the Idle modes are by interrupt, WDT time-out or a Reset. When a wake event occurs, CPU execution is delayed by an interval of TCSD (parameter 38, Table 31-14) while it becomes ready to execute code. When the CPU begins executing code, it resumes with the same clock source for the current Idle mode. For example, when waking from RC_IDLE mode, the internal oscillator block will clock the CPU and peripherals (in other words, RC_RUN mode). The IDLEN and SCS bits are not affected by the wake-up.

While in any Idle or Sleep mode, a WDT time-out will result in a WDT wake-up to the Run mode currently specified by the SCS<1:0> bits.

4.4.1 PRI_IDLE MODE

This mode is unique among the three low-power Idle modes, in that it does not disable the primary device clock. For timing-sensitive applications, this allows for the fastest resumption of device operation with its more accurate primary clock source, since the clock source does not have to "warm up" or transition from another oscillator.

PRI_IDLE mode is entered from PRI_RUN mode by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then set the SCS bits to '00' and execute SLEEP. Although the CPU is disabled, the peripherals continue to be clocked from the primary clock source specified by the FOSC<1:0> Configuration bits. The OSTS bit remains set (see Figure 4-7). When a wake event occurs, the CPU is clocked from the primary clock source. A delay of interval, TCSD, is required between the wake event and when code execution starts. This is required to allow the CPU to become ready to execute instructions. After the wake-up, the OSTS bit remains set. The IDLEN and SCS bits are not affected by the wake-up (see Figure 4-8).

4.4.2 SEC_IDLE MODE

In SEC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the Timer1 oscillator. This mode is entered from SEC_RUN by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, set IDLEN first, then set SCS<1:0> to '01' and execute SLEEP. When the clock source is switched to the Timer1 oscillator, the primary oscillator is shut down, the OSTS bit is cleared and the SOSCRUN bit is set.

When a wake event occurs, the peripherals continue to be clocked from the Timer1 oscillator. After an interval of TCSD following the wake event, the CPU begins executing code being clocked by the Timer1 oscillator. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run (see Figure 4-8).

Note: The Timer1 oscillator should already be running prior to entering SEC_IDLE mode. If the T1OSCEN bit is not set when the SLEEP instruction is executed, the SLEEP instruction will be ignored and entry to SEC_IDLE mode will not occur. If the Timer1 oscillator is enabled, but not yet running, peripheral clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

TADLE 3-2:	2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)									
Register	Applicabl	e Devices	Power-on Reset, Brown-out Reset, Wake From Deep Sleep	MCLR Resets WDT Reset RESET Instruction Stack Resets CM Resets	Wake-up via WDT or Interrupt					
PSTR1CON	PIC18F2XJ53	PIC18F4XJ53	00-0 0001	00-0 0001	uu-u uuuu					
ECCP1AS	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
ECCP1DEL	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
CCPR1H	PIC18F2XJ53	PIC18F4XJ53	xxxx xxxx	uuuu uuuu	uuuu uuuu					
CCPR1L	PIC18F2XJ53	PIC18F4XJ53	xxxx xxxx	uuuu uuuu	uuuu uuuu					
CCP1CON	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
PSTR2CON	PIC18F2XJ53	PIC18F4XJ53	00-0 0001	00-0 0001	uu-u uuuu					
ECCP2AS	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
ECCP2DEL	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
CCPR2H	PIC18F2XJ53	PIC18F4XJ53	xxxx xxxx	սսսս սսսս	uuuu uuuu					
CCPR2L	PIC18F2XJ53	PIC18F4XJ53	xxxx xxxx	uuuu uuuu	uuuu uuuu					
CCP2CON	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
CTMUCONH	PIC18F2XJ53	PIC18F4XJ53	0-00 000-	0-00 000-	u-uu uuu-					
CTMUCONL	PIC18F2XJ53	PIC18F4XJ53	0000 00xx	0000 00xx	uuuu uuuu					
CTMUICON	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
SPBRG1	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
RCREG1	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
TXREG1	PIC18F2XJ53	PIC18F4XJ53	XXXX XXXX	uuuu uuuu	uuuu uuuu					
TXSTA1	PIC18F2XJ53	PIC18F4XJ53	0000 0010	0000 0010	uuuu uuuu					
RCSTA1	PIC18F2XJ53	PIC18F4XJ53	0000 000x	0000 000x	uuuu uuuu					
SPBRG2	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
RCREG2	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
TXREG2	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
TXSTA2	PIC18F2XJ53	PIC18F4XJ53	0000 0010	0000 0010	uuuu uuuu					
EECON2	PIC18F2XJ53	PIC18F4XJ53								
EECON1	PIC18F2XJ53	PIC18F4XJ53	00 x00-	00 u00-	00 u00-					
IPR3	PIC18F2XJ53	PIC18F4XJ53	1111 1111	1111 1111	uuuu uuuu					
PIR3	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu ⁽³⁾					
PIE3	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
IPR2	PIC18F2XJ53	PIC18F4XJ53	1111 1111	1111 1111	uuuu uuuu					
PIR2	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu ⁽³⁾					
PIE2	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					

INITIAL IZATION CONDITIONS FOR ALL DECISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 4: See Table 5-1 for Reset value for specific condition.
- 5: Not implemented for PIC18F2XJ53 devices.
- 6: Not implemented for "LF" devices.

TABLE 6-3: NON-ACCESS BANK SPECIAL FUNCTION REGISTER MAP

Address	Name	Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
F5Fh	PMCONH	F3Fh	RTCCFG	F1Fh	PR6	EFFh	RPINR24	EDFh	_	EBFh	PPSCON
F5Eh	PMCONL	F3Eh	RTCCAL	F1Eh	T6CON	EFEh	RPINR23	EDEh	_	EBEh	_
F5Dh	PMMODEH	F3Dh	REFOCON	F1Dh	TMR8	EFDh	RPINR22	EDDh	_	EBDh	_
F5Ch	PMMODEL	F3Ch	PADCFG1	F1Ch	PR8	EFCh	RPINR21	EDCh	_	EBCh	PMDIS3
F5Bh	PMDOUT2H	F3Bh	RTCVALH	F1Bh	T8CON	EFBh	_	EDBh	_	EBBh	PMDIS2
F5Ah	PMDOUT2L	F3Ah	RTCVALL	F1Ah	PSTR3CON	EFAh	_	EDAh	_	EBAh	PMDIS1
F59h	PMDIN2H	F39h	UCFG	F19h	ECCP3AS	EF9h	—	ED9h	—	EB9h	PMDIS0
F58h	PMDIN2L	F38h	UADDR	F18h	ECCP3DEL	EF8h	RPINR17	ED8h	RPOR24	EB8h	ADCTRIG
F57h	PMEH	F37h	UEIE	F17h	CCPR3H	EF7h	RPINR16	ED7h	RPOR23	EB7h	—
F56h	PMEL	F36h	UIE	F16h	CCPR3L	EF6h	—	ED6h	RPOR22	EB6h	—
F55h	PMSTATH	F35h	UEP15	F15h	CCP3CON	EF5h	—	ED5h	RPOR21	EB5h	—
F54h	PMSTATL	F34h	UEP14	F14h	CCPR4H	EF4h	RPINR14	ED4h	RPOR20	EB4h	—
F53h	CVRCON	F33h	UEP13	F13h	CCPR4L	EF3h	RPINR13	ED3h	RPOR19	EB3h	—
F52h	CCPTMRS0	F32h	UEP12	F12h	CCP4CON	EF2h	RPINR12	ED2h	RPOR18	EB2h	—
F51h	CCPTMRS1	F31h	UEP11	F11h	CCPR5H	EF1h	—	ED1h	RPOR17	EB1h	—
F50h	CCPTMRS2	F30h	UEP10	F10h	CCPR5L	EF0h	—	ED0h	—	EB0h	—
F4Fh	DSGPR1	F2Fh	UEP9	F0Fh	CCP5CON	EEFh	—	ECFh	—		
F4Eh	DSGPR0	F2Eh	UEP8	F0Eh	CCPR6H	EEEh	—	ECEh	—		
F4Dh	DSCONH	F2Dh	UEP7	F0Dh	CCPR6L	EEDh	—	ECDh	RPOR13		
F4Ch	DSCONL	F2Ch	UEP6	F0Ch	CCP6CON	EECh	_	ECCh	RPOR12		
F4Bh	DSWAKEH	F2Bh	UEP5	F0Bh	CCPR7H	EEBh	_	ECBh	RPOR11		
F4Ah	DSWAKEL	F2Ah	UEP4	F0Ah	CCPR7L	EEAh	RPINR9	ECAh	RPOR10		
F49h	ANCON1	F29h	UEP3	F09h	CCP7CON	EE9h	RPINR8	EC9h	RPOR9		
F48h	ANCON0	F28h	UEP2	F08h	CCPR8H	EE8h	RPINR7	EC8h	RPOR8		
F47h	ALRMCFG	F27h	UEP1	F07h	CCPR8L	EE7h	RPINR15	EC7h	RPOR7		
F46h	ALRMRPT	F26h	UEP0	F06h	CCP8CON	EE6h	RPINR6	EC6h	RPOR6		
F45h	ALRMVALH	F25h	CM3CON	F05h	CCPR9H	EE5h	_	EC5h	RPOR5		
F44h	ALRMVALL	F24h	TMR5H	F04h	CCPR9L	EE4h	RPINR4	EC4h	RPOR4		
F43h	_	F23h	TMR5L	F03h	CCP9CON	EE3h	RPINR3	EC3h	RPOR3		
F42h	ODCON1	F22h	T5CON	F02h	CCPR10H	EE2h	RPINR2	EC2h	RPOR2		
F41h	ODCON2	F21h	T5GCON	F01h	CCPR10L	EE1h	RPINR1	EC1h	RPOR1		
F40h	ODCON3	F20h	TMR6	F00h	CCP10CON	EE0h	—	EC0h	RPOR0	l	

Addr	Eile Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on
				Dit 5	Dit 4	Dit 5	DR 2	Dit I	Bitt	POR, BOR
F7Fh	SPBRGH1	EUSART1 B	aud Rate Gen	erator High B	yte					0000 0000
F7Eh	BAUDCON1	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	0100 0-00
F7Dh	SPBRGH2	EUSART2 B	aud Rate Gen	erator High B	yte				i	0000 0000
F7Ch	BAUDCON2	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	0100 0-00
F7Bh	TMR3H	Timer3 Regis	ster High Byte							XXXX XXXX
F7Ah	TMR3L	Timer3 Regis	ster Low Byte					1	1	XXXX XXXX
F79h	T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	RD16	TMR3ON	0000 0000
F78h	TMR4	Timer4 Regis	ster							0000 0000
F77h	PR4	Timer4 Perio	d Register	1	1	1		1	1	1111 1111
F76h	T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	-000 0000
F75h	SSP2BUF	MSSP2 Rec	eive Buffer/Tra	ansmit Registe	er			-		XXXX XXXX
F74h	SSP2ADD	MSSP2 Add	ress Register	(I ² C Slave Mo	de). MSSP2 E	aud Rate Relo	oad Register (² C Master Mo	de).	
F74h	SSP2MSK	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	0000 0000
F73h	SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	1111 1111
F72h	SSP2CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000
F71h	SSP2CON2	GCEN	ACKSTAT	ACKDT ADMSK5	ACKEN ADMSK4	RCEN ADMSK3	PEN ADMSK2	RSEN ADMSK1	SEN	0000 0000
F70h	CMSTAT	—	—	—	—	—	COUT3	COUT2	COUT1	111
F6Fh	PMADDRH/	—	CS1 Parallel Master Port Address High Byte							
	PMDOUT1H ^W	Parallel Port	arallel Port Out Data High Byte (Buffer 1)							
F6Eh	PMADDRL/ PMDOUT1L ⁽¹⁾	Parallel Mas Parallel Port	arallel Master Port Address Low Byte/ arallel Port Out Data Low Byte (Buffer 1)							0000 0000
F6Dh	PMDIN1H ⁽¹⁾	Parallel Port	In Data High I	Byte (Buffer 1)					0000 0000
F6Ch	PMDIN1L ⁽¹⁾	Parallel Port	In Data Low B	Byte (Buffer 1)						0000 0000
F6Bh	TXADDRL	SPI DMA Tra	ansmit Data P	ointer Low By	te					xxxx xxxx
F6Ah	TXADDRH	_	_	_	_	SPI DMA Tra	nsmit Data Po	ointer High Byte	е	xxxx
F69h	RXADDRL	SPI DMA Re	ceive Data Po	ointer Low Byte	e					xxxx xxxx
F68h	RXADDRH	_	_	_	_	SPI DMA Re	ceive Data Po	inter High Byte	9	xxxx
F67h	DMABCL	SPI DMA By	te Count Low	Byte						xxxx xxxx
F66h	DMABCH	_	_	_	_	_	_	SPI DMA Byt Byte	e Count High	xx
F65h	UCON ⁽¹⁾	_	PPBRST	SE0	PKTDIS	USBEN	RESUME	SUSPND	_	-0x0 000-
F64h	USTAT	_	ENDP3	ENDP2	ENDP1	ENDP0	DIR	PPBI	_	-xxx xxx-
F63h	UEIR	BTSEF	—	_	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF	00 0000
F62h	UIR	_	SOFIF	STALLIF	IDLEIF	TRNIF	ACTVIF	UERRIF	URSTIF	-000 0000
F61h	UFRMH	_	_	_	_	—	FRM10	FRM9	FRM8	xxx
F60h	UFRML	FRM7	FRM6	FRM5	FRM4	FRM3	FRM2	FRM1	FRM0	xxxx xxxx
F5Fh	PMCONH ⁽¹⁾	PMPEN	_	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN	0-00 0000
F5Eh	PMCONL ⁽¹⁾	CSF1	CSF0	ALP	_	CS1P	BEP	WRSP	RDSP	000- 0000
F5Dh	PMMODEH ⁽¹⁾	BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0	0000 0000
F5Ch	PMMODEL ⁽¹⁾	WAITB1	WAITB0	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1	WAITE0	0000 0000
F5Bh	PMDOUT2H ⁽¹⁾	Parallel Port	Out Data Higi	n Byte (Buffer	2)					0000 0000
F5Ah	PMDOUT2L ⁽¹⁾	Parallel Port	Out Data Low	Byte (Buffer	2)					0000 0000
F59h	PMDIN2H ⁽¹⁾	Parallel Port	In Data High I	Byte (Buffer 2)					0000 0000
F58h	PMDIN2L ⁽¹⁾	Parallel Port	In Data Low E	Byte (Buffer 2)	•					0000 0000
F57h	PMEH ⁽¹⁾	PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8	0000 0000
F56h	PMEL ⁽¹⁾	PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN0	0000 0000
F55h	PMSTATH ⁽¹⁾	IBF	IBOV	—	_	IB3F	IB2F	IB1F	IB0F	00 0000
F54h	PMSTATL ⁽¹⁾	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	10 1111
									•	

TABLE 6-4: REGISTER FILE SUMMARY (PIC18F47J53 FAMILY) (CONTINUED)

 $\label{eq:Legend: second sec$

Note 1: Implemented only for 44-pin devices (PIC18F46J53, PIC18F47J53, PIC18LF46J53 and PIC18LF47J53).

2: Implemented only for 28-pin devices (PIC18F26J53, PIC18F27J53, PIC18LF26J53 and PIC18LF27J53).

3: Implemented only for devices with 128 Kbyte of program memory (PIC18F27J53, PIC18F47J53, PIC18LF27J53 and PIC18LF47J53).

COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED FIGURE 6-9: INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

When a = 0 and $f \ge 60h$:

The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and FFFh. This is the same as locations, F60h to FFFh (Bank 15), of data memory.

Locations below 060h are not available in this addressing mode.

The instruction executes in Indexed Literal Offset mode. 'f' is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space.

Note that in this mode, the correct syntax is: ADDWF [k], d where 'k' is the same as 'f'.

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

REGISTER 10-42: RPOR21: PERIPHERAL PIN SELECT OUTPUT REGISTER 21 (BANKED ED5h)⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP21R<4:0>:** Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 10-14 for peripheral function numbers)

Note 1: RP21 pins are not available on 28-pin devices.

REGISTER 10-43: RPOR22: PERIPHERAL PIN SELECT OUTPUT REGISTER 22 (BANKED ED6h)⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0
bit 7							bit 0

Legend:	R/W = Readable bit, Writable bit if IOLOCK = 0					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP22R<4:0>:** Peripheral Output Function is Assigned to RP22 Output Pin bits (see Table 10-14 for peripheral function numbers)

Note 1: RP22 pins are not available on 28-pin devices.

REGISTER 10-44: RPOR23: PERIPHERAL PIN SELECT OUTPUT REGISTER 23 (BANKED ED7h)⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP23R<4:0>:** Peripheral Output Function is Assigned to RP23 Output Pin bits (see Table 10-14 for peripheral function numbers)

Note 1: RP23 pins are not available on 28-pin devices.

REGISTER 15-3: OSCCON2: OSCILLATOR CONTROL REGISTER 2 (ACCESS F87h)

U-0	R-0 ⁽²⁾	U-0	R/W-1	R/W-0 ⁽²⁾	R/W-1	U-0	U-0		
—	SOSCRUN	_	SOSCDRV	SOSCGO ⁽³⁾	PRISD	_	_		
bit 7							bit 0		
r									
Legend:									
R = Readable bitW = Writable bitU = Unimplemented bit, read as 0^{\prime}									
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown		
bit 7 Unimplemented: Read as '0'									
bit 6 SOSCRUN: SOSC Run Status bit									
1 = System clock comes from secondary SOSC									
0 = System clock comes from an oscillator other than SOSC									
bit 5 Unimplemented: Read as '0'									
bit 4	SOSCDRV: S	OSC Drive Co	ntrol bit						
	1 = T1OSC/S	SOSC circuit os	scillator drive o	circuit selected	by Configuration	on bits, CONFIC	G2L<4:3>		
	0 = Low-power	er T1OSC/SO	SC circuit is se	elected					
bit 3	SOSCGO: Os	scillator Start C	ontrol bit						
	1 = Turns on	the oscillator,	even if no peri	pherals are rec	questing it.				
	0 = Oscillator	r is shut off unl	ess peripheral	s are requestir	ng it				
bit 2	PRISD: Prima	ary Oscillator D	rive Circuit sh	utdown					
	1 = Oscillator	drive circuit or) ()						
	0 = Oscillator	drive circuit of	r (zero power)						
bit 1-0	Unimplemen	ted: Read as '	0'						
Note 1:	Reset value is '0' v	when Two-Spee	ed Start-up is e	enabled and '1	' if disabled.				
2:	Default output freq	uency of INTO	SC on Reset ((4 MHz).					

3: When the SOSC is selected to run from a digital clock input, rather than an external crystal, this bit has no effect.

15.5.4 TIMER3/5 GATE SINGLE PULSE MODE

When Timer3/5 Gate Single Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer3/5 Gate Single Pulse mode is first enabled by setting the TxGSPM bit (TxGCON<4>). Next, the TxGGO/TxDONE bit (TxGCON<3>) must be set.

The Timer3/5 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the TxGGO/TxDONE bit will automatically be cleared. No other gate events will be allowed to increment Timer3/5 until the TxGGO/TxDONE bit is once again set in software.

Clearing the TxGSPM bit will also clear the TxGGO/TxDONE bit. (For timing details, see Figure 15-4.)

Simultaneously, enabling the Toggle mode and the Single Pulse mode will permit both sections to work together. This allows the cycle times on the Timer3/5 gate source to be measured. (For timing details, see Figure 15-5.)

TMRxGE TxGPOL TxGSPM Cleared by Hardware on Falling Edge of TxGVAL TxGGO/ Set by Software TXDONE Counting Enabled on Rising Edge of TxG TxG_IN TxCKI TxGVAL N + 1 Timer3/5 Ν N + 2 Cleared by Set by Hardware on Software Cleared by Software TMRxGIF Falling Edge of TxGVAL

FIGURE 15-4: TIMER3/5 GATE SINGLE PULSE MODE

17.1.2 RTCVALH AND RTCVALL REGISTER MAPPINGS

REGISTER 17-6: RESERVED REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknow				nown	

bit 7-0 Unimplemented: Read as '0'

REGISTER 17-7: YEAR: YEAR VALUE REGISTER⁽¹⁾

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit bits
Contains a value from 0 to 9.bit 3-0YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit bits

Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 17-8: MONTH: MONTH VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4 **MTHTEN0:** Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of 0 or 1.

bit 3-0 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSCON1	SSCON0	TXINC	RXINC	DUPLEX1	DUPLEX0	DLYINTEN	DMAEN			
bit 7							bit 0			
Legend:	1.4		1.11			1				
R = Readable	DIT	vv = vvritable	DIT		mplemented bit, read as '0'					
-n = value at h	OR	I = Bit is set		0 = Bit is cle	ared	x = Bit is unkn	own			
bit 7-6	SSCON<1:0	SSDMA Outr	out Control bit	ts (Master mod	es only)					
	$11 = \overline{\text{SSDMA}}$	is asserted for	the duration	of 4 bytes: DLY	′INTEN is alwa	vs reset low				
	01 = SSDMA	is asserted for	the duration	of 2 bytes; DLY	INTEN is alway	ys reset low				
	10 = SSDMA	is asserted for	the duration	of 1 byte; DLYI	NTEN is always	s reset low				
hit E			ed by the DMA	A module; DLYI	IN I EIN DIT IS SOT	tware program	nable			
DIL 5	Allows the tra	nemit address in	to increment	DIE DIL as the transfer	progresses					
	Allows the transmit address to increment as the transfer progresses.									
	0 = The trans	mit address is	always set to	the initial value	e of TXADDR<1	11:0>				
bit 4	RXINC: Rece	eive Address In	crement Enat	ole bit						
	Allows the red	ceive address t	o increment a	as the transfer p	progresses.					
	1 = The recei	ved address is	to be increme	ented from the	initial value of F	RXADDR<11:0>				
	0 = The recei	ved address is	always set to	the initial value	e of RXADDR<	11:0>				
bit 3-2	DUPLEX<1:0)>: Transmit/Re	eceive Operat	ing Mode Sele	ct bits		¹			
	10 = SPI DM 01 = DMA op	erates in Half-I	Duplex mode.	data is transm	itted only	insmitted and re	ceived			
	00 = DMA op	erates in Half-I	Duplex mode,	data is receive	ed only					
bit 1	DLYINTEN:	Delay Interrupt	Enable bit							
	Enables the i elapsed from	interrupt to be the latest com	invoked after pleted transfe	the number of	TCY cycles sp	ecified in DLYC	YC<2:0> has			
	1 = The interr	rupt is enabled,	SSCON<1:0	> must be set t	o '00'					
	0 = The interr	rupt is disabled								
bit 0	DMAEN: DM	A Operation St	art/Stop bit							
	This bit is set engine when	t by the users' the DMA operation	software to st ation is compl	art the DMA op eted or aborted	peration. It is re I.	eset back to zero	o by the DMA			
	1 = DMA is in	session								
	0 = DIMA IS n	ot in session								

REGISTER 20-3: DMACON1: DMA CONTROL REGISTER 1 (ACCESS F88h)

REGISTE	ER 20-6: SSPx	CON1: MSSP	x CONTROL	REGISTER 1	(I ² C MODE) (⁷	1, ACCESS F	C6h; 2, F73h)
R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾
bit 7	·				•		bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value	e at POR	'1' = Bit is set		0' = Bit is clear	ared	x = Bit is unkn	IOWN
hit 7	WCOL · Write	Collision Deter	et hit				
	In Master Tra	nsmit mode:					
	1 = A write t	the SSPxBU	F register wa	s attempted wh	nile the I ² C cor	nditions were i	not valid for a
	transmis	sion to be starte	ed (must be cle	eared in softwar	re)		
	0 = NO CONS	ion amit modo:					
	1 = The SSP	xBUF register i	is written while	e it is still transm	nitting the previ	ous word (mus	t be cleared in
	software)			0	,	
	0 = No collisi	ion	0				
	<u>In Receive m</u> This is a "don	<u>ode (Master or</u> i't care" bit.	Slave modes)	<u>.</u>			
bit 6	SSPOV: Rec	eive Overflow I	ndicator bit				
	In Receive m	ode:					
	1 = A byte is	received while	the SSPxBUF	register is still h	olding the prev	vious byte (mus	t be cleared in
	soπware 0 = No overf) Iow					
	In Transmit m	node:					
	This is a "don	i't care" bit in Tr	ansmit mode.				
bit 5	SSPEN: Mas	ter Synchronou	is Serial Port E	Enable bit ⁽¹⁾			
	1 = Enables t 0 = Disables	he serial port a the serial port a	nd configures and configures	the SDAx and S these pins as I	SCLx pins as th /O port pins	e serial port pir	ns
bit 4	CKP: SCKx F	Release Contro	l bit	·			
	In Slave mod	<u>e:</u>					
	1 = Releases	clock	rotob), upped to		ture time e		
	0 = Holds Clo	CK IOW (CIOCK SI	retch); used to	ensure data se	etup time		
	Unused in thi	s mode.					
bit 3-0	SSPM<3:0>:	Master Synchr	onous Serial F	Port Mode Selec	t bits ⁽²⁾		
	$1111 = I^2 C S$	lave mode, 10-	bit address wi	th Start and Sto	p bit interrupts	enabled	
	$1110 = I^2C S$ $1011 = I^2C F$	lave mode, 7-b irmware Contro	it address with	n Start and Stop	bit interrupts e	nabled	
	1001 = Load	the SSPxMSK	register at the	SSPxADD SFF	R address ^(3,4)		
	$1000 = I^2 C N$	laster mode, clo	ock = Fosc/(4	* (SSPxADD +	1))		
	$0111 = I^2 C S$ $0110 = I^2 C S$	lave mode, 10-	bit address				
	0110 = 100	on					
Note 1:	When enabled, th	ne SDAx and S	CLx pins must	be configured a	as inputs.		
2:		$\frac{1001}{10} = 1001$	insted here are		D SER addros	eu IN SPI MOde	e only.
5:	SSPxMSK registe	er.	TEAUS OF WITLES		JU SER auules	s actually acce	

4: This mode is only available when 7-Bit Address Masking mode is selected (MSSPMSK Configuration bit is '1').

23.6 USB Power Modes

Many USB applications will likely have several different sets of power requirements and configuration. The most common power modes encountered are Bus Power Only, Self-Power Only and Dual Power with Self-Power Dominance. The most common cases are presented here. Also provided is a means of estimating the current consumption of the USB transceiver.

23.6.1 BUS POWER ONLY

In Bus Power Only mode, all power for the application is drawn from the USB (Figure 23-9). This is effectively the simplest power method for the device.

In order to meet the inrush current requirements of the USB 2.0 Specification, the total effective capacitance appearing across VBUS and ground must be no more than 10 μ F. If not, some kind of inrush timing is required. For more details, see Section 7.2.4 of the USB 2.0 Specification.

According to the USB 2.0 Specification, all USB devices must also support a Low-Power Suspend mode. In the USB Suspend mode, devices must consume no more than 2.5 mA from the 5V VBUS line of the USB cable.

The host signals the USB device to enter the Suspend mode by stopping all USB traffic to that device for more than 3 ms. This condition will cause the IDLEIF bit in the UIR register to become set.

During the USB Suspend mode, the D+ or D- pull-up resistor must remain active, which will consume some of the allowed suspend current: 2.5 mA budget.

FIGURE 23-9: BUS POWER ONLY

23.6.2 SELF-POWER ONLY

In Self-Power Only mode, the USB application provides its own power, with very little power being pulled from the USB. See Figure 23-10 for an example.

Note that an attach indication is added to indicate when the USB has been connected and the host is actively powering VBUS.

In order to meet compliance specifications, the USB module (and the D+ or D- pull-up resistor) should not be enabled until the host actively drives VBUS high. One of the 5.5V tolerant I/O pins may be used for this purpose.

The application should never source any current onto the 5V VBUS pin of the USB cable.

FIGURE 23-10: SELF-POWER ONLY

23.6.3 DUAL POWER WITH SELF-POWER DOMINANCE

Some applications may require a dual power option. This allows the application to use internal power primarily, but switch to power from the USB when no internal power is available. See Figure 23-11 for a simple Dual Power with Self-Power Dominance mode example, which automatically switches between Self-Power Only and USB Bus Power Only modes.

Dual power devices must also meet all of the special requirements for inrush current and Suspend mode current, and must not enable the USB module until VBUS is driven high. See Section 23.6.1 "Bus Power Only" and Section 23.6.2 "Self-Power Only" for descriptions of those requirements. Additionally, dual power devices must never source current onto the 5V VBUS pin of the USB cable.

FIGURE 23-11: DUAL POWER EXAMPLE

Note: Users should keep in mind the limits for devices drawing power from the USB. According to USB Specification 2.0, this cannot exceed 100 mA per low-power device or 500 mA per high-power device.

R/W-1	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
REGSLP	LVDSTAT ⁽²⁾	ULPLVL	VBGOE	DS ⁽²⁾	ULPEN	ULPSINK	SWDTEN ⁽¹⁾	
bit 7							bit 0	
							1	
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared			ared	x = Bit is unki	nown			
bit 7 REGSLP: Voltage Regulator Low-Power Operation Enable bit 1 = On-chip regulator enters low-power operation when device enters Sleep mode 0 = On-chip regulator is active even in Sleep mode								
bit 6 LVDSTAT: Low-Voltage Detect Status bit ⁽²⁾ 1 = VDDCORE > 2.45V nominal 0 = VDDCORE < 2.45V nominal								
bit 5 ULPLVL: Ultra Low-Power Wake-up Output bit (not valid unless ULPEN = 1) 1 = Voltage on RA0 > ~0.5V 0 = Voltage on RA0 < ~0.5V								
bit 4	bit 4 VBGOE : Band Gap Reference Voltage (VBG) Output Enable bit 1 = Band gap reference output is enabled on pin RA1 0 = Band gap reference output is disabled							
bit 3	DS: Deep Slee Reset source)	ep Wake-up Sta (2)	atus bit (used i	in conjunction w	vith RCON, PO	R and BOR bit	s to determine	
	0 = If the last	exit from Reset	was caused t	to a wake-up from a walk	om Deep Sleep	o D		
bit 2	ULPEN: Ultra	Low-Power Wa	ake-up Module	e Enable bit				
	1 = Ultra low-p 0 = Ultra low-p	power wake-up power wake-up	module is ena module is dis	abled; ULPLVL abled	bit indicates th	e comparator o	output	
bit 1	ULPSINK: Ult 1 = Ultra low-p 0 = Ultra low-p	tra Low-Power power wake-up power wake-up	Wake-up Curr current sink is current sink is	ent Sink Enable s enabled (if UL s disabled	e bit .PEN = 1)			
bit 0	SWDTEN: So 1 = Watchdog 0 = Watchdog	ftware Controll Timer is on Timer is off	ed Watchdog ⁻	Timer Enable b	_{it} (1)			

REGISTER 28-11: WDTCON: WATCHDOG TIMER CONTROL REGISTER (ACCESS FC0h)

Note 1: This bit has no effect if the Configuration bit, WDTEN, is enabled.

2: Not available on devices where the on-chip voltage regulator is disabled ("LF" devices).

TABLE 28-3: SUMMARY OF WATCHDOG TIMER REGISTERS	TABLE 28-3:	SUMMARY OF WATCHDOG TIMER REGISTERS
---	-------------	-------------------------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RCON	IPEN	—	CM	RI	TO	PD	POR	BOR
WDTCON	REGSLP	LVDSTAT	ULPLVL	VBGOE	DS	ULPEN	ULPSINK	SWDTEN

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Watchdog Timer.

GOTO		Uncondition	Unconditional Branch					
Syntax:		GOTO k	GOTO k					
Oper	ands:	$0 \le k \le 104$	8575					
Oper	ation:	$k \rightarrow PC<20$	D:1>					
Statu	is Affected:	None	None					
Enco 1st w 2nd v	oding: /ord (k<7:0>) word(k<19:8>)	1110 1111	1111 k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈			
Description:		GOTO allow anywhere v range. The PC<20:1>. instruction.	GOTO allows an unconditional branch anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction.					
Word	ls:	2						
Cycles:		2						
QC	ycle Activity:							
Q1		Q2	Q3		Q4			
	Decode	Read literal 'k'<7:0>,	No operat	ion ⁽ k ⁾ Wr	ad literal <19:8>, ite to PC			
	No operation	No operation	No operat	ion o	No peration			
<u>Exar</u>	nple: After Instructic PC =	GOTO THE on Address (T	RE HERE)					

INCF	Increment f						
Syntax:	INCF f{,	d {,a}}					
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]						
Operation:	$(f) + 1 \rightarrow d$	est					
Status Affected:	C, DC, N,	OV, Z					
Encoding:	0010	10da	ffff	ffff			
Description:	The conter incremente placed in V placed bac	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).					
	lf 'a' is '0', f lf 'a' is '1', f GPR bank	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).					
	If 'a' is '0' a set is enab in Indexed mode when Section 29 Bit-Oriente Literal Off	If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details					
Words:	1	1					
Cycles:	1	1					
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Process Data	s V de:	Vrite to stination			
Example:	INCF	CNT, 1	, 0				
Before Instruct CNT Z DC After Instructio CNT Z C DC	tion = FFh = 0 = ? = ? on = 00h = 1 = 1 = 1						

SUBWFB	S	Subtract W from f with Borrow				
Syntax:	SI	JBWFB	f {,d {,a}	}		
Operands:	0 d a	≤ f ≤ 255 ∈ [0,1] ∈ [0,1]				
Operation:	(f)	– (W) –	$(\overline{C}) \rightarrow de$	st		
Status Affected:	N,	OV, C, [DC, Z			
Encoding:	Γ	0101	10da	fff	f ffff	
Description:	Sı	ubtract W	and the	Carry	flag (borrow)	
	fro m in in	om regist ethod). If W. If 'd' i register	er 'f' (2's [:] 'd' is '0', s '1', the r 'f' (default	comple the res result is t).	ement sult is stored s stored back	
	lf If Gl	'a' is '0', ' 'a' is '1', ' PR bank	the Acces the BSR i (default).	s Ban s usec	k is selected. I to select the	
	lf se in Se Bi Li	ta' is '0' a t is enab Indexed ode whe ection 29 it-Oriente teral Off	and the ex led, this in Literal Of never f ≤ 9 9.2.3 "By ed Instru set Mode	tende nstruc fset A 95 (5F te-Orie ctions " for c	d instruction tion operates ddressing h). See ented and s in Indexed letails.	
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1		Q2	Q	3	Q4	
Decode	rei	Read	Proce	ess a	Write to	
Example 1 [.]	1.0	SUBWEB	REG 1	0	dootination	
Before Instru	ction	SODMI D	1010, 1	., 0		
REG	=	19h	(000	1 100	1)	
W C	=	0Dh 1	(000	0 110	1)	
After Instruct	ion	_				
REG	=	0Ch	(000	0 101	1)	
Č	=	1	(000	0 110	1)	
ZN	=	0 0	: resu	lt is po	sitive	
Example 2:	:	SUBWFB	REG, 0	, 0		
Before Instru	ction					
REG W C	= = =	1Bh 1Ah 0	(000 (000	1 101 1 101	1) .0)	
After Instruct	ion					
REG W	=	1Bh 00h	(000	1 101	1)	
C	=	1		It is to	r0	
N N	=	0	, iesu	it is ze	10	
Example 3:	:	SUBWFB	REG, 1	L, O		
Before Instru	ction					
REG w	=	03h 0Eh	(000	0 001 $ 0 110$	1)	
ĉ	=	1	(000		- /	
After Instruct	ion _	Ech	/ 1 1 1	1 010	0.)	
KEG	-	FOIL	; [2's (comp]	0)	
W C	=	0Eh 0	(000	0 110	1)	
Z	=	0		I# 1	active	
IN	=	T	, resu	it is ne	gauve	

SWAPF	Swap f	Swap f						
Syntax:	SWAPF f	{,d {,a}}						
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$						
Operation:	$(f<3:0>) \rightarrow$ $(f<7:4>) \rightarrow$	$(f<3:0>) \rightarrow dest<7:4>,$ $(f<7:4>) \rightarrow dest<3:0>$						
Status Affected:	None							
Encoding:	0011	10da ff:	ff ffff					
Description:	The upper and lower nibbles of regis 'f' are exchanged. If 'd' is '0', the res is placed in W. If 'd' is '1', the result placed in register 'f' (default).							
	lf 'a' is '0', t If 'a' is '1', t GPR bank	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).						
	If 'a' is '0' a set is enabl in Indexed mode wher Section 29 Bit-Oriente Literal Offs	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.						
Words:	1	1						
Cycles:	1	1						
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write to destination					
Example: Before Instruct	SWAPF F	REG, 1, 0						
REG	= 53h							
After Instructio REG	on = 35h							

Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)							
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
D313	VUSB	USB Voltage	3.0	—	3.6	V	Voltage on VUSB pin must be in this range for proper USB operation
D314	lı∟	Input Leakage on D+ or D-	_	_	<u>+</u> 0.2	μA	Vss <u><</u> Vpin <u><</u> Vusb
D315	VILUSB	Input Low Voltage for USB Buffer	-	_	0.8	V	For VUSB range
D316	VIHUSB	Input High Voltage for USB Buffer	2.0	—	—	V	For VUSB range
D318	VDIFS	Differential Input Sensitivity	_	—	0.2	V	The difference between D+ and D- must exceed this value while VCM is met
D319	Vсм	Differential Common Mode Range	0.8	—	2.5	V	
D320	Zout	Driver Output Impedance ⁽¹⁾	28	—	44	Ω	
D321	Vol	Voltage Output Low	0.0	—	0.3	V	1.5 k Ω load connected to 3.6V
D322	Vон	Voltage Output High	2.8	—	3.6	V	1.5 k Ω load connected to ground

TABLE 31-7: USB MODULE SPECIFICATIONS

Note 1: The D+ and D- signal lines have built-in impedance matching resistors. No external resistors, capacitors or magnetic components are necessary on the D+/D- signal paths between the PIC18F47J53 family device and a USB cable.

Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	_	μS	
			400 kHz mode	2(Tosc)(BRG + 1)	—	μS	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		μs	
101	TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	_	μs	
			400 kHz mode	2(Tosc)(BRG + 1)		μs	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		μs	
102	TR	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽¹⁾	—	300	ns	Ī
103	TF	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽¹⁾	—	100	ns	
90	Tsu:sta	A Start Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	—	μs	Only relevant for Repeated Start condition
			400 kHz mode	2(Tosc)(BRG + 1)		μs	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		μs	
91	THD:STA	Start Condition Hold Time	100 kHz mode	2(Tosc)(BRG + 1)	—	μs	After this period, the first
			400 kHz mode	2(Tosc)(BRG + 1)		μs	clock pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		μs	Ī
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
			1 MHz mode ⁽¹⁾	TBD		ns	Ī
107	TSU:DAT	Data Input	100 kHz mode	250		ns	(Note 2)
		Setup Time	400 kHz mode	100		ns	1
			1 MHz mode ⁽¹⁾	TBD		ns	1
92	Tsu:sto	Stop Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	μs	
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)		μs	1
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		μs	1
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	_	3500	ns	
			400 kHz mode	_	1000	ns	
			1 MHz mode ⁽¹⁾	_		ns	
110	TBUF	F Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be
			400 kHz mode	1.3	_	μS	free before a new
			1 MHz mode ⁽¹⁾	TBD	_	μS	transmission can start
D102	Св	Bus Capacitive Lo	oading	—	400	pF	

TABLE 31-27:	MSSPx I ² C BUS DATA REQUIREMENTS

Legend: TBD = To Be Determined

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

^{2:} A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.