

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2.15V ~ 3.6V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f46j53-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

Microchip's Worldwide Website; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.

	Pin Nu	ımber			
Pin Name	28-SPDIP/ SSOP/ SOIC	28-QFN	Pin Type	Buffer Type	Description
					PORTB (continued)
RB4/CCP4/KBI0/SCK1/SCL1/	25 ⁽²⁾	22 ⁽²⁾			
RP7			1/0		Disting 1/0
RB4 CCP4			1/O 1/O	TTL/DIG ST/DIG	Digital I/O. Capture/Compare/PWM input/output.
KBIO			1	TTL	Interrupt-on-change pin.
SCK1			I/O	ST/DIG	Synchronous serial clock input/output.
SCL1			I/O	I ² C	I ² C clock input/output.
RP7			I/O	ST/DIG	Remappable Peripheral Pin 7 input/output.
RB5/CCP5/KBI1/SDI1/SDA1/ RP8	26 ⁽²⁾	23 ⁽²⁾			
RB5			I/O	TTL/DIG	Digital I/O.
CCP5			I/O	ST/DIG	Capture/Compare/PWM input/output.
KBI1			I	TTL	Interrupt-on-change pin.
SDI1 SDA1			I I/O	ST I ² C	SPI data input.
RP8			1/O	ST/DIG	l ² C data input/output. Remappable Peripheral Pin 8 input/output.
RB6/CCP6/KBI2/PGC/RP9	27 (2)	24 (2)	"0	01/210	
RB6	2/()	2417	I/O	TTL/DIG	Digital I/O.
CCP6			1/O	ST/DIG	Capture/Compare/PWM input/output.
KBI2			I	TTL	Interrupt-on-change pin.
PGC				ST	ICSP™ clock input.
RP9			I/O	ST/DIG	Remappable Peripheral Pin 9 input/output.
RB7/CCP7/KBI3/PGD/RP10	28 ⁽²⁾	25 ⁽²⁾			
RB7 CCP7			1/O 1/O	TTL/DIG ST/DIG	Digital I/O. Capture/Compare/PWM input/output.
KBI3			1/0	TTL	Interrupt-on-change pin.
PGD			1/O	ST/DIG	In-Circuit Debugger and ICSP programming
					data pin.
RP10			I/O	ST/DIG	Remappable Peripheral Pin 10 input/output.
Legend: TTL = TTL compat			lovala		MOS = CMOS compatible input or output
ST = Schmitt Trig I = Input	ger input wi		ieveis	Ar O	nalog = Analog input = Output
P = Power				Ō	D = Open-Drain (no P diode to VDD)
DIG = Digital output	ıt			1 ² ($C = Open-Drain, I^2C specific$

TABLE 1-3: PIC18F2XJ53 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

2: 5.5V tolerant.

3.7 Effects of Power-Managed Modes on Various Clock Sources

When the PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. Unless the USB module is enabled, the OSC1 pin (and OSC2 pin if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_I-DLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In internal oscillator modes (RC_RUN and RC_IDLE), the internal oscillator block provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features regardless of the power-managed mode (see Section 28.2 "Watchdog Timer (WDT)", Section 28.4 "Two-Speed Start-up" and Section 28.5 "Fail-Safe Clock Monitor" for more information on WDT, FSCM and Two-Speed Start-up). The INTOSC output at 8 MHz may be used directly to clock the device or may be divided down by the postscaler. The INTOSC output is disabled if the clock is provided directly from the INTRC output.

If Sleep mode is selected, all clock sources which are no longer required are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents) outside of Deep Sleep. Sleep mode should not be invoked while the USB module is enabled and operating in Full-Power mode. Before Sleep mode is selected, the USB module should be put in the suspend state. This is accomplished by setting the SUSPND bit in the UCON register.

Enabling any on-chip feature that will operate during Sleep mode increases the current consumed during Sleep mode. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support an RTC. Other features may be operating that do not require a device clock source (i.e., MSSP slave, PMP, INTx pins, etc.). Peripherals that may add significant current consumption are listed in Section 31.2 "DC Characteristics: Power-Down and Supply Current PIC18F47J53 Family (Industrial)".

3.8 Power-up Delays

Power-up delays are controlled by two timers so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 5.6 "Power-up Timer (PWRT)**".

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 31-14).

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (HS mode). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

There is a delay of interval, TCSD (parameter 38, Table 31-14), following POR, while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the internal oscillator or EC modes are used as the primary clock source.

4.6.5 DEEP SLEEP BROWN-OUT RESET (DSBOR)

The Deep Sleep module contains a dedicated Deep Sleep BOR (DSBOR) circuit. This circuit may be optionally enabled through the DSBOREN Configuration bit.

The DSBOR circuit monitors the VDD supply rail voltage. The behavior of the DSBOR circuit is described in **Section 5.4 "Brown-out Reset (BOR)**".

4.6.6 RTCC PERIPHERAL AND DEEP SLEEP

The RTCC can operate uninterrupted during Deep Sleep mode. It can wake the device from Deep Sleep by configuring an alarm.

The RTCC clock source is configured with the RTCOSC bit (CONFIG3L<1>). The available reference clock sources are the INTRC and T1OSC/T1CKI. If the INTRC is used, the RTCC accuracy will directly depend on the INTRC tolerance.For more information on configuring the RTCC peripheral, see Section 17.0 "Real-Time Clock and Calendar (RTCC)".

4.6.7 TYPICAL DEEP SLEEP SEQUENCE

This section gives the typical sequence for using the Deep Sleep mode. Optional steps are indicated and additional information is given in notes at the end of the procedure.

- 1. Enable DSWDT (optional).⁽¹⁾
- 2. Configure the DSWDT clock source (optional).⁽²⁾
- 3. Enable DSBOR (optional).⁽¹⁾
- 4. Enable RTCC (optional).(3)
- 5. Configure the RTCC peripheral (optional).⁽³⁾
- 6. Configure the ULPWU peripheral (optional).⁽⁴⁾
- 7. Enable the INTO Interrupt (optional).
- 8. Context save SRAM data by writing to the DSGPR0 and DSGPR1 registers (optional).
- 9. Set the REGSLP bit (WDTCON<7>) and clear the IDLEN bit (OSCCON<7>).
- 10. If using an RTCC alarm for wake-up, wait until the RTCSYNC bit (RTCCFG<4>) is clear.
- Enter Deep Sleep mode by setting the DSEN bit (DSCONH<7>) and issuing a SLEEP instruction. These two instructions must be executed back to back.
- 12. Once a wake-up event occurs, the device will perform a POR Reset sequence. Code execution resumes at the device's Reset vector.
- Determine if the device exited Deep Sleep by reading the Deep Sleep bit, DS (WDTCON<3>). This bit will be set if there was an exit from Deep Sleep mode.

- 14. Clear the Deep Sleep bit, DS (WDTCON<3>).
- 15. Determine the wake-up source by reading the DSWAKEH and DSWAKEL registers.
- Determine if a DSBOR event occurred during Deep Sleep mode by reading the DSBOR bit (DSCONL<1>).
- 17. Read the DSGPR0 and DSGPR1 context save registers (optional).
- 18. Clear the RELEASE bit (DSCONL<0>).
 - Note 1: DSWDT and DSBOR are enabled through the devices' Configuration bits. For more information, see Section 28.1 "Configuration Bits".
 - 2: The DSWDT and RTCC clock sources are selected through the devices' Configuration bits. For more information, see Section 28.1 "Configuration Bits".
 - 3: For more information, see Section 17.0 "Real-Time Clock and Calendar (RTCC)".
 - 4: For more information on configuring this peripheral, see Section 4.7 "Ultra Low-Power Wake-up".

4.6.8 DEEP SLEEP FAULT DETECTION

If during Deep Sleep, the device is subjected to unusual operating conditions, such as an Electrostatic Discharge (ESD) event, it is possible that internal circuit states used by the Deep Sleep module could become corrupted. If this were to happen, the device may exhibit unexpected behavior, such as a failure to wake back up.

In order to prevent this type of scenario from occurring, the Deep Sleep module includes automatic self-monitoring capability. During Deep Sleep, critical internal nodes are continuously monitored in order to detect possible Fault conditions (which would not ordinarily occur). If a Fault condition is detected, the circuitry will set the DSFLT status bit (DSWAKEL<7>) and automatically wake the microcontroller from Deep Sleep, causing a POR Reset.

During Deep Sleep, the Fault detection circuitry is always enabled and does not require any specific configuration prior to entering Deep Sleep.

REGISTER 10-14: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (BANKED EF2h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T1GR4	T1GR3	T1GR2	T1GR1	T1GR0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **T1GR<4:0>:** Timer1 Gate Input (T1G) to the Corresponding RPn Pin bits

REGISTER 10-15: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13 (BANKED EF3h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T3GR4	T3GR3	T3GR2	T3GR1	T3GR0
bit 7							bit 0

Legend:	R/W = Readable bit,	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 4-0 T3GR<4:0>: Timer3 Gate Input (T3G) to the Corresponding RPn Pin bits

REGISTER 10-16: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 (BANKED EF4h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T5GR4	T5GR3	T5GR2	T5GR1	T5GR0
bit 7							bit 0

Legend:	R/W = Readable bit, Writa	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T5GR<4:0>: Timer5 Gate Input (T5G) to the Corresponding RPn Pin bits

REGISTER 10-21: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22 (BANKED EFDh)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—		SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 7							bit 0

Legend:	R/W = Readable bit, Wri	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 SCK2R<4:0>: Assign SPI2 Clock Input (SCK2) to the Corresponding RPn Pin bits

REGISTER 10-22: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23 (BANKED EFEh)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:	R/W = Readable bit, V	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2) to the Corresponding RPn Pin bits

REGISTER 10-23: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24 (BANKED EFFh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, V	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 OCFAR<4:0>: Assign PWM Fault Input (FLT0) to the Corresponding RPn Pin bits

14.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP modules

The module is controlled through the T2CON register (Register 14-1) which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 14-1.

14.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (Fosc/4). A 4-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options. These are selected by the prescaler control bits, T2CKPS<1:0> (T2CON<1:0>). The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 14.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset (Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or Brown-out Reset (BOR))

TMR2 is not cleared when T2CON is written.

REGISTER 14-1: T2CON: TIMER2 CONTROL REGISTER (ACCESS FCAh)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7	Unimplemented: Read as '0'
bit 6-3	T2OUTPS<3:0>: Timer2 Output Postscale Select bits
	0000 = 1:1 Postscale
	0001 = 1:2 Postscale
	•
	•
	•
	1111 = 1:16 Postscale
bit 2	TMR2ON: Timer2 On bit
	1 = Timer2 is on
	0 = Timer2 is off
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	10 = Prescaler is 16

. .. -

PIC18F47J53

REGISTER 18-4: CCPRxL: CCP4-10 PERIOD LOW BYTE REGISTER (4, BANKED F13h; 5, F10h; 6, F0Dh; 7, F0Ah; 8, F07h; 9, F04h; 10, F01h)

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCPRxL7 | CCPRxL6 | CCPRxL5 | CCPRxL4 | CCPRxL3 | CCPRxL2 | CCPRxL1 | CCPRxL0 |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 CCPRxL<7:0>: CCPx Period Register Low Byte bits Capture Mode: Capture register low byte Compare Mode: Compare register low byte PWM Mode: PWM Period register low byte

REGISTER 18-5: CCPRxH: CCP4-10 PERIOD HIGH BYTE REGISTER (4, BANKED F14h; 5, F11h; 6, F0Eh; 7, F0Bh; 8, F08h; 9, F05h; 10, F02h)

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CCPRxH7 | CCPRxH6 | CCPRxH5 | CCPRxH4 | CCPRxH3 | CCPRxH2 | CCPRxH1 | CCPRxH0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-0 **CCPRxH<7:0>:** CCPx Period Register High Byte bits Capture Mode: Capture register high byte Compare Mode: Compare register high byte PWM Mode: PWM Period register high byte

20.2 **Control Registers**

Each MSSP module has three associated control registers. These include a status register (SSPxSTAT) and two control registers (SSPxCON1 and SSPxCON2). The use of these registers and their individual Configuration bits differs significantly depending on whether the MSSP module is operated in SPI or I²C mode.

Additional details are provided under the individual sections.

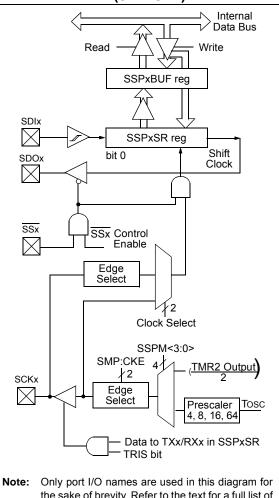
Note: In devices with more than one MSSP module, it is very important to pay close attention to the SSPxCON register names. SSP1CON1 and SSP1CON2 control different operational aspects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.

20.3 **SPI Mode**

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported.

When MSSP2 is used in SPI mode, it can optionally be configured to work with the SPI DMA submodule described in Section 20.4 "SPI DMA Module".

To accomplish communication, typically three pins are used:


- Serial Data Out (SDOx) RC7/CCP10/RX1/DT1/SDO1/RP18 or SDO2/Remappable
- · Serial Data In (SDIx) -RB5/CCP5/KBI1/SDI1/SDA1/RP8 or SDI2/Remappable
- Serial Clock (SCKx) RB4/CCP4/KBI0/SCK1/SCL1/RP7 or SCK2/Remappable

Additionally, a fourth pin may be used when in a Slave mode of operation:

 Slave Select (SSx) – RA5/AN4/C1INC/SS1/ HLVDIN/RCV/RP2 or SS2/Remappable

Figure 20-1 depicts the block diagram of the MSSP module when operating in SPI mode.

FIGURE 20-1: MSSPx BLOCK DIAGRAM (SPI MODE)

the sake of brevity. Refer to the text for a full list of multiplexed functions.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN ⁽¹⁾	CKP	SSPM3 ⁽²⁾	SSPM2 ⁽²⁾	SSPM1 ⁽²⁾	SSPM0 ⁽²⁾
bit 7							bit
lagandi							
Legend: R = Reada	able bit	W = Writable b	bit	U = Unimplem	ented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 7	<u>In Master Tra</u> 1 = A write	e Collision Detec ansmit mode: to the SSPxBUI ssion to be starte sion	⁼ register wa			nditions were i	not valid for
	software 0 = No collis	PxBUF register is e) sion <u>10de (Master or S</u>			itting the previ	ous word (mus	t be cleared
oit 6	SSPOV: Rec In Receive m 1 = A byte is software	ceive Overflow In node: s received while t		register is still h	olding the prev	<i>r</i> ious byte (mus	t be cleared
		<u>node:</u> n't care" bit in Tra					
oit 5	1 = Enables	ster Synchronous the serial port ar the serial port a	nd configures	the SDAx and S		e serial port pi	าร
bit 4	CKP: SCKx In Slave mod 1 = Releases 0 = Holds clo In Master mo Unused in th	Release Control <u>de:</u> s clock ock low (clock str <u>ode:</u> is mode.	bit etch); used to	o ensure data se	tup time		
bit 3-0	$1111 = I^{2}C \le 1110 = I^{2}C \le 1011 = I^{2}C $	Master Synchro Slave mode, 10-b Slave mode, 7-bi Firmware Control the SSPxMSK t Master mode, clo Slave mode, 10-b Slave mode, 7-bi	bit address wit t address with led Master m register at the ick = Fosc/(4 bit address	th Start and Stop Start and Stop ode (slave Idle) SSPxADD SFR	o bit interrupts bit interrupts e R address ^(3,4)		
2:	When enabled, t Bit combinations When SSPM<3:0 SSPxMSK regist	not specifically l 0> = 1001, any r ter.	isted here are eads or write	e either reserved s to the SSPxAE	l or implemente DD SFR addres		-
				Maaking maada ia	a ala ata al (NACCO		

4: This mode is only available when 7-Bit Address Masking mode is selected (MSSPMSK Configuration bit is '1').

20.5.3.4 7-Bit Address Masking Mode

Unlike 5-Bit Address Masking mode, 7-Bit Address Masking mode uses a mask of up to eight bits (in 10-bit addressing) to define a range of addresses than can be Acknowledged, using the lowest bits of the incoming address. This allows the module to Acknowledge up to 127 different addresses with 7-bit addressing, or 255 with 10-bit addressing (see Example 20-4). This mode is the default configuration of the module and is selected when MSSPMSK is unprogrammed ('1').

The address mask for 7-Bit Address Masking mode is stored in the SSPxMSK register, instead of the SSPx-CON2 register. SSPxMSK is a separate, hardware register within the module, but it is not directly addressable. Instead, it shares an address in the SFR space with the SSPxADD register. To access the SSPxMSK register, it is necessary to select MSSP mode, '1001' (SSPCON1<3:0> = 1001), and then read or write to the location of SSPxADD.

To use 7-Bit Address Masking mode, it is necessary to initialize SSPxMSK with a value before selecting the I^2C Slave Addressing mode. Thus, the required sequence of events is:

- 1. Select SSPxMSK Access mode (SSPx-CON2<3:0> = 1001).
- 2. Write the mask value to the appropriate SSPxADD register address (FC8h for MSSP1, F6Eh for MSSP2).
- Set the appropriate I²C Slave mode (SSPx-CON2<3:0> = 0111 for 10-bit addressing, 0110 for 7-bit addressing).

Setting or clearing mask bits in SSPxMSK behaves in the opposite manner of the ADMSK bits in 5-Bit Address Masking mode. That is, clearing a bit in SSPxMSK causes the corresponding address bit to be masked; setting the bit requires a match in that position. SSPxMSK resets to all '1's upon any Reset condition, and therefore, has no effect on the standard MSSP operation until written with a mask value.

With 7-Bit Address Masking mode, the SSPxMSK<7:1> bits mask the corresponding address bits in the SSPxADD register. For any SSPxMSK bits that are active (SSPxMSK<n> = 0), the corresponding SSPxADD address bit is ignored (SSPxADD<n> = x). For the module to issue an address Acknowledge, it is sufficient to match only on addresses that do not have an active address mask.

With 10-Bit Address Masking mode, SSPxMSK<7:0> bits mask the corresponding address bits in the SSPxADD register. For any SSPxMSK bits that are active (= 0), the corresponding SSPxADD address bit is ignored (SSPxADD<n> = x).

Note: The two MSbs of the address are not affected by address masking.

EXAMPLE 20-4: ADDRESS MASKING EXAMPLES IN 7-BIT MASKING MODE

7-Bit Addressing:

SSPxADD<7:1>= 1010 000

SSPxMSK<7:1>= 1111 001

Addresses Acknowledged = A8h, A6h, A4h, A0h

10-Bit Addressing:

SSPxADD<7:0> = 1010 0000 (the two MSbs are ignored in this example since they are not affected)

SSPxMSK<5:1> = 1111 0

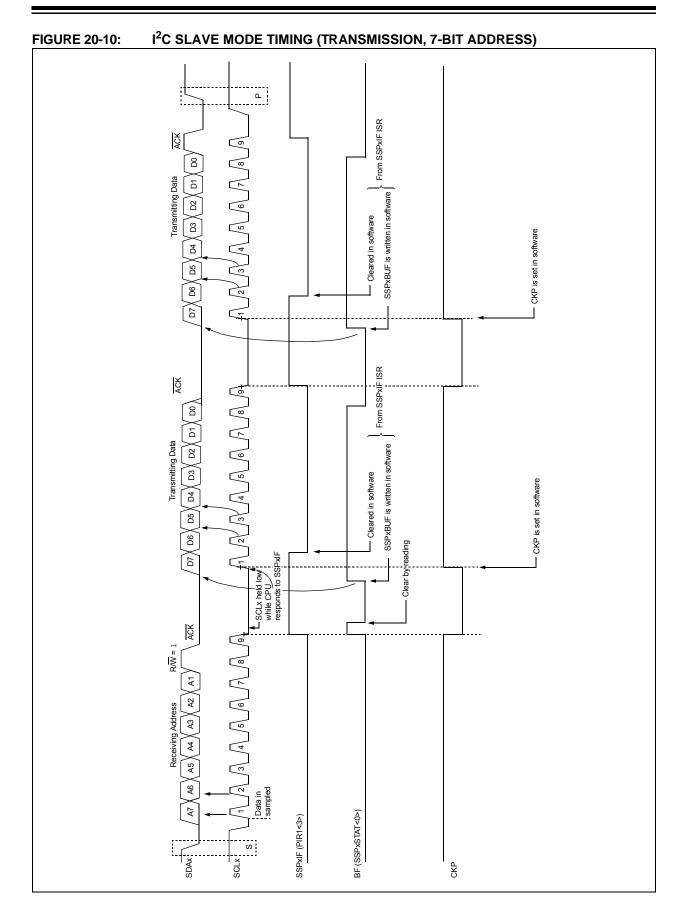
Addresses Acknowledged = A8h, A6h, A4h, A0h

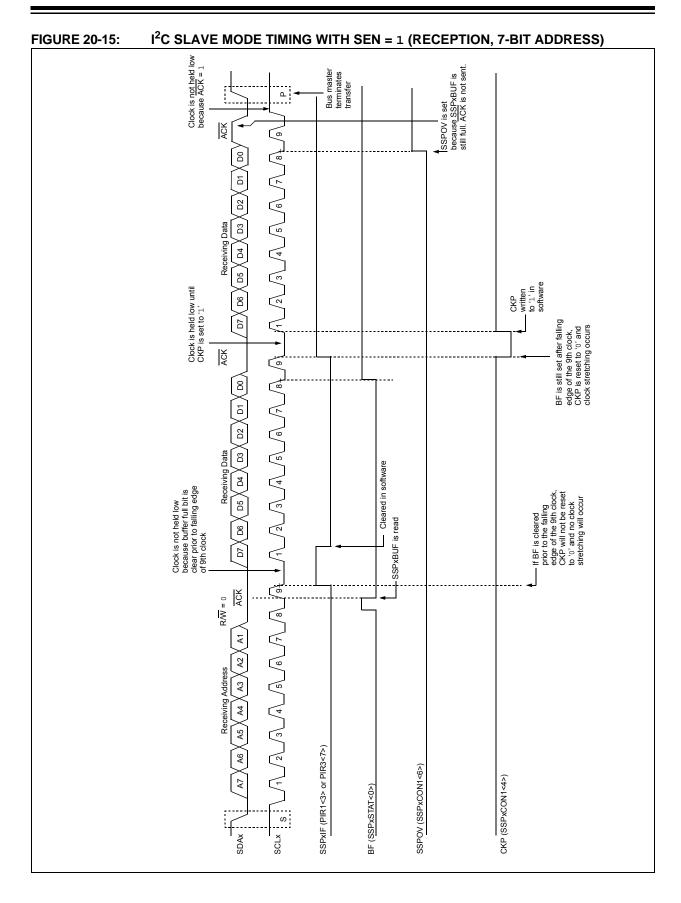
20.5.3.5 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and the SDAx line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit, BF (SSPxSTAT<0>), is set or bit, SSPOV (SSPxCON1<6>), is set.

An MSSP interrupt is generated for each data transfer byte. The interrupt flag bit, SSPxIF, must be cleared in software. The SSPxSTAT register is used to determine the status of the byte.


If SEN is enabled (SSPxCON2<0> = 1), SCLx will be held low (clock stretch) following each data transfer. The clock must be released by setting bit, CKP (SSPx-CON1<4>). See **Section 20.5.4** "**Clock Stretching**" for more details.


20.5.3.6 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register. The ACK pulse will be sent on the ninth bit and pin, SCLx, is held low regardless of SEN (see Section 20.5.4 "Clock Stretching" for more details). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPxBUF register, which also loads the SSPxSR register. Then, the SCLx pin should be enabled by setting bit, CKP (SSPxCON1<4>). The eight data bits are shifted out on the falling edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time (Figure 20-10).

The \overline{ACK} pulse from the master-receiver is latched on the rising edge of the ninth SCLx input pulse. If the SDAx line is high (not \overline{ACK}), then the data transfer is complete. In this case, when the \overline{ACK} is latched by the slave, the slave logic is reset (resets the SSPxSTAT register) and the slave monitors for another occurrence of the Start bit. If the SDAx line was low (\overline{ACK}), the next transmit data must be loaded into the SSPxBUF register. Again, the SCLx pin must be enabled by setting bit, CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared in software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

REGISTER 21-2: RCSTAX: RECEIVE STATUS AND CONTROL REGISTER (1, ACCESS FACh; 2, FC9h) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-x R-0 SPEN RX9 SREN CREN ADDEN FERR OERR RX9D bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7 SPEN: Serial Port Enable bit 1 = Serial port enabled (configures RXx/DTx and TXx/CKx pins as serial port pins) 0 = Serial port disabled (held in Reset) bit 6 RX9: 9-Bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception bit 5 SREN: Single Receive Enable bit Asynchronous mode: Don't care. Synchronous mode - Master: 1 = Enables single receive 0 = Disables single receive This bit is cleared after reception is complete. Synchronous mode - Slave: Don't care bit 4 **CREN:** Continuous Receive Enable bit Asynchronous mode: 1 = Enables receiver 0 = Disables receiver Synchronous mode: 1 = Enables continuous receive until enable bit, CREN, is cleared (CREN overrides SREN) 0 = Disables continuous receive bit 3 ADDEN: Address Detect Enable bit Asynchronous mode 9-Bit (RX9 = 1): 1 = Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set 0 = Disables address detection, all bytes are received and the ninth bit can be used as a parity bit Asynchronous mode 9-Bit (RX9 = 0): Don't care. bit 2 FERR: Framing Error bit 1 = Framing error (can be updated by clearing the RCREGx register and receiving the next valid byte) 0 = No framing error bit 1 **OERR:** Overrun Error bit 1 = Overrun error (can be cleared by clearing bit, CREN) 0 = No overrun error RX9D: 9th bit of Received Data bit 0 This can be address/data bit or a parity bit and must be calculated by user firmware.

© 2009-2016 Microchip Technology Inc.

DS30009964C-page 339

EXAMPLE 27-3: CAPACITANCE CALIBRATION ROUTINE

```
#include "p18cxxx.h"
#define COUNT 25
                                            //@ 8MHz INTFRC = 62.5 us.
#define ETIME COUNT*2.5
                                            //time in uS
#define DELAY for(i=0;i<COUNT;i++)</pre>
#define ADSCALE 1023
                                            //for unsigned conversion 10 sig bits
#define ADREF 3.3
                                            //Vdd connected to A/D Vr+
#define RCAL .027
                                            //R value is 4200000 (4.2M)
                                            //scaled so that result is in
                                            //1/100th of uA
int main(void)
   int i;
   int j = 0;
                                             //index for loop
   unsigned int Vread = 0;
   float CTMUISrc, CTMUCap, Vavg, VTot, Vcal;
                                              //assume CTMU and A/D have been setup correctly
                                              //see Example 25-1 for CTMU & A/D setup
   setup();
       CTMUCONHbits.CTMUEN = 1;
                                             // Enable the CTMU
       CTMUCONLbits.EDG1STAT = 0;
                                             // Set Edge status bits to zero
       CTMUCONLbits.EDG2STAT = 0;
   for(j=0;j<10;j++)</pre>
    {
       CTMUCONHbits.IDISSEN = 1;
                                            //drain charge on the circuit
                                            //wait 125us
       DELAY;
       CTMUCONHbits.IDISSEN = 0;
                                            //end drain of circuit
       CTMUCONLbits.EDG1STAT = 1;
                                            //Begin charging the circuit
                                            //using CTMU current source
                                            //wait for 125us
       DELAY;
       CTMUCONLbits.EDG1STAT = 0;
                                            //Stop charging circuit
       PIR1bits.ADIF = 0;
                                            //make sure A/D Int not set
       ADCON0bits.GO=1;
                                            //and begin A/D conv.
       while(!PIR1bits.ADIF);
                                            //Wait for A/D convert complete
       Vread = ADRES;
                                            //Get the value from the A/D
       PIR1bits.ADIF = 0;
                                            //Clear A/D Interrupt Flag
       VTot += Vread;
                                            //Add the reading to the total
   }
   Vavg = (float)(VTot/10.000);
                                            //Average of 10 readings
   Vcal = (float)(Vavg/ADSCALE*ADREF);
   CTMUISrc = Vcal/RCAL;
                                            //CTMUISrc is in 1/100ths of uA
   CTMUCap = (CTMUISrc*ETIME/Vcal)/100;
```

PIC18F47J53

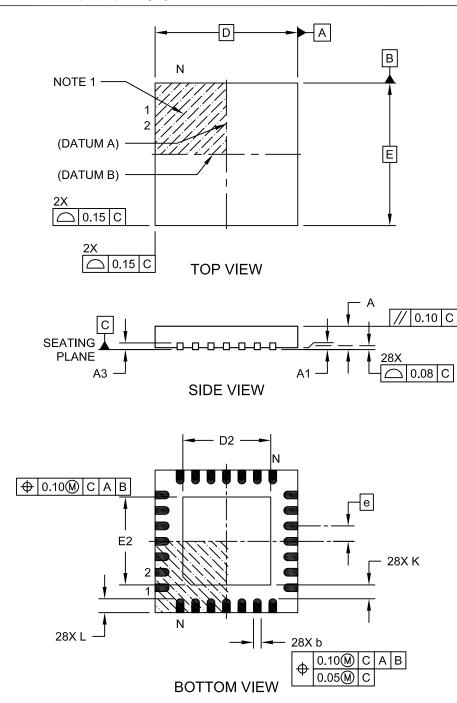
SUB	WFB	Su	btract	W from f	with B	orrow		
Synta	ax:	SU	BWFB	f {,d {,a}	}			
Oper	ands:		f ≤ 255 [0,1]	5				
		a ∈ [0,1]						
Oper	eration: $(f) - (W) - (\overline{C}) \rightarrow dest$							
Statu	s Affected:	N, OV, C, DC, Z						
Enco	ding:)101	10da	fff	f ffff		
	ription:					flag (borrow)		
		fror me in V	m regis thod). I V. If 'd'	ter 'f' (2's f 'd' is '0',	complete the rest result is			
		lf 'a	a'is'1',		s used	k is selected. to select the		
		set in I mo Se	is enal ndexed de whe ction 2	oled, this i I Literal O enever f ≤ 9.2.3 "By	nstruct ffset Ac 95 (5F te-Orie	0		
		Lite	eral Of	fset Mode	or c	letails.		
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1		Q2	Q		Q4		
	Decode		Read ister 'f'	Proce Dat		Write to destination		
Exan	nple 1:		UBWFB	REG,				
Exam	Before Instruc		ODMI D	100,	1, 0			
	REG	=	19h		1 100			
	W C	=	0Dh 1	(000)	0 110	1)		
	After Instructio	n	-					
	REG	=	0Ch		0 101			
	W C	=	0Dh 1	(000	0 110	1)		
	Z N	=	0 0	· rocu	lt is po	eitivo		
Fyan	nple 2:			REG, 0		Silive		
	Before Instruc		ODWPD	REG, 0	, 0			
	REG	=	1Bh		1 101			
	W C	=	1Ah 0	(000)	1 101	0)		
	After Instructio	n	0					
	REG W	=	1Bh 00h	(000	1 101	1)		
	С	=	1					
	Z N	=	1 0	; resu	lt is ze	ro		
Exan	nple 3:		UBWFB	REG, 1	1. 0			
	Before Instruc				_, _			
	REG	=	03h		0 001			
	W C	=	0Eh 1	(000)	0 110	1)		
	After Instruction		_					
	REG	=	F5h		1 010 comp]	0)		
	W	=	0Eh		0 110	1)		
	C Z N	= = =	0 0 1	· reen	lt is ne	aative		
			-	, 1030		34010		

SWAPF	Swap f						
Syntax:	SWAPF f	{,d {,a}}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$						
Operation:	(f<3:0>) → dest<7:4>, (f<7:4>) → dest<3:0>						
Status Affected:	None						
Encoding:	0011	10da	fff	f	ffff		
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default).						
	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).						
	If 'a' is '0' and the extended instruction set is enabled, this instruction operat in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe Literal Offset Mode" for details.						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	2 Q3		Q4			
Decode	Read register 'f'	Proce Data			/rite to stination		
Example: Before Instruct REG After Instruction REG	ion = 53h	REG, 1,	0				

31.2 DC Characteristics: Power-Down and Supply Current PIC18F47J53 Family (Industrial) (Continued)

PIC18LF47J53 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial										
PIC18F4	7J53 Family	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial										
Param. No.	Device	Тур.	Max.	Units	Conditions							
	Supply Current (IDD) ⁽²⁾											
	PIC18LFXXJ53	0.61	1.25	mA	-40°C	VDD = 2.0V, VDDCORE = 2.0V						
		0.62	1.25	mA	+25°C							
		0.64	1.35	mA	+85°C							
	PIC18LFXXJ53	0.99	1.70	mA	-40°C	VDD = 2.5V, VDDCORE = 2.5V						
		0.96	1.70	mA	+25°C		Fosc = 4 MHz, PRI_RUN mode,					
		0.94	1.82	mA	+85°C							
	PIC18FXXJ53	0.78	1.60	mA	-40°C	Vdd = 2.15V, Vddcore = 10 μF	EC Oscillator					
		0.78	1.60	mA	+25°C							
		0.78	1.70	mA	+85°C							
	PIC18FXXJ53	1.10	1.95	mA	-40°C	VDD = 3.3V, VDDCORE = 10 μF						
		1.02	1.90	mA	+25°C							
		1.00	2.00	mA	+85°C							
	PIC18LFXXJ53	9.8	14.8	mA	-40°C	VDD = 2.5V, VDDCORE = 2.5V	Fosc = 48 MHz, PRI_RUN mode,					
		9.5	14.8	mA	+25°C							
		9.4	15.1	mA	+85°C							
	PIC18FXXJ53	10.9	19.5	mA	-40°C	λ (pp = 2.2)/	EC Oscillator					
		10.2	19.5	mA	+25°C	VDD = $3.3V$, VDDCORE = $10 \mu F$						
		9.9	19.5	mA	+85°C	10 μ						

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).


- 2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (USB module, WDT, etc.). The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/VSS;
 - MCLR = VDD; WDT disabled unless otherwise specified.
- **3:** Low-power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: This is the module differential current when the USB module is enabled and clocked at 48 MHz, but with no USB cable attached. When the USB cable is attached or data is being transmitted, the current consumption may be much higher (see Section 23.6.4 "USB Transceiver Current Consumption"). During USB Suspend mode (USBEN = 1, SUSPND = 1, bus in Idle state), the USB module current will be dominated by the D+ or D- pull-up resistor. The integrated pull-up resistor use "resistor switching" according to the resistor_ecn supplement to the USB 2.0 Specifications, and therefore, may be as low as 900Ω during Idle conditions.

32.2 Package Details

The following sections give the technical details of the packages.

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-105C Sheet 1 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

06/23/16