

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f27j53-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-1:	OSCTUNE: OSCILLATOR TUNING REGISTER (ACCESS F9Bh)
---------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN ⁽¹⁾	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
·							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	INTSRC: Inte	rnal Oscillator	Low-Frequen	cy Source Sele	ect bit		
	1 = 31.25 kHz	z device clock	derived from a	B MHz INTOSC	source (divide-	by-256 enable	d)
	0 = 31 kHz de	evice clock der	ived directly f	rom INTRC inte	ernal oscillator		
bit 6	PLLEN: Freq	uency Multiplie	r Enable bit ⁽¹)			
	1 = 96 MHz P	LL is enabled					
	0 = 96 MHz P	'LL is disabled					
bit 5-0	TUN<5:0>: Fi	requency Tunir	ng bits				
	011111 = Maximum frequency						
	011110						
	•						
	•						
	000001						
	000000 = Ce	nter frequency	; oscillator mo	odule is running	at the calibrate	d frequency	
	111111	. ,	,			. ,	
	•						
	•						
	•						
	100000 = Mir	nimum freguen	CV				

Note 1: When the CFGPLLEN Configuration bit is used to enable the PLL, clearing OSCTUNE<6> will not disable the PLL.

3.3 Oscillator Settings for USB

When the PIC18F47J53 family devices are used for USB connectivity, a 6 MHz or 48 MHz clock must be provided to the USB module for operation in either Low-Speed or Full-Speed modes, respectively. This may require some forethought in selecting an oscillator frequency and programming the device.

The full range of possible oscillator configurations compatible with USB operation is shown in Table 3-5.

3.3.1 LOW-SPEED OPERATION

The USB clock for Low-Speed mode is derived from the primary oscillator or from the 96 MHz PLL. In order to operate the USB module in Low-Speed mode, a 6 MHz clock must be provided to the USB module.

See Table 3-4 and Table 3-5 for possible combinations which can be used for low-speed USB operation.

System Clock	CPDIV<1:0>	Microcontroller Clock	LS48MHZ	USB Clock
48	11	48 MHz	1	48/8 = 6 MHz
48	10	48/2 = 24 MHz	1	48/8 = 6 MHz
48	01	48/3 = 16 MHz	1	48/8 = 6 MHz
48	00	48/6 = 8 MHz	1	48/8 = 6 MHz
24	11	24 MHz	0	24/4 = 6 MHz
24	10	24/2 = 12 MHz	0	24/4 = 6 MHz
24	01	24/3 = 8 MHz	0	24/4 = 6 MHz
24	00	24/6 = 4 MHz	0	24/4 = 6 MHz

TABLE 3-4:	CLOCK FOR LOW-SPEED USB
TABLE 3-4:	CLOCK FOR LOW-SPEED USE

4.2.3 RC_RUN MODE

In RC_RUN mode, the CPU and peripherals are clocked from the internal oscillator; the primary clock is shut down. This mode provides the best power conservation of all the Run modes while still executing code. It works well for user applications, which are not highly timing-sensitive or do not require high-speed clocks at all times.

This mode is entered by setting the SCS<1:0> bits (OSCCON<1:0>) to '11'. When the clock source is switched to the internal oscillator block (see Figure 4-3), the primary oscillator is shut down and the OSTS bit is cleared.

On transitions from RC_RUN mode to PRI_RUN mode, the device continues to be clocked from the INTOSC block while the primary clock is started. When the primary clock becomes ready, a clock switch to the primary clock occurs (see Figure 4-4). When the clock switch is complete, the OSTS bit is set and the primary clock is providing the device clock. The IDLEN and SCS bits are not affected by the switch. The INTRC clock source will continue to run if either the WDT or the FSCM is enabled.

EXAMPLE 4-1: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//Configure a remappable output pin with interrupt capability
//for ULPWU function (RP21 => RD4/INT1 in this example)
RPOR21 = 13;// ULPWU function mapped to RP21/RD4
RPINR1 = 21;// INT1 mapped to RP21 (RD4)
//************************
//Charge the capacitor on RAO
TRISAbits.TRISA0 = 0;
PORTAbits.RA0 = 1;
for(i = 0; i < 10000; i++) Nop();</pre>
//Stop Charging the capacitor on RAO
TRISAbits.TRISA0 = 1;
//Enable the Ultra Low Power Wakeup module
//and allow capacitor discharge
WDTCONbits.ULPEN = 1;
WDTCONbits.ULPSINK = 1;
//Enable Interrupt for ULPW
//For Sleep
//(assign the ULPOUT signal in the PPS module to a pin
//which has also been assigned an interrupt capability,
//such as INT1)
INTCON3bits INT1IF = 0;
INTCON3bits.INT11E = 1;
//****************
//Configure Sleep Mode
//For Sleep
OSCCONDits.IDLEN = 0;
//For Deep Sleep
OSCCONbits.IDLEN = 0; // enable deep sleep
DSCONHbits.DSEN = 1; // Note: must be set just before executing Sleep();
//***********
//Enter Sleep Mode
//*************
Sleep();
// for sleep, execution will resume here
// for deep sleep, execution will restart at reset vector (use WDTCONbits.DS to detect)
```

6.4 Data Addressing Modes

Note:	The execution of some instructions in the
	core PIC18 instruction set are changed
	when the PIC18 extended instruction set is
	enabled. See Section 6.6 "Data Memory
	and the Extended Instruction Set" for
	more information.

While the program memory can be addressed in only one way through the PC, information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in more detail in **Section 6.6.1 "Indexed Addressing with Literal Offset**".

6.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device, or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way, but require an additional explicit argument in the opcode. This is known as Literal Addressing mode, because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

6.4.2 DIRECT ADDRESSING

Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit literal address as their LSB. This address specifies either a register address in one of the banks of data RAM (Section 6.3.4 "General Purpose

Register File") or a location in the Access Bank (Section 6.3.3 "Access Bank") as the data source for the instruction.

The Access RAM bit, 'a', determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 6.3.2 "Bank Select Register") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit, 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

6.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as SFRs, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code using loops, such as the example of clearing an entire RAM bank in Example 6-5. It also enables users to perform Indexed Addressing and other Stack Pointer operations for program memory in data memory.

EXAMPLE 6-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 100h	;
NEXT	CLRF	POSTINC0	; Clear INDF
			; register then
			; inc pointer
	BTFSS	FSROH, 1	; All done with
			; Bankl?
	BRA	NEXT	; NO, clear next
CONTINU	JE		; YES, continue

7.5.2 FLASH PROGRAM MEMORY WRITE SEQUENCE (WORD PRORAMMING).

The PIC18F47J53 family of devices has a feature that allows programming a single word (two bytes). This feature is enabled when the WPROG bit is set. If the memory location is already erased, the following sequence is required to enable this feature:

- 1. Load the Table Pointer register with the address of the data to be written. (It must be an even address.)
- Write the 2 bytes into the holding registers by performing table writes. (Do not post-increment on the second table write.)

- Set the WREN bit (EECON1<2>) to enable writes and the WPROG bit (EECON1<5>) to select Word Write mode.
- 4. Disable interrupts.
- 5. Write 55h to EECON2.
- 6. Write 0AAh to EECON2.
- 7. Set the WR bit; this will begin the write cycle.
- 8. The CPU will stall for the duration of the write for TIW (see parameter D133A).
- 9. Re-enable interrupts.

EXAMPLE 7-4: SINGLE-WORD WRITE TO FLASH PROGRAM MEMORY

	MOVLW MOVWF	CODE_ADI TBLPTRU	OR_UPPER	;	Load TBLPTR with the base address
	MOVLW	CODE_ADI	DR_HIGH		
	MOVWF	TBLPTRH			
	MOVLW	CODE_ADI	DR_LOW	;	The table pointer must be loaded with an even
	MOVINE	דמיתי דמית			address
	MOVWF	IDUPIKU			
	MOVLW	DATA0		;	LSB of word to be written
	MOVWF	TABLAT			
	TBLWT*+	-			
	MOVLW	DATA1		;	MSB of word to be written
	MOVWF	TABLAT			
	TBLWT*			;	The last table write must not increment the table
					MSB before starting the write operation
					hob before beareing the write operation.
PROGRAM_MEMORY					
	BSF	EECON1,	WPROG	;	enable single word write
	BSF	EECON1,	WREN	;	enable write to memory
	BCF	INTCON,	GIE	;	disable interrupts
	MOVLW	55h			
Required	MOVWF	EECON2		;	write 55h
Sequence	MOVLW	0AAh			
	MOVWF	EECON2		;	write AAh
	BSF	EECON1,	WR	;	start program (CPU stall)
	BSF	INTCON,	GIE	;	re-enable interrupts
	BCF	EECON1,	WPROG	;	disable single word write
	BCF	EECON1,	WREN	;	disable write to memory

FIGURE 11-18: WRITE TIMING, 8-BIT DATA, PARTIALLY MULTIPLEXED ADDRESS, ENABLE STROBE

Q1 Q2	Q3 Q4 Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
PMCS1			Ţ
PMD<7:0>	Address<7:0>	Data	<u>}</u>
PMRD/PMWR			
PMENB		```	
PMALL		1 1 1 1	
PMPIF			J
BUSY			

FIGURE 11-19: READ TIMING, 8-BIT DATA, FULLY MULTIPLEXED 16-BIT ADDRESS

Q1 Q2	2 Q3 Q4 Q1 Q2 Q3 0	4 Q1 Q2 Q3	Q4 Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
				· · ·	
PMCS1				;	
PMD<7:0>	Address<7:0>	Address<13:8	3>)	Data	
PMWR				· · ·	-
PMRD					
PMALL					- - -
PMALH				· ·	
PMPIF					
BUSY				· ·	1
					•

FIGURE 11-20: W

WRITE TIMING, 8-BIT DATA, FULLY MULTIPLEXED 16-BIT ADDRESS

			3 4 4 4 4	03 04 01 02	4
					i I
PMCS1				<u> </u>	ı +
PMD<7:0>	Address<7:0	> Address<	13:8> 🔪 Da	ta	I
PMWR				(:	i i
PMRD					
PMALL	· / · · · ·			1 I 1 I	I I
PMALH					I
PMPIF					
BUSY					
	i i i	1 1	1 1 1	1 1	1

TABLE 13-5:	REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COU	JNTER
-------------	--	-------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP
TMR1L	Timer1 Regi	ster Low Byte						
TMR1H	Timer1 Regi	ster High Byte	9					
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	RD16	TMR10N
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ T1DONE	T1GVAL	T1GSS1	T1GSS0
OSCCON2	—	SOSCRUN	—	SOSCDRV	SOSCGO	PRISD	—	—

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: These bits are only available in 44-pin devices.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMRxCS1	TMRxCS0	TxCKPS1	TxCKPS0	TxOSCEN	TxSYNC	RD16	TMRxON
bit 7							bit 0
Lovende							
R = Readabl	e hit	W = Writable	hit	II = I Inimplem	nented hit rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	bit	'0' = Bit is clea	ared	x = Bit is unk	nown
		i Ditio oot				X Bitle unit	
bit 7-6	TMRxCS<1:0	>: Clock Sourc	e Select bits				
	10 = Clock so	ource is the pin	or TxCKI input	t pin			
	01 = Clock so	ource is the sys	tem clock (Fos	SC) ⁽¹⁾			
hit 5-4		Timery Input	Clock Prescal	le Select hits			
	11 = 1:8 Pres	cale value					
	10 = 1:4 Pres	cale value					
	01 = 1:2 Pres	cale value					
hit 3		mer Oscillator	Enable hit				
DIL J	1 = T10SC/S	OSC oscillator	used as clock	source			
	0 = TxCKI dig	ital input pin us	sed as clock so	ource			
bit 2	TxSYNC: Ext	ernal Clock Inp	ut Synchroniza	ation Control bit	t .		
	(Not usable if		k comes from	Timer1/Timer3.	.)		
	1 = Do not sy	nchronize exter	<u>- 10.</u> rnal clock input	t			
	0 = Synchron	ize external clo	ck input				
	When TMRxC	S1:TMRxCS0	<u>= 0x:</u>				
hit 1		Dred; Timer3 us	ses the internal	I CIOCK.			
DICI	1 = Enables r	Read/write MC	ite of timer in c	ne 16-bit opera	ation		
	0 = Enables r	egister read/wr	ite of timer in t	wo eight-bit oper	erations		
bit 0	TMRxON: Tin	ner On bit					
	1 = Enables T	īmer					
	0 = Stops Tim	er					

REGISTER 15-1: TxCON: TIMER3/5 CONTROL REGISTER (ACCESS F79h, BANKED F22h)

Note 1: The Fosc clock source should not be selected if the timer will be used with the ECCP capture/compare features.

REGISTER 19-2: CCPTMRS0: ECCP1/2/3 TIMER SELECT 0 REGISTER (BANKED F52h)

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| C3TSEL1 | C3TSEL0 | C2TSEL2 | C2TSEL1 | C2TSEL0 | C1TSEL2 | C1TSEL1 | C1TSEL0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	C3TSEL<1:0>: ECCP3 Timer Selection bits
	00 = ECCP3 is based off of TMR1/TMR2
	01 = ECCP3 is based off of TMR3/TMR4
	10 = ECCP3 is based off of TMR3/TMR6
	11 = ECCP3 is based off of TMR3/TMR8
bit 5-3	C2TSEL<2:0>: ECCP2 Timer Selection bits
	000 = ECCP2 is based off of TMR1/TMR2
	001 = ECCP2 is based off of TMR3/TMR4
	010 = ECCP2 is based off of TMR3/TMR6
	011 = ECCP2 is based off of TMR3/TMR8
	1xx = Reserved; do not use
bit 2-0	C1TSEL<2:0>: ECCP1 Timer Selection bits
	000 = ECCP1 is based off of TMR1/TMR2
	001 = ECCP1 is based off of TMR3/TMR4
	010 = ECCP1 is based off of TMR3/TMR6
	011 = ECCP1 is based off of TMR3/TMR8
	1xx = Reserved; do not use

In addition to the expanded range of modes available through the CCPxCON and ECCPxAS registers, the ECCP modules have two additional registers associated with Enhanced PWM operation and auto-shutdown features. They are:

- ECCPxDEL Enhanced PWM Control
- PSTRxCON Pulse Steering Control

EXAMPLE 21-1: CALCULATING BAUD RATE ERROR

```
For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, and
8-bit BRG:
Desired Baud Rate = Fosc/(64 ([SPBRGHx:SPBRGx] + 1))
Solving for SPBRGHx:SPBRGx:
    X = ((Fosc/Desired Baud Rate)/64) - 1
    = ((16000000/9600)/64) - 1
    = [25.042] = 25
Calculated Baud Rate=16000000/(64 (25 + 1))
        = 9615
Error = (Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate
        = (9615 - 9600)/9600 = 0.16%
```

TABLE 21-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	
BAUDCONx	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	
SPBRGHx	EUSARTx B	EUSARTx Baud Rate Generator High Byte							
SPBRGx	EUSARTx Baud Rate Generator Low Byte								

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

23.2.3 USB STATUS REGISTER (USTAT)

The USB Status register reports the transaction status within the SIE. When the SIE issues a USB transfer complete interrupt, USTAT should be read to determine the status of the transfer. USTAT contains the transfer endpoint number, direction and Ping-Pong Buffer Pointer value (if used).

Note:	The data in the USB Status register is
	valid only when the TRNIF interrupt flag is
	asserted.

The USTAT register is actually a read window into a 4-byte status FIFO, maintained by the SIE. It allows the microcontroller to process one transfer while the SIE processes additional endpoints (Figure 23-3). When the SIE completes using a buffer for reading or writing data, it updates the USTAT register. If another USB transfer is performed before a transaction complete interrupt is serviced, the SIE will store the status of the next transfer into the status FIFO.

Clearing the transfer complete flag bit, TRNIF, causes the SIE to advance the FIFO. If the next data in the FIFO holding register is valid, the SIE will reassert the interrupt within 5 TCY of clearing TRNIF. If no additional data is present, TRNIF will remain clear; USTAT data will no longer be reliable.

Note:	If an end	lpoint re	que	st is re	ceive	d while	e the
	USTAT	FIFO	is	full,	the	SIE	will
	automati	cally iss	sue a	a NAK	back	to the h	nost.

FIGURE 23-3: USTAT FIFO

REGISTER 23-3: USTAT: USB STATUS REGISTER (ACCESS F64h)

U-0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	
_	ENDP3	ENDP2	ENDP1	ENDP0	DIR	PPBI ⁽¹⁾		
bit 7	·	•		÷			bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown	
bit 7	Unimplemen	ted: Read as '	0'					
bit 6-3	6-3 ENDP<3:0>: Encoded Number of Last Endpoint Activity bits (represents the number of the BDT updated by the last USB transfer) 1111 = Endpoint 15 1110 = Endpoint 14							
bit 2	DIR: Last BD 1 = The last tr 0 = The last tr	DIR: Last BD Direction Indicator bit 1 = The last transaction was an IN token 0 = The last transaction was an OUT or SETUP token						
bit 1 bit 0	 PPBI: Ping-Pong BD Pointer Indicator bit⁽¹⁾ 1 = The last transaction was to the Odd BD bank 0 = The last transaction was to the Even BD bank Unimplemented: Read as '0' 							
Note 1: 7	Chis bit is only valid for endpoints with available Even and Odd BD registers.							

© 2009-2016 Microchip Technology Inc.

REGISTER 23-5: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER (BD0STAT THROUGH BD63STAT), CPU MODE

R/W-x	R/W-x	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
UOWN ⁽¹⁾	DTS ⁽²⁾	(3)	(3)	DTSEN	BSTALL	BC9	BC8
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	pit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	UOWN: USB	Own bit ⁽¹⁾					
	0 = The micro	ocontroller core	owns the BI	D and its corres	ponding buffer		
bit 6	DTS: Data To	ggle Synchroni	zation bit ⁽²⁾				
	1 = Data 1 pa	acket					
	0 = Data 0 pa	acket					
bit 5-4	Unimplement	ted: These bits	should alway	ys be programr	med to '0'(3)		
bit 3	DTSEN: Data	Toggle Synchr	onization En	able bit			
	1 = Data togo	gle synchroniza	ition is enabl	ed; data packe	ets with incorrect	ct Sync value v	vill be ignored
	except to	r a SETUP tran	isaction, which	ch is accepted e	even if the data	toggle bits do i	not match
hit 0			hit	Ionneu			
DIL Z	1 = Duffer etc	ier Stall Enable	DIL L bondobol	re issued if a ta	kan in ransivad	that would use	the DD in the
	I = Buller sta given loc;	all enabled; STA	it remains se	t BD value is i	inchanged)	that would use	
	0 = Buffer sta	all disabled			inonangea)		
bit 1-0	BC<9:8>: Byt	e Count 9 and	8 bits				
	The byte cour	nt bits represen	t the number	of bytes that w	vill be transmitte	d for an IN tok	en or received
	during an OU	T token. Togeth	er with BC<7	2:0>, the valid b	oyte counts are	0-1023.	

- Note 1: This bit must be initialized by the user to the desired value prior to enabling the USB module.
 - **2:** This bit is ignored unless DTSEN = 1.
 - **3:** If these bits are set, USB communication may not work. Hence, these bits should always be maintained as '0'.

23.5.1 USB INTERRUPT STATUS REGISTER (UIR)

The USB Interrupt Status register (Register 23-7) contains the flag bits for each of the USB status interrupt sources. Each of these sources has a corresponding interrupt enable bit in the UIE register. All of the USB status flags are ORed together to generate the USBIF interrupt flag for the microcontroller's interrupt funnel.

Once an interrupt bit has been set by the SIE, it must be cleared in software by writing a '0'. The flag bits can also be set in software, which can aid in firmware debugging. When the USB module is in the Low-Power Suspend mode (UCON<1> = 1), the SIE does not get clocked. When in this state, the SIE cannot process packets, and therefore, cannot detect new interrupt conditions other than the Activity Detect Interrupt, ACTVIF. The ACTVIF bit is typically used by USB firmware to detect when the microcontroller should bring the USB module out of the Low-Power Suspend mode (UCON<1> = 0).

REGISTER 23-7: UIR: USB INTERRUPT STATUS REGISTER (ACCESS F62h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R/W-0
—	SOFIF	STALLIF	IDLEIF ⁽¹⁾	TRNIF ⁽²⁾	ACTVIF ⁽³⁾	UERRIF ⁽⁴⁾	URSTIF
bit 7							bit 0

Legend:								
R = Read	lable bit	W = Writable bit	U = Unimplemented bit	read as '0'				
-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7	Unimple	mented: Read as '0'						
bit 6	SOFIF: S	tart-Of-Frame Token Interrup	ot bit					
	1 = A Sta 0 = No S	art-Of-Frame token is receive tart-Of-Frame token is receive	ed by the SIE ved by the SIE					
bit 5	STALLIF	A STALL Handshake Interru	upt bit					
	1 = AST 0 = AST	ALL handshake was sent by ALL handshake has not bee	the SIE n sent					
bit 4	IDLEIF: I	dle Detect Interrupt bit ⁽¹⁾						
	 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected 							
bit 3	TRNIF: ⊤	ransaction Complete Interrup	ot bit ⁽²⁾					
	1 = Proc 0 = Proc	essing of pending transaction essing of pending transaction	n is complete; read the USTA n is not complete or no transa	T register for endpoint information action is pending				
bit 2	ACTVIF:	Bus Activity Detect Interrupt	bit ⁽³⁾					
	1 = Activ 0 = No a	ity on the D+/D- lines was de ctivity detected on the D+/D-	etected lines					
bit 1	UERRIF:	USB Error Condition Interrup	pt bit ⁽⁴⁾					
	1 = An u 0 = No u	nmasked error condition has nmasked error condition has	occurred.					
bit 0	URSTIF:	USB Reset Interrupt bit						
	1 = Valid 0 = No U	USB Reset occurred; 00h is SB Reset has occurred	loaded into the UADDR regi	ster				
Note 1: 2: 3:	Once an Idle s Clearing this b This bit is typic	tate is detected, the user ma it will cause the USTAT FIFC ally unmasked only following	y want to place the USB mod to advance (valid only for IN g the detection of a UIDLE int	dule in Suspend mode. I, OUT and SETUP tokens). rerrupt event.				
4:	Only error conditions enabled through the UEIE register will set this bit. This bit is a status bit only and							

4: Only error conditions enabled through the UEIE register will set this bit. This bit is a status bit only and cannot be set or cleared by the user.

23.5.2 USB INTERRUPT ENABLE REGISTER (UIE)

The USB Interrupt Enable (UIE) register (Register 23-8) contains the enable bits for the USB status interrupt sources. Setting any of these bits will enable the respective interrupt source in the UIR register.

The values in this register only affect the propagation of an interrupt condition to the microcontroller's interrupt logic. The flag bits are still set by their interrupt conditions, allowing them to be polled and serviced without actually generating an interrupt.

REGISTER 23-8: UIE: USB INTERRUPT ENABLE REGISTER (BANKED F36h)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	SOFIE	STALLIE	IDLEIE	TRNIE	ACTVIE	UERRIE	URSTIE
bit 7							bit 0
L							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 6 SOFIE: Start-Of-Frame Token Interrupt Enable bit 1 = Start-Of-Frame token interrupt is enabled 0 = Start-Of-Frame token interrupt is disabled bit 5 STALLIE: STALL Handshake Interrupt Enable bit 1 = STALL interrupt is enabled 0 = STALL interrupt is enabled 0 = STALL interrupt is disabled 0 = STALL interrupt is disabled bit 4 IDLEIE: Idle Detect Interrupt Enable bit 1 = Idle detect interrupt is enabled 0 = Idle detect interrupt is disabled bit 3 TRNIE: Transaction Complete Interrupt Enable bit 1 = Transaction interrupt is disabled 0 = Transaction interrupt is enabled 0 = Transaction interrupt is disabled 0 = Transaction interrupt is disabled bit 2 ACTVIE: Bus Activity Detect Interrupt Enable bit 1 = Bus activity detect interrupt is enabled 0 = Bus activity detect interrupt is disabled bit 1 UERRIE: USB Error Interrupt Enable bit 1 = USB error interrupt is enabled 0 = USB error interrupt is disabled bit 0 URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset interrupt is enabled 0 = USB Reset interrupt is disabled	bit 7	Unimplemented: Read as '0'
1 = Start-Of-Frame token interrupt is enabled 0 = Start-Of-Frame token interrupt is disabled bit 5 STALLIE: STALL Handshake Interrupt Enable bit 1 = STALL interrupt is enabled 0 = STALL interrupt is disabled bit 4 IDLEIE: Idle Detect Interrupt Enable bit 1 = Idle detect interrupt is enabled 0 = Idle detect interrupt is enabled 0 = Idle detect interrupt is enabled 0 = Idle detect interrupt is enabled 0 = Idle detect interrupt is enabled 0 = Idle detect interrupt is enabled 0 = Idle detect interrupt is disabled 1 = Transaction Complete Interrupt Enable bit 1 = Transaction interrupt is enabled 0 = Transaction interrupt is enabled 0 = Transaction interrupt is disabled 0 = Transaction interrupt is disabled bit 2 ACTVIE: Bus Activity Detect Interrupt Enable bit 1 = Bus activity detect interrupt is enabled 0 = Bus activity detect interrupt is disabled bit 1 UERRIE: USB Error Interrupt Enable bit 1 = USB error interrupt is disabled 0 = USB reror interrupt is disabled bit 0 URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset interrupt is enabled 0 = USB Reset interrupt is disabled bit 0 URSTIE: USB Reset Interrupt is enabled 0 = USB Reset interrupt is d	bit 6	SOFIE: Start-Of-Frame Token Interrupt Enable bit
bit 5 STALLIE: STALL Handshake Interrupt Enable bit 1 = STALL interrupt is enabled 0 = STALL interrupt is disabled bit 4 IDLEIE: Idle Detect Interrupt Enable bit 1 = Idle detect interrupt is enabled 0 = Idle detect interrupt is enabled 0 = Idle detect interrupt is enabled 0 = Idle detect interrupt is disabled bit 3 TRNIE: Transaction Complete Interrupt Enable bit 1 = Transaction interrupt is enabled 0 = Transaction interrupt is disabled bit 2 ACTVIE: Bus Activity Detect Interrupt Enable bit 1 = Bus activity detect interrupt is enabled 0 = Bus activity detect interrupt is disabled bit 1 UERRIE: USB Error Interrupt Enable bit 1 = USB error interrupt is enabled 0 = USB error interrupt is disabled bit 0 URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset interrupt is enabled 0 = USB Reset interrupt is enabled 0 = USB Reset interrupt is enabled 0 = USB Reset interrupt is disabled		1 = Start-Of-Frame token interrupt is enabled0 = Start-Of-Frame token interrupt is disabled
1 = STALL interrupt is enabled 0 = STALL interrupt is disabled bit 4 IDLEIE: Idle Detect Interrupt Enable bit 1 = Idle detect interrupt is enabled 0 = Idle detect interrupt is disabled bit 3 TRNIE: Transaction Complete Interrupt Enable bit 1 = Transaction interrupt is enabled 0 = Transaction interrupt is enabled 0 = Transaction interrupt is disabled 0 = Transaction interrupt is disabled bit 2 ACTVIE: Bus Activity Detect Interrupt Enable bit 1 = Bus activity detect interrupt is enabled 0 = Bus activity detect interrupt is disabled bit 1 UERRIE: USB Error Interrupt Enable bit 1 = USB error interrupt is disabled 0 = USB error interrupt is disabled bit 0 URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset interrupt is enabled 0 = USB Reset interrupt is enabled 0 = USB Reset interrupt is enabled 0 = USB Reset interrupt is disabled	bit 5	STALLIE: STALL Handshake Interrupt Enable bit
bit 4IDLEIE: Idle Detect Interrupt Enable bit1 = Idle detect interrupt is enabled 0 = Idle detect interrupt is disabledbit 3TRNIE: Transaction Complete Interrupt Enable bit 1 = Transaction interrupt is enabled 0 = Transaction interrupt is disabledbit 2ACTVIE: Bus Activity Detect Interrupt Enable bit 1 = Bus activity detect interrupt is enabled 0 = Bus activity detect interrupt is disabledbit 1UERRIE: USB Error Interrupt is disabledbit 2URSTIE: USB Error Interrupt Enable bit 1 = USB error interrupt is disabledbit 1UERRIE: USB Reset Interrupt Enable bit 1 = USB Reset Interrupt is disabledbit 0URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset Interrupt is enabled 0 = USB Reset Interrupt is disabled		1 = STALL interrupt is enabled0 = STALL interrupt is disabled
1 = Idle detect interrupt is enabled 0 = Idle detect interrupt is disabledbit 3TRNIE: Transaction Complete Interrupt Enable bit 1 = Transaction interrupt is enabled 0 = Transaction interrupt is disabledbit 2ACTVIE: Bus Activity Detect Interrupt Enable bit 1 = Bus activity detect interrupt is enabled 0 = Bus activity detect interrupt is disabledbit 1UERRIE: USB Error Interrupt Enable bit 1 = USB error interrupt is enabled 0 = USB Reset Interrupt is disabledbit 0URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset interrupt is enabled 0 = USB Reset interrupt is enabled 0 = USB Reset interrupt is enabled 0 = USB Reset interrupt is enabled	bit 4	IDLEIE: Idle Detect Interrupt Enable bit
bit 3 TRNIE: Transaction Complete Interrupt Enable bit 1 = Transaction interrupt is enabled 0 = Transaction interrupt is disabled bit 2 ACTVIE: Bus Activity Detect Interrupt Enable bit 1 = Bus activity detect interrupt is enabled 0 = Bus activity detect interrupt is disabled bit 1 UERRIE: USB Error Interrupt Enable bit 1 = USB error interrupt is enabled 0 = USB error interrupt is disabled bit 0 URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset interrupt is enabled 0 = USB Reset interrupt is enabled		1 = Idle detect interrupt is enabled0 = Idle detect interrupt is disabled
1 = Transaction interrupt is enabled 0 = Transaction interrupt is disabled bit 2 ACTVIE: Bus Activity Detect Interrupt Enable bit 1 = Bus activity detect interrupt is enabled 0 = Bus activity detect interrupt is disabled bit 1 UERRIE: USB Error Interrupt Enable bit 1 = USB error interrupt is enabled 0 = USB error interrupt is disabled bit 0 URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset interrupt is enabled 0 = USB Reset interrupt is enabled 0 = USB Reset interrupt is disabled	bit 3	TRNIE: Transaction Complete Interrupt Enable bit
bit 2 ACTVIE: Bus Activity Detect Interrupt Enable bit 1 = Bus activity detect interrupt is enabled 0 = Bus activity detect interrupt is disabled bit 1 UERRIE: USB Error Interrupt Enable bit 1 = USB error interrupt is enabled 0 = USB error interrupt is disabled bit 0 URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset interrupt is enabled 0 = USB Reset interrupt Enable bit 0 = USB Reset interrupt is disabled 0 = USB Reset interrupt is enabled		1 = Transaction interrupt is enabled0 = Transaction interrupt is disabled
1 = Bus activity detect interrupt is enabled 0 = Bus activity detect interrupt is disabled bit 1 UERRIE: USB Error Interrupt Enable bit 1 = USB error interrupt is enabled 0 = USB error interrupt is disabled bit 0 URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset interrupt is enabled 0 = USB Reset interrupt is disabled	bit 2	ACTVIE: Bus Activity Detect Interrupt Enable bit
bit 1 UERRIE: USB Error Interrupt Enable bit 1 = USB error interrupt is enabled 0 = USB error interrupt is disabled bit 0 URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset interrupt is enabled 0 = USB Reset interrupt is disabled 0 = USB Reset interrupt is disabled		 1 = Bus activity detect interrupt is enabled 0 = Bus activity detect interrupt is disabled
1 = USB error interrupt is enabled 0 = USB error interrupt is disabled bit 0 URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset interrupt is enabled 0 = USB Reset interrupt is disabled	bit 1	UERRIE: USB Error Interrupt Enable bit
bit 0 URSTIE: USB Reset Interrupt Enable bit 1 = USB Reset interrupt is enabled 0 = USB Reset interrupt is disabled		1 = USB error interrupt is enabled 0 = USB error interrupt is disabled
1 = USB Reset interrupt is enabled0 = USB Reset interrupt is disabled	bit 0	URSTIE: USB Reset Interrupt Enable bit
0 = USB Reset interrupt is disabled		1 = USB Reset interrupt is enabled
		0 = USB Reset interrupt is disabled

27.9 Registers

There are three control registers for the CTMU:

- CTMUCONH
- CTMUCONL
- CTMUICON

The CTMUCONH and CTMUCONL registers (Register 27-1 and Register 27-2) contain control bits for configuring the CTMU module edge source selection, edge source polarity selection, edge sequencing, A/D trigger, analog circuit capacitor discharge and enables. The CTMUICON register (Register 27-3) has bits for selecting the current source range and current source trim.

REGISTER 27-1: CTMUCONH: CTMU CONTROL REGISTER HIGH (ACCESS FB3h)

R/W-0	U-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0	R/W-0
CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	CTMUEN: CTMU Enable bit
	1 = Module is enabled0 = Module is disabled
bit 6	Unimplemented: Read as '0'
bit 5	CTMUSIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode
bit 4	TGEN: Time Generation Enable bit
	1 = Enables edge delay generation0 = Disables edge delay generation
bit 3	EDGEN: Edge Enable bit
	1 = Edges are not blocked0 = Edges are blocked
bit 2	EDGSEQEN: Edge Sequence Enable bit
	 1 = Edge 1 event must occur before Edge 2 event can occur 0 = No edge sequence is needed
bit 1	IDISSEN: Analog Current Source Control bit
	1 = Analog current source output is grounded0 = Analog current source output is not grounded
bit 0	CTTRIG: CTMU Special Event Trigger bit 1 = CTMU Special Event Trigger is enabled 0 = CTMU Special Event Trigger is disabled

28.2 Watchdog Timer (WDT)

PIC18F47J53 family devices have both a conventional WDT circuit and a dedicated, Deep Sleep capable Watchdog Timer. When enabled, the conventional WDT operates in normal Run, Idle and Sleep modes. This data sheet section describes the conventional WDT circuit.

The dedicated, Deep Sleep capable WDT can only be enabled in Deep Sleep mode. This timer is described in Section 4.6.4 "Deep Sleep Watchdog Timer (DSWDT)".

The conventional WDT is driven by the INTRC oscillator. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by the WDTPS bits in Configuration Register 2H. Available periods range from about 4 ms to 135 seconds (2.25 minutes depending on voltage, temperature and WDT postscaler). The WDT and postscaler are cleared

FIGURE 28-1: WDT BLOCK DIAGRAM

whenever a SLEEP or CLRWDT instruction is executed, or a clock failure (primary or Timer1 oscillator) has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: When a CLRWDT instruction is executed, the postscaler count will be cleared.

28.2.1 CONTROL REGISTER

The WDTCON register (Register 28-11) is a readable and writable register. The SWDTEN bit enables or disables WDT operation. This allows software to override the WDTEN Configuration bit and enable the WDT only if it has been disabled by the Configuration bit.

LVDSTAT is a read-only status bit that is continuously updated and provides information about the current level of VDDCORE. This bit is only valid when the on-chip voltage regulator is enabled.

RRN	CF	Rotate	Rotate Right f (No Carry)					
Synta	ax:	RRNCF	f	{,d {,a}}				
Oper	ands:	0 ≤ f ≤ 2 d ∈ [0,1 a ∈ [0,1	255]]					
Oper	ation:	(f <n>) – (f<0>) –</n>	→ de	est <n 1<br="" –="">est<7></n>	>,			
Statu	s Affected:	N, Z						
Enco	ding:	0100		00da	fff	ff ffff		
Desc	ription:	The con one bit t is place placed b	iten to th d in bac	ts of regi ne right. I W. If 'd' k in regis	ster 'f f 'd' is is '1', ter 'f'	' are rotated '0', the result the result is (default).		
		If 'a' is ' selected is '1', th per the	0', t d, o en f BSI	he Acces verriding the bank R value (ss Bar the B will be defau	nk will be SR value. If 'a' e selected as lt).		
		If 'a' is ' set is er in Index mode w Section Bit-Orie Literal	0'a nabl ed her 29 ente Offs	nd the ex led, this i Literal Of never f ≤ 2.2.3 "By ed Instru set Mode	ktende nstruc ffset A 95 (5F te-Ori ction e" for	ed instruction stion operates addressing Fh). See ented and s in Indexed details.		
				re	gister	f		
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q2 Q3			Q4		
	Decode	Read register '	f'	Proce Data	SS a	Write to destination		
<u>Exan</u>	nple 1:	RRNCF	1	REG, 1,	0			
	Before Instruc REG	tion = 110	1 (0111				
	After Instructic REG	on = 111	0 1	L011				
Example 2:		RRNCF	I	REG, 0,	0			
	Before Instruc	tion						
	W REG After Instructio	= ? = 110	1 ()111				
	REG	= 111 = 110	0 1 1 (L011)111				

SET	F	Set f							
Synt	ax:	SETF f{	SETF f {,a}						
Oper	rands:	$0 \le f \le 255$ $a \in [0,1]$							
Oper	ration:	$FFh\tof$							
Statu	is Affected:	None							
Enco	oding:	0110	100a	ffff	ffff				
Desc	cription:	The conter are set to I	nts of the Fh.	specified	register				
		lf 'a' is '0', If 'a' is '1', GPR bank	the Acces the BSR i (default).	ss Bank is s used to	selected. select the				
	If 'a' is '0' and the extended instruction set is enabled, this instruction operate in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed								
Word	ds:	1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3	8	Q4				
	Decode	Read register 'f'	Proce Data	ess a reg	Write gister 'f'				
<u>Exar</u>	nple:	SETF	RE	G,1					
	Before Instruct REG After Instructio REG	tion = 5/ on = FI	Ah Fh						

31.2 DC Characteristics: Power-Down and Supply Current PIC18F47J53 Family (Industrial)

PIC18LF47J53 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F47J53 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
Param. No.	Device	Тур.	Max.	Units	Conditions				
	Power-Down Current (IPD) ⁽¹⁾ – Sleep mode								
	PIC18LFXXJ53	0.1	1.6	μΑ	-40°C				
		0.2	1.6	μΑ	+25°C	VDD = 2.0V,			
		0.8	7.0	μΑ	+60°C	VDDCORE = 2.0V			
		2.1	11.5	μΑ	+85°C				
	PIC18LFXXJ53	0.2	2.0	μA	-40°C				
		0.5	2.0	μΑ	+25°C	VDD = 2.5V,			
		1.4	9.0	μA	+60°C	VDDCORE = 2.5V			
		3.2	15.0	μΑ	+85°C		Sleep mode,		
	PIC18FXXJ53	3.0	6.0	μΑ	-40°C		REGSLP = 1		
		3.8	6.0	μA	+25°C	VDD = 2.15V			
		4.7	9.0	μΑ	+60°C	Capacitor			
		6.4	18.5	μA	+85°C				
	PIC18FXXJ53	3.3	9.0	μΑ	-40°C				
		4.2	9.0	μA	+25°C	VDD = 3.3V			
		5.5	12.0	μΑ	+60°C	Capacitor			
		7.8	22.0	μA	+85°C				
	Power-Down Current (IPD) ⁽¹⁾	– Deep	Sleep	mode					
	PIC18FXXJ53	2	25	nA	-40°C				
		9	100	nA	+25°C	VDD = 2.15V, $VDDCORE = 10 \mu E$			
		72	250	nA	+60°C	Capacitor			
		0.26	1.0	μA	+85°C		Deen Sleen mode		
	PIC18FXXJ53	17	50	nA	-40°C		Doop oloop mode		
		53	150	nA	+25°C	VDD = 3.3V, $VDDCORE = 10 \mu E$			
		186	400	nA	+60°C	Capacitor			
		0.50	2.0	μA	+85°C				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (USB module, WDT, etc.). The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/Vss;

- MCLR = VDD; WDT disabled unless otherwise specified.
- **3:** Low-power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: This is the module differential current when the USB module is enabled and clocked at 48 MHz, but with no USB cable attached. When the USB cable is attached or data is being transmitted, the current consumption may be much higher (see Section 23.6.4 "USB Transceiver Current Consumption"). During USB Suspend mode (USBEN = 1, SUSPND = 1, bus in Idle state), the USB module current will be dominated by the D+ or D- pull-up resistor. The integrated pull-up resistor use "resistor switching" according to the resistor_ecn supplement to the USB 2.0 Specifications, and therefore, may be as low as 900Ω during Idle conditions.

32.2 Package Details

The following sections give the technical details of the packages.

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-105C Sheet 1 of 2