

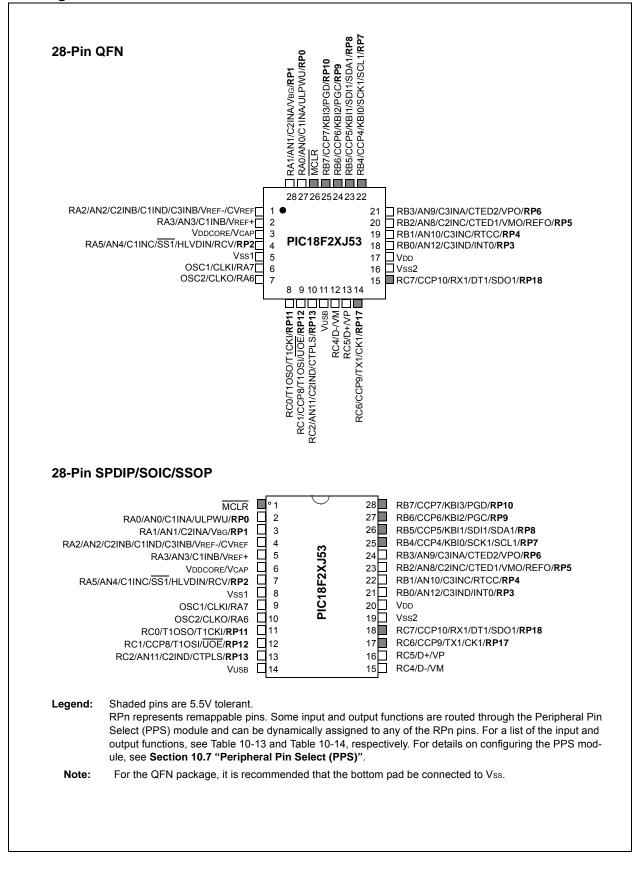
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6×6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26j53-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Input Oscillator Frequency	PLL Division (PLLDIV<2:0>)	Clock Mode (FOSC<2:0>)	MCU Clock Division (CPDIV<1:0>)	Microcontroller Clock Frequency
			None (11)	48 MHz
		50	÷2(10)	24 MHz
48 MHz	N/A	EC	÷3(01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
	10 (000)	FORM	÷2(10)	24 MHz
48 MHz	÷12 (000)	ECPLL	÷3(01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
	10 (001)	FORM	÷2(10)	24 MHz
40 MHz	÷10(001)	ECPLL	÷3(01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
	0 (00.0)	FORM	÷2 (10)	24 MHz
24 MHz	÷6(010)	ECPLL	÷3(01)	16 MHz
			÷6 (00)	8 MHz
	N/A	EC ⁽¹⁾	None (11)	24 MHz
			÷2 (10)	12 MHz
24 MHz			÷3 (01)	8 MHz
			÷6 (00)	4 MHz
	÷5 (011)	ECPLL	None (11)	48 MHz
			÷2 (10)	24 MHz
20 MHz			÷3(01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
			÷2 (10)	24 MHz
16 MHz	÷4 (100)	HSPLL, ECPLL	÷3 (01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
	0 (2.22.)		÷2 (10)	24 MHz
12 MHz	÷3(101)	HSPLL, ECPLL	÷3(01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
0.1411-	0 (5 5 5)	HSPLL, ECPLL,	÷2 (10)	24 MHz
8 MHz	÷2 (110)	INTOSCPLL/ INTOSCPLLO	÷3(01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
4.8411	4 ()		÷2 (10)	24 MHz
4 MHz	÷ 1 (111)	HSPLL, ECPLL	÷3(01)	16 MHz
			÷6 (00)	8 MHz

TABLE 3-5:	OSCILLATOR CONFIGURATION OPTIONS FOR USB OPERATION

Note 1: The 24 MHz EC mode (without PLL) is only compatible with low-speed USB. Full-speed USB requires a 48 MHz system clock.

6.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as 2 bytes or 4 bytes in program memory. The Least Significant Byte (LSB) of an instruction word is always stored in a program memory location with an even address (LSB = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 6.1.3 "Program Counter").

Figure 6-5 provides an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 6-5 displays how the instruction, GOTO 0006h, is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 29.0 "Instruction Set Summary" provides further details of the instruction set.

			LSB = 1	LSB = 0	Word Address \downarrow
	Program N				000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456	h C1h	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

FIGURE 6-5: INSTRUCTIONS IN PROGRAM MEMORY

6.2.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits (MSbs); the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence immediately after the first word, the data in the second word is accessed and

EXAMPLE 6-4: TWO-WORD INSTRUCTIONS

used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 illustrates how this works.

Note: See Section 6.5 "Program Memory and the Extended Instruction Set" for information on two-word instructions in the extended instruction set.

CASE 1:								
Object Code		Source Code	Source Code					
0110 0110 00	0000 000	TSTFSZ	REG1	; is RAM location 0?				
1100 0001 00	010 0011	MOVFF	REG1, REG2	; No, skip this word				
1111 0100 01	LO1 0110			; Execute this word as a NOP				
0010 0100 00	0000 000	ADDWF	REG3	; continue code				
CASE 2:								
Object Code		Source Code	9					
0110 0110 00	0000 000	TSTFSZ	REG1	; is RAM location 0?				
1100 0001 00	010 0011	MOVFF	REG1, REG2	; Yes, execute this word				
1111 0100 01	LO1 0110			; 2nd word of instruction				
0010 0100 00	0000 000	ADDWF	REG3	; continue code				

TABLE 6-4: REGISTER FILE SUMMARY (PIC18F47J53 FAMILY) (CONTINUED)										
Addr.	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR
F53h	CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000
F52h	CCPTMRS0	C3TSEL1	C3TSEL0	C2TSEL2	C2TSEL1	C2TSEL0	C1TSEL2	C1TSEL1	C1TSEL0	0000 0000
F51h	CCPTMRS1	C7TSEL1	C7TSEL0	_	C6TSEL0	_	C5TSEL0	C4TSEL1	C4TSEL0	00-0 -000
F50h	CCPTMRS2	_	—	_	C10TSEL0(3)	_	C9TSEL0 ⁽³⁾	C8TSEL1	C8TSEL0	0 -000
F4Fh	DSGPR1	Deep Sleep	Persistent Ge	neral Purpose	Register (con	tents retained	even in deep	sleep)		xxxx xxxx
F4Eh	DSGPR0	Deep Sleep	Persistent Ge	neral Purpose	Register (con	tents retained	even in deep	sleep)		xxxx xxxx
F4Dh	DSCONH	DSEN	_	_	_	_	r	DSULPEN	RTCWDIS	0000
F4Ch	DSCONL	_	_	_	_	_	ULPWDIS	DSBOR	RELEASE	000
F4Bh	DSWAKEH	_	_	_	_	_	_	_	DSINT0	0
F4Ah	DSWAKEL	DSFLT	_	DSULP	DSWDT	DSRTC	DSMCLR	_	DSPOR	0-00 00-1
F49h	ANCON1	VBGEN			PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	00 0000
F48h	ANCON0	PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000
F47h	OEDCON	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	0000 0000
F46h	ALRMRPT	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000 0000
F45h	ALRMVALH	-			ed on ALRMP1			/	744.10	xxxx xxxx
F44h	ALRMVALL	1			d on ALRMPT					xxxx xxxx
F43h	_	_			_	_	_			
F42h	ODCON1	CCP8OD	CCP70D	CCP6OD	CCP50D	CCP4OD	ECCP3OD	ECCP2OD	ECCP10D	0000 0000
F41h	ODCON2					CCP100D	CCP90D	U2OD	U10D	0000
F40h	ODCON2	_		_	_		001 300	SPI2OD	SPI10D	00
F3Fh	RTCCFG	RTCEN			RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	0-00 0000
	RTCCAL	-	-							
F3Eh	REFOCON	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	0000 0000
F3Dh		ROON	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0 PMPTTL ⁽¹⁾	
F3Ch	PADCFG1						RTSECSEL1	RTSECSEL0	PNPTILY	000
F3Bh	RTCVALH				ed on RTCPT					0xxx xxxx
F3Ah	RTCVALL	1		WINDOW Base		1	FOEN	0004	DDDA	0xxx xxxx
F39h	UCFG	UTEYE	UOEMON	-		UTRDIS	FSEN	PPB1	PPB0	00-0 0000
F38h	UADDR		ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0	-000 0000
F37h	UEIE	BTSEE	-	-	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE	00 0000
F36h	UIE	—	SOFIE	STALLIE	IDLEIE	TRNIE	ACTVIE	UERRIE	URSTIE	-000 0000
F35h	UEP15	_			EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F34h	UEP14	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F33h	UEP13	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F32h	UEP12	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F31h	UEP11	—	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F30h	UEP10	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F2Fh	UEP9	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F2Eh	UEP8	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F2Dh	UEP7	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F2Ch	UEP6	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F2Bh	UEP5	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F2Ah	UEP4	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F29h	UEP3	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F28h	UEP2	_	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F27h	UEP1	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F26h	UEP0	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000
F25h	CM3CON	CON	COE	CPOL	EVPOL1	EVPOL0	CREF	CCH1	CCH0	0001 1111
F24h	TMR5H	Timer5 Regis	ster High Byte							xxxx xxxx

TABLE 6-4:	REGISTER FILE SUMMARY (PIC18F47J53 FAMILY)	(CONTINUED)

Legend:x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved, do not modifyNote1:Implemented only for 44-pin devices (PIC18F46J53, PIC18F47J53, PIC18LF46J53 and PIC18LF47J53).

2: Implemented only for 28-pin devices (PIC18F26J53, PIC18F27J53, PIC18LF26J53 and PIC18LF27J53).

3: Implemented only for devices with 128 Kbyte of program memory (PIC18F27J53, PIC18F47J53, PIC18LF27J53 and PIC18LF47J53).

TABLI	E 6-4: R	EGISTER	FILE SUN	MMARY (PIC18F47	J53 FAMI	LY) (CON	TINUED)				
Addr.	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR		
F23h	TMR5L	Timer5 Regis	ster Low Bytes	6						xxxx xxxx		
F22h	T5CON	TMR5CS1	TMR5CS0	T5CKPS1	T5CKPS0	T5OSCEN	T5SYNC	RD16	TMR5ON	0000 0000		
F21h	T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/ T5DONE	T5GVAL	T5GSS1	T5GSS0	0000 0x00		
F20h	TMR6	Timer6 Regis	mer6 Register									
F1Fh	PR6	Timer6 Perio	d Register							1111 1111		
F1Eh	T6CON	—	T6OUTPS3	T6OUTPS2	T6OUTPS1	T6OUTPS0	TMR6ON	T6CKPS1	T6CKPS0	-000 0000		
F1Dh	TMR8	Timer8 Regis	ster							0000 0000		
F1Ch	PR8	Timer8 Perio	d Register							1111 1111		
F1Bh	T8CON	_	T8OUTPS3	T8OUTPS2	T8OUTPS1	T8OUTPS0	TMR8ON	T8CKPS1	T8CKPS0	-000 0000		
F1Ah	PSTR3CON	CMPL1	CMPL0	_	STRSYNC	STRD	STRC	STRB	STRA	00-0 0001		
F19h	ECCP3AS	ECCP3ASE	ECCP3AS2	ECCP3AS1	ECCP3AS0	PSS3AC1	PSS3AC0	PSS3BD1	PSS3BD0	0000 0000		
F18h	ECCP3DEL	P3RSEN	P3DC6	P3DC5	P3DC4	P3DC3	P3DC2	P3DC1	P3DC0	0000 0000		
F17h	CCPR3H	Capture/Com	npare/PWM R	egister 3 High	n Byte					XXXX XXXX		
F16h	CCPR3L	Capture/Com	npare/PWM R	egister 3 Low	Byte					XXXX XXXX		
F15h	CCP3CON	P3M1	P3M0	DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	0000 0000		
F14h	CCPR4H	Capture/Com	npare/PWM R	egister 4 High	n Byte					xxxx xxxx		
F13h	CCPR4L	Capture/Con	npare/PWM R	egister 4 Low	Byte					xxxx xxxx		
F12h	CCP4CON	—	_	DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0	00 0000		
F11h	CCPR5H	Capture/Com	npare/PWM R	egister 5 High	n Byte	•	•		•	xxxx xxxx		
F10h	CCPR5L	Capture/Com	npare/PWM R	egister 5 Low	Byte					xxxx xxxx		
F0Fh	CCP5CON	_	_	DC5B1	DC5B0	CCP5M3	CCP5M2	CCP5M1	CCP5M0	00 0000		
F0Eh	CCPR6H	Capture/Com	pare/PWM R	egister 6 High	n Byte					xxxx xxxx		
F0Dh	CCPR6L	Capture/Com	pare/PWM R	egister 6 Low	Byte					xxxx xxxx		
F0Ch	CCP6CON	_	—	DC6B1	DC6B0	CCP6M3	CCP6M2	CCP6M1	CCP6M0	00 0000		
F0Bh	CCPR7H	Capture/Com	pare/PWM R	egister 7 High	n Byte					xxxx xxxx		
F0Ah	CCPR7L	Capture/Com	pare/PWM R	egister 7 Low	Byte					xxxx xxxx		
F09h	CCP7CON	_	_	DC7B1	DC7B0	CCP7M3	CCP7M2	CCP7M1	CCP7M0	00 0000		
F08h	CCPR8H	Capture/Corr	pare/PWM R	egister 8 High	n Byte					xxxx xxxx		
F07h	CCPR8L	Capture/Con	pare/PWM R	egister 8 Low	Byte					xxxx xxxx		
F06h	CCP8CON	_	_	DC8B1	DC8B0	CCP8M3	CCP8M2	CCP8M1	CCP8M0	00 0000		
F05h	CCPR9H	Capture/Corr	pare/PWM R	egister 9 High	n Byte					xxxx xxxx		
F04h	CCPR9L	Capture/Con	pare/PWM R	egister 9 Low	Byte					xxxx xxxx		
F03h	CCP9CON	_	_	DC9B1	DC9B0	CCP9M3	CCP9M2	CCP9M1	CCP9M0	00 0000		
F02h	CCPR10H	Capture/Corr	pare/PWM R	egister 10 Hig	gh Byte					xxxx xxxx		
F01h	CCPR10L	Capture/Corr	pare/PWM R	egister 10 Lov	w Byte					xxxx xxxx		
F00h	CCP10CON	_	_	DC10B1	DC10B0	CCP10M3	CCP10M2	CCP10M1	CCP10M0	00 0000		
EFFh	RPINR24	_	_	_	PWM Fault In	put (FLT0) to	Input Pin Map	ping bits		1 1111		
EFEh	RPINR23	_	_	_	SPI2 Slave S	elect Input (SS	S2) to Input Pir	n Mapping bits		1 1111		
EFDh	RPINR22	_	_	_	-		Input Pin Map			1 1111		
EFCh	RPINR21	_	_	_			nput Pin Mapp	· ·		1 1111		
EFBh	_	_		_	_	_						
EFAh	_	_	_	_	_	_	_	_	_			
EF9h	_	_	_	_	_	_	_	_	_	1		
EF8h	RPINR17	_	_	_	EUSART2 CI	ock Input (CK)	2) to Input Pin	Mapping hits		1 1111		
EF7h	RPINR16				-		t Pin Mapping			1 1111		
EF6h		_	_						_			
EF5h					_							
- 51										1		

TABLE 6-4: REGISTER FILE SUMMARY (PIC18F47J53 FAMILY) (CONTINUED)

 $Legend: \quad x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved, do not modify a second s$

Note 1: Implemented only for 44-pin devices (PIC18F46J53, PIC18F47J53, PIC18LF46J53 and PIC18LF47J53).

2: Implemented only for 28-pin devices (PIC18F26J53, PIC18F27J53, PIC18LF26J53 and PIC18LF27J53).

3: Implemented only for devices with 128 Kbyte of program memory (PIC18F27J53, PIC18F47J53, PIC18LF27J53 and PIC18LF47J53).

6.6 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different. This is due to the introduction of a new addressing mode for the data memory space. This mode also alters the behavior of Indirect Addressing using FSR2 and its associated operands.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect Addressing with FSR0 and FSR1 also remains unchanged.

6.6.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of Indirect Addressing using the FSR2 register pair and its associated file operands. Under proper conditions, instructions that use the Access Bank, that is, most bit and byte-oriented instructions, can invoke a form of Indexed Addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0); and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in Direct Addressing) or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

6.6.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use Direct Addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte and bit-oriented instructions are not affected if they use the Access Bank (Access RAM bit is '1') or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is provided in Figure 6-9.

Those who desire to use byte or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 29.2.1 "Extended Instruction Syntax"**.

7.5.3 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

7.5.4 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed <u>if needed</u>. If the write operation is interrupted by a MCLR Reset, or a WDT time-out Reset during normal operation, the user can check the WRERR bit and rewrite the location(s) as needed.

7.6 Flash Program Operation During Code Protection

See Section 28.6 "Program Verification and Code Protection" for details on code protection of Flash program memory.

TABLE 7-2: REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
TBLPTRU	—	—	bit 21	Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)					
TBPLTRH	Program Memory Table Pointer High Byte (TBLPTR<15:8>)								
TBLPTRL	Program Memory Table Pointer Low Byte (TBLPTR<7:0>)								
TABLAT	Program Me	mory Table L	atch						
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	
EECON2	ECON2 Program Memory Control Register 2 (not a physical register)								
EECON1	_	_	WPROG	FREE	WRERR	WREN	WR	_	

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash program memory access.

REGISTER	9-6: PIR3:	PERIPHERA		PT REQUEST	(FLAG) REC	SISTER 3 (AC	CESS FA4h
R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF
bit 7							bit (
Lowende							
Legend: R = Readab	le hit	W = Writable	hit	II – I Inimplen	nented bit, read	1 as 'O'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	0.000
			•		areu		OWIT
bit 7	SSP2IF: Mas	ter Synchrono	us Serial Port 2	2 Interrupt Flag	bit		
				te (must be clea		e)	
	0 = Waiting t	o transmit/rece	ive				
bit 6	BCL2IF: Bus	Collision Inter	rupt Flag bit (N	ISSP2 module)			
			,	ared in software)		
		collision occurre					
bit 5		ART2 Receive					
		SAR12 receive		G2, is full (cleare	ed when RCRE	G2 is read)	
bit 4		ART2 Transmit					
				G2, is empty (cl	eared when TX	REG2 is writter	ר)
		SART2 transmit					
bit 3	TMR4IF: TM	R4 to PR4 Mat	ch Interrupt Fla	ag bit			
				t be cleared in s	software)		
		4 to PR4 match					
bit 2		-		Interrupt Flag b			
		event has occ event has not	· ·	e cleared in soft	ware)		
bit 1		mer3 Gate Eve		aq bit			
			•	be cleared in s	oftware)		
	0 = No Time	r3 gate event c	ompleted		·		
bit 0	RTCCIF: RT	CC Interrupt Fla	ag bit				
				cleared in softw	are)		
	0 = No RTCC	c interrupt occu	rred				

REGISTER 9-15: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2 (ACCESS FA2h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
OSCFIP	CM2IP	CM1IP	USBIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP
bit 7			·			•	bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 7		scillator Fail Inte	rrupt Priority b	it			
	1 = High pri 0 = Low pri						
bit 6	CM2IP: Cor	nparator 2 Interr	upt Priority bit				
	1 = High pr	iority					
	0 = Low pri	ority					
bit 5	C12IP: Com	parator 1 Interru	pt Priority bit				
	1 = High prices						
L:1 1	0 = Low prid	,					
bit 4	1 = High pri	B Interrupt Priori	ly bit				
	1 = High phi 0 = Low prie						
bit 3		is Collision Interi	upt Priority bit	(MSSP1 modul	e)		
	1 = High pri			(-)		
	0 = Low pri	•					
bit 2	HLVDIP: Hig	gh/Low-Voltage	Detect Interrup	ot Priority bit			
	1 = High pr						
	0 = Low pri	•					
bit 1		/IR3 Overflow In	terrupt Priority	bit			
	1 = High pri 0 = Low pri						
bit 0	·	CP2 Interrupt P	riority bit				
	1 = High prior	•	nonty bit				
	0 = Low prie	•					

16.0 TIMER4/6/8 MODULE

The Timer4/6/8 timer modules have the following features:

- Eight-bit Timer register (TMRx)
- Eight-bit Period register (PRx)
- · Readable and writable (all registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match of PRx

Note:	Throughout this section, generic references
	are used for register and bit names that are the
	same - except for an 'x' variable that indicates
	the item's association with the Timer4, Timer6
	or Timer8 module. For example, the control
	register is named TxCON and refers to
	T4CON, T6CON and T8CON.

The Timer4/6/8 modules have a control register shown in Register 16-1. Timer4/6/8 can be shut off by clearing control bit, TMRxON (TxCON<2>), to minimize power consumption. The prescaler and postscaler selection of Timer4/6/8 are also controlled by this register. Figure 16-1 is a simplified block diagram of the Timer4/6/8 modules.

16.1 Timer4/6/8 Operation

Timer4/6/8 can be used as the PWM time base for the PWM mode of the ECCP modules. The TMRx registers are readable and writable, and are cleared on any device Reset. The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits, TxCKPS<1:0> (TxCON<1:0>). The match output of TMRx goes through a four-bit postscaler (that gives a

1:1 to 1:16 inclusive scaling) to generate a TMRx interrupt, latched in the flag bit, TMRxIF. Table 16-1 gives each module's flag bit.

TABLE 16-1: TIMER4/6/8 FLAG BITS

Timer Module	Flag Bit
4	PIR3<3>
6	PIR5<3>
8	PIR5<4>

The interrupt can be enabled or disabled by setting or clearing the Timerx Interrupt Enable bit (TMRxIE), shown in Table 16-2.

TABLE 16-2: TIMER4/6/8 INTERRUPT ENABLE BITS

Timer Module	Flag Bit
4	PIE3<3>
6	PIE5<3>
8	PIE5<4>

The prescaler and postscaler counters are cleared when any of the following occurs:

- A write to the TMRx register
- · A write to the TxCON register
- Any device Reset (Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or Brown-out Reset (BOR))

A TMRx is not cleared when a TxCON is written.

Note: The CCP and ECCP modules use Timers 1 through 8 for some modes. The assignment of a particular timer to a CCP/ECCP module is determined by the Timer to CCP enable bits in the CCPTMRSx registers. For more details, see Register 19-2, Register 18-2 and Register 18-3.

17.1.2 RTCVALH AND RTCVALL REGISTER MAPPINGS

REGISTER 17-6: RESERVED REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	
bit 7							bit 0
Legend:							
R = Readable b	dable bit W = Writable bit			U = Unimpler	nented bit, read	as '0'	
-n = Value at P	= Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkn	own

bit 7-0 Unimplemented: Read as '0'

REGISTER 17-7: YEAR: YEAR VALUE REGISTER⁽¹⁾

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| YRTEN3 | YRTEN2 | YRTEN1 | YRTEN0 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit bits
Contains a value from 0 to 9.bit 3-0YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit bits

Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 17-8: MONTH: MONTH VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4 **MTHTEN0:** Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of 0 or 1.

bit 3-0 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

19.0 ENHANCED CAPTURE/COMPARE/PWM (ECCP) MODULE

PIC18F47J53 family devices have three Enhanced Capture/Compare/PWM (ECCP) modules: ECCP1, ECCP2 and ECCP3. These modules contain a 16-bit register, which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. These ECCP modules are upwardly compatible with CCP.

Note: Throughout this section, generic references are used for register and bit names that are the same – except for an 'x' variable that indicates the item's association with the ECCP1, ECCP2 or ECCP3 module. For example, the control register is named CCPxCON and refers to CCP1CON, CCP2CON and CCP3CON. The ECCP modules are implemented as standard CCP modules with enhanced PWM capabilities. These include:

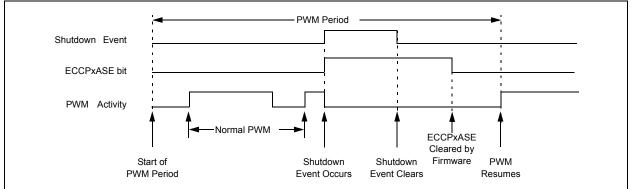
- · Provision for two or four output channels
- · Output Steering modes
- · Programmable polarity
- Programmable dead-band control
- Automatic shutdown and restart

The enhanced features are discussed in detail in Section 19.4 "PWM (Enhanced Mode)".

TABLE 19-3:	EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES
TABLE 19-3:	

ECCP Mode	PxM<1:0>	PxA	PxB	PxC	PxD
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

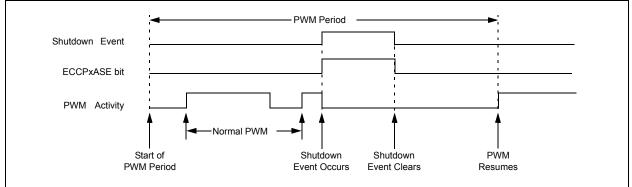
Note 1: Outputs are enabled by pulse steering in Single mode (see Register 19-6).


PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS **FIGURE 19-4:** (ACTIVE-HIGH STATE) EXAMPLE

le Output) f-Bridge)	PxA Modulated PxA Modulated PxB Modulated PxA Active	 	uDelay ⁽¹⁾	Period Delay ⁽¹⁾	
f-Bridge)	PxA Modulated PxB Modulated		· · · · · · · · · · · · · · · · · · ·	Delaÿ ⁽¹⁾	
	PxB Modulated	 	· · · · · · · · · · · · · · · · · · ·		
			1 1 1		i
	PxA Active				
			 	 	 ! !
(Full-Bridge, ⁰¹ Forward)	PxB Inactive		1 1 1	1 1 1	¦
	PxC Inactive		, , , ,		
	PxD Modulated		 		
	PxA Inactive		1 1 1	1 1 1	
11 (Full-Bridge, Reverse)	PxB Modulated	<u> </u>	' 		
	PxC Active		.		 !
	PxD Inactive	<u> </u>	I		1 1 1
		PxA Inactive Bridge, PxB Modulated verse) PxC Active	PxA Inactive Bridge, PxB Modulated verse) PxC Active PxD Inactive	PxA Inactive	PxA Inactive

Period = 4 * Tosc * (PR2 + 1) * (TMR2 Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMR2 Prescale Value)
Delay = 4 * Tosc * (ECCPxDEL<6:0>)

Note 1: Dead-band delay is programmed using the ECCPxDEL register (see Section 19.4.6 "Programmable Dead-Band Delay Mode").



19.4.5 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit (ECCPxDEL<7>).

If auto-restart is enabled, the ECCPxASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the ECCPxASE bit will be cleared via hardware and normal operation will resume. The module will wait until the next PWM period begins, however, before re-enabling the output pin. This behavior allows the auto-shutdown with auto-restart features to be used in applications based on the current mode of PWM control.

Bit 7 /GIEH IPIF ⁽²⁾ PIE ⁽²⁾ IPIP ⁽²⁾	Bit 6 PEIE/GIEL ADIF ADIE	Bit 5 TMR0IE RC1IF	Bit 4 INTOIE TX1IF	Bit 3 RBIE	Bit 2 TMR0IF	Bit 1 INT0IF	Bit 0 RBIF
PIF ⁽²⁾	ADIF	RC1IF			-	INTOIF	RBIF
PIE ⁽²⁾		-	TX1IF				
	ADIE			SSP1IF	CCP1IF	TMR2IF	TMR1IF
PIP ⁽²⁾		RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP
SP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF
SP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE
SP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP
RISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
RISC7	TRISC6		_	_	TRISC2	TRISC1	TRISC0
RISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0
P1 Rece	eive Buffer/Tr	ansmit Regis	ster				
COL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
SMP	CKE	D/A	Р	S	R/W	UA	BF
P2 Rece	eive Buffer/Tr	ansmit Regis	ster				
_	—		—			SPI2OD	SPI10D
	P2IF P2IE P2IP ISB7 ISC7 ISD7 P1 Reco COL MP	P2IFBCL2IFP2IEBCL2IEP2IPBCL2IPISB7TRISB6ISC7TRISC6ISD7TRISD6P1 Receive Buffer/TrCOLSSPOVMPCKE	P2IFBCL2IFRC2IFP2IEBCL2IERC2IEP2IPBCL2IPRC2IPISB7TRISB6TRISB5ISC7TRISC6—ISD7TRISD6TRISD5P1 Receive Buffer/Transmit RegisCOLSSPOVSSPENMPCKED/Ā	P2IFBCL2IFRC2IFTX2IFP2IEBCL2IERC2IETX2IEP2IPBCL2IPRC2IPTX2IPISB7TRISB6TRISB5TRISB4ISC7TRISC6——ISD7TRISD6TRISD5TRISD4P1 Receive Buffer/Transmit RegisterCOLSSPOVSSPEN	P2IFBCL2IFRC2IFTX2IFTMR4IFP2IEBCL2IERC2IETX2IETMR4IEP2IPBCL2IPRC2IPTX2IPTMR4IPISB7TRISB6TRISB5TRISB4TRISB3ISC7TRISC6———ISD7TRISD6TRISD5TRISD4TRISD3P1 Receive Buffer/Transmit RegisterCOLSSPOVSSPENCKPSSPM3MPCKED/ĀPS	P2IFBCL2IFRC2IFTX2IFTMR4IFCTMUIFP2IEBCL2IERC2IETX2IETMR4IECTMUIEP2IPBCL2IPRC2IPTX2IPTMR4IPCTMUIPISB7TRISB6TRISB5TRISB4TRISB3TRISB2ISC7TRISC6———TRISC2ISD7TRISD6TRISD5TRISD4TRISD3TRISD2P1 Receive Buffer/Transmit RegisterCOLSSPOVSSPENCKPSSPM3SSPM2MPCKED/ĀPSR/W	P2IFBCL2IFRC2IFTX2IFTMR4IFCTMUIFTMR3GIFP2IEBCL2IERC2IETX2IETMR4IECTMUIETMR3GIEP2IPBCL2IPRC2IPTX2IPTMR4IPCTMUIPTMR3GIPISB7TRISB6TRISB5TRISB4TRISB3TRISB2TRISB1ISC7TRISC6———TRISC2TRISC1ISD7TRISD6TRISD5TRISD4TRISD3TRISD2TRISD1P1 Receive Buffer/Transmit RegisterCKPSSPM3SSPM2SSPM1MPCKED/ĀPSR/WUAP2 Receive Buffer/Transmit Register

TABLE 20-2 :	REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: Shaded cells are not used by the MSSPx module in SPI mode.

Note 1: Configuration SFR overlaps with default SFR at this address; available only when WDTCON<4> = 1.

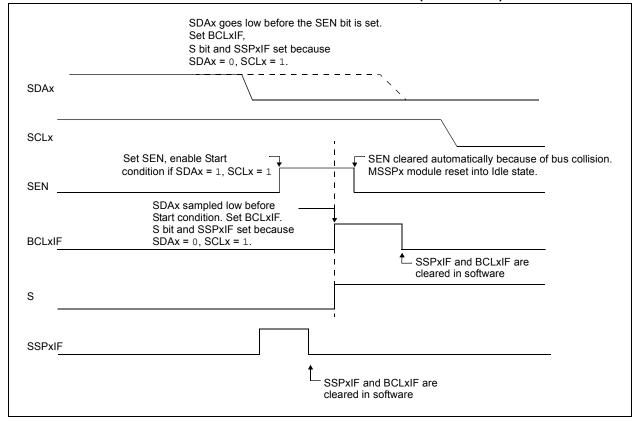
2: These bits are only available on 44-pin devices.

20.5.17.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDAx or SCLx is sampled low at the beginning of the Start condition (Figure 20-28).
- b) SCLx is sampled low before SDAx is asserted low (Figure 20-29).

During a Start condition, both the SDAx and the SCLx pins are monitored.


If the SDAx pin is already low, or the SCLx pin is already low, then all of the following occur:

- The Start condition is aborted
- · The BCLxIF flag is set
- The MSSP module is reset to its inactive state (Figure 20-28)

The Start condition begins with the SDAx and SCLx pins deasserted. When the SDAx pin is sampled high, the BRG is loaded from SSPxADD<6:0> and counts down to 0. If the SCLx pin is sampled low while SDAx is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDAx pin is sampled low during this count, the BRG is reset and the SDAx line is asserted early (Figure 20-30). If, however, a '1' is sampled on the SDAx pin, the SDAx pin is asserted low at the end of the BRG count. The BRG is then reloaded and counts down to 0. If the SCLx pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCLx pin is asserted low.

Note: The reason that a bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDAx before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 20-28: BUS COLLISION DURING START CONDITION (SDAx ONLY)

REGISTER 28-10: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F47J53 FAMILY DEVICES (BYTE ADDRESS 3FFFFFh)

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 DEV<10:3>: Device ID bits

These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number.

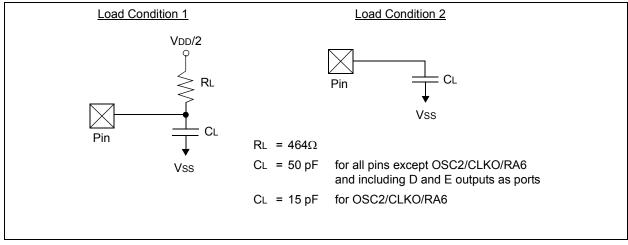
DEV<10:3> (DEVID2<7:0>)	DEV<2:0> (DEVID2<7:5>)	Device
0101 1000	111	PIC18F47J53
0101 1000	101	PIC18F46J53
0101 1000	011	PIC18F27J53
0101 1000	001	PIC18F26J53
0101 1010	111	PIC18LF47J53
0101 1010	101	PIC18LF46J53
0101 1010	011	PIC18LF27J53
0101 1010	001	PIC18LF26J53

BNC		Branch if N	lot Carry		E	
Synta	ax:	BNC n				
Operands:		-128 ≤ n ≤ ′	-128 ≤ n ≤ 127			
Operation:			$-128 \le n \le 127$ C if Carry bit is '0', C (PC) + 2 + 2n \rightarrow PC C			
Statu	s Affected:	None			5	
Enco	ding:	1110	1110 0011 nnnn nnnn			
Desc	ription:	If the Carry will branch.	bit is '0', then	the program		
		added to the incremente instruction,	d to fetch the r the new addre n. This instruct	e PC will have next ess will be		
Word	ls:	1			V	
Cycles:		1(2)			(
Q Cy If Ju	ycle Activity: mp:					
	Q1	Q2	Q3	Q4	_	
	Decode	Read literal 'n'	Process Data	Write to PC		
	No	No	No	No		
	operation	operation	operation	operation]	
If No	o Jump:	<u> </u>	~~	~ 1		
	Q1	Q2	Q3	Q4	1	
	Decode	Read literal 'n'	Process Data	No operation		
		- 11	Dala		1	
<u>Exam</u>	<u>nple:</u>	HERE	BNC Jump		<u>E</u>	
	Before Instruc PC After Instructio If Carry	= ad on = 0;	dress (HERE)		
	PC If Carry PC	= 1;	dress (Jump) dress (HERE	+ 2)		

BNN		Branch if I	Not Negative)			
Syntax:		BNN n					
Operands:		-128 ≤ n ≤	127				
Operation:		•	if Negative bit is '0', (PC) + 2 + 2n \rightarrow PC				
Statu	s Affected:	None	None				
Enco	ding:	1110	1110 0111 nnnn nnnn				
Desc	ription:	0	If the Negative bit is '0', then the program will branch.				
		added to th incremente instruction,	d to fetch the the new add n. This instru	the PC will have e next			
Words:		1	1				
Cycles:		1(2)	1(2)				
Q Cy If Ju	•						
г	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	Write to PC			
	No operation	No operation	No operation	No operation			
lf No	Jump:	operation	operation	operation			
	Q1	Q2	Q3	Q4			
	Decode	Read literal 'n'	Process Data	No operation			
Exam	iple:	HERE	BNN Jum	Ъ			
Before Instructio PC After Instruction		= ad	dress (HER	Е)			
	If Negativ PC If Negativ PC	= ad /e = 1;	dress (Jum	p) E + 2)			

ADDWF	ADD W to (Indexed I		fset mod	e)	
Syntax:	ADDWF	[k] {,d}			
Operands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$				
Operation:	(W) + ((FSR2) + k) \rightarrow dest				
Status Affected:	N, OV, C,	N, OV, C, DC, Z			
Encoding:	0010	01d0	kkkk	kkkk	
Description:	contents o	The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'.			
	lf 'd' is '0', is '1', the r register 'f'	esult is st			
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3		Q4	
Decode	Read 'k'	Proce Data		Vrite to stination	
Example:	ADDWF	[OFST]	,0		
Before Instructi	on				
W OFST FSR2 Contents	= = =	17h 2Ch 0A00h	1		
of 0A2Ch After Instructior	=	20h			
W	. =	37h			
Contents of 0A2Ch	=	20h			

BSF	Bit Set Inde (Indexed L	exed iteral Offset r	node)			
Syntax:	BSF [k], b					
Operands:	$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$1 \rightarrow ((FSR2))$	$1 \rightarrow ((FSR2) + k) < b >$				
Status Affected:	None	None				
Encoding:	1000	bbb0 kkł	k kkkk			
Description:	Bit 'b' of the register indicated by FSR offset by the value 'k', is set.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example:	BSF [FLAG_OFST]	, 7			
Before Instruct FLAG_OF FSR2		0Ah 0A00h				
Contents of 0A0Ah	=	55h				
After Instructio	n					
Contents of 0A0Ah	=	D5h				
		2011				
SETF	Set Indexe (Indexed L	d iteral Offset r	node)			
SETF Syntax:			node)			
-	(Indexed L		node)			
Syntax:	(Indexed L SETF [k]	iteral Offset r	node)			
Syntax: Operands:	(Indexed L SETF [k] 0 ≤ k ≤ 95	iteral Offset r	node)			
Syntax: Operands: Operation:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS	iteral Offset r				
Syntax: Operands: Operation: Status Affected:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content	iteral Offset r GR2) + k) 1000 kkl	kk kkkk kindicated by			
Syntax: Operands: Operation: Status Affected: Encoding:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content	BR2) + k)	kk kkkk kindicated by			
Syntax: Operands: Operation: Status Affected: Encoding: Description:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset	BR2) + k)	kk kkkk kindicated by			
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1	BR2) + k)	kk kkkk kindicated by			
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1	BR2) + k)	kk kkkk kindicated by			
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity:	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1	iteral Offset r SR2) + k) 1000 kki ts of the registe t by 'k', are se Q3 Process	kk kkkk er indicated by et to FFh. Q4 Write			
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2	R2) + k) 1000 kki ts of the registe t by 'k', are se Q3	kk kkkk er indicated by et to FFh. Q4			
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1	(Indexed L SETF $[k]$ $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k'	iteral Offset r SR2) + k) 1000 kki ts of the registe t by 'k', are se Q3 Process	kk kkkk er indicated by et to FFh. Q4 Write			
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k'	GR2) + k) 1000 kkl ts of the registe at by 'k', are se Q3 Process Data	kk kkkk er indicated by et to FFh. Q4 Write			
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [ion = 2C	iteral Offset r (R2) + k) 1000 kkl ts of the registe ts of the registe ts of the registe (R2) + k) (R2)	kk kkkk er indicated by et to FFh. Q4 Write			
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST FSR2 Contents	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [ion = 2C = 0A	iteral Offset r SR2) + k) 1000 kkl ts of the registe t by 'k', are se Q3 Process Data OFST] h 00h	kk kkkk er indicated by et to FFh. Q4 Write			
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST FSR2 Contents of 0A2Ch	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [ion = 2C = 0A = 00	iteral Offset r SR2) + k) 1000 kkl ts of the registe t by 'k', are se Q3 Process Data OFST] h 00h	kk kkkk er indicated by et to FFh. Q4 Write			
Syntax: Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct OFST FSR2 Contents	(Indexed L SETF [k] $0 \le k \le 95$ FFh \rightarrow ((FS None 0110 The content FSR2, offset 1 1 Q2 Read 'k' SETF [ion = 2C = 0A = 00	iteral Offset r SR2) + k) 1000 kkl ts of the registe et by 'k', are se Q3 Process Data OFST] h 00h h	kk kkkk er indicated by et to FFh. Q4 Write			


31.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 31-9 apply to all timing specifications unless otherwise noted. Figure 31-4 specifies the load conditions for the timing specifications.

TABLE 31-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

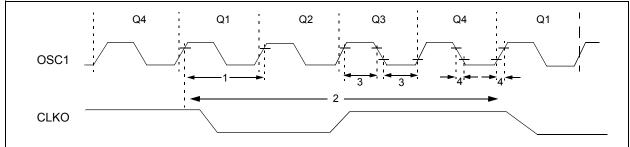

	Standard Operating Conditions (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial
	Operating voltage VDD range as described in Section 31.1 and Section 31.3 .

FIGURE 31-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

31.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

