

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26j53-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: DEVICE FEATURES FOR THE PIC18F2XJ53 (28-PIN DEVICES)

Features	PIC18F26J53	PIC18F27J53		
Operating Frequency	DC – 48 MHz	DC – 48 MHz		
Program Memory (Kbytes)	64	128		
Program Memory (Instructions)	32,768	65,536		
Data Memory (Kbytes)	3.8	3.8		
Interrupt Sources	3	0		
I/O Ports	Ports A, B, C			
Timers	8			
Enhanced Capture/Compare/PWM Modules	Modules 3 ECCP and 7 CCP			
Serial Communications	MSSP (2), Enhanced USART (2), USB			
Parallel Communications (PMP/PSP)	No			
10/12-Bit Analog-to-Digital Module	10 Input Channels			
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, W (PWRT, OST)			
Instruction Set	75 Instructions, 83 with Exter	nded Instruction Set Enabled		
Packages	28-Pin QFN, SOIC, SSO	OP and SPDIP (300 mil)		

TABLE 1-2:DEVICE FEATURES FOR THE PIC18F4XJ53 (44-PIN DEVICES)

Features	PIC18F46J53	PIC18F47J53	
Operating Frequency	DC – 48 MHz	DC – 48 MHz	
Program Memory (Kbytes)	64	128	
Program Memory (Instructions)	32,768	65,536	
Data Memory (Kbytes)	3.8	3.8	
Interrupt Sources	3	0	
I/O Ports	Ports A, B, C, D, E		
Timers	8		
Enhanced Capture/Compare/PWM Modules	3 ECCP and 7 CCP		
Serial Communications	MSSP (2), Enhanced USART (2), USB		
Parallel Communications (PMP/PSP)	Yes		
10/12-Bit Analog-to-Digital Module	13 Input Channels		
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT (PWRT, OST)		
Instruction Set	75 Instructions, 83 with Exter	nded Instruction Set Enabled	
Packages	44-Pin QFN	I and TQFP	

28-SPDIP/ SSOP/ SOIC	28-QFN	Pin Type	Buffer Type	Description
1 ⁽²⁾				
	26 ⁽²⁾	I	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
9	6	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; CMOS otherwise. Main oscillator input connection.
		I	CMOS	External clock source input; always associated with pin function OSC1 (see related OSC1/CLKI pins).
		I/O	TTL/DIG	Digital I/O.
10	7	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
		0	DIG	Main oscillator feedback output connection. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
		I/O	TTL/DIG	
igger input w	ith CMOS	levels	Ar O Ol	
t	10 Datible input rigger input w	10 7 batible input rigger input with CMOS	I I I I I I/O I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <	I ST I CMOS I II/O I TTL/DIG I I/O I I

 TABLE 1-3:
 PIC18F2XJ53 PINOUT I/O DESCRIPTIONS

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

2: 5.5V tolerant.

Pin Number			Buffor			
44- QFN	44- TQFP	Туре	Туре	Description		
				PORTC is a bidirectional I/O port.		
34	32	I/O O I I/O	STDIG Analog ST ST/DIG	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input. Remappable Peripheral Pin 11 input/output.		
35	35					
		I/O I/O I O I/O	ST/DIG ST/DIG Analog DIG ST/DIG	Digital I/O. Capture/Compare/PWM input/output. Timer1 oscillator input. External USB Transceiver NOE output. Remappable Peripheral Pin 12 input/output.		
36	36					
		I/O I I O I/O	ST/DIG Analog DIG ST/DIG	Digital I/O. Analog Input 11. Comparator 2 Input D. CTMU pulse generator output. Remappable Peripheral Pin 13 input/output.		
42	42					
		 /O 	ST — ST	Digital Input. USB bus minus line input/output. External USB Transceiver FM input.		
43	43					
		 /O 	ST — ST	Digital Input. USB bus plus line input/output. External USB Transceiver VP input.		
iput wit			S	CMOS= CMOS compatible input or outputAnalog= Analog inputO= OutputOD= Open-Drain (no P diode to VDD)I²C= Open-Drain, I²C specific		
	44- QFN 34 35 36 42 43	44- QFN 44- TQFP 34 32 35 35 36 36 42 42 43 43	44- QFN 44- TQFP Pin Type 34 32 I/O 35 35 I/O 35 35 I/O 36 36 I/O 42 42 I 1/O I O 1/O I O 1/O I O 1/O I I/O 1/O I I/O 1 I O 1 I I/O 1 I/O I 1 I I	44- QFN44- TQFPPin TypeBuffer Type3432I/O O O I I/OSTDIG Analog ST ST/DIG3535I/O I I/OST/DIG ST/DIG3636I/O I I/OST/DIG ST/DIG3636I/O I I/OST/DIG I I/O4242I I I/OST ST/DIG4343I I I/OST ST I/Oapput apputI I IST ST I/O		

TABLE 1-4: PIC18F4XJ53 PINOUT I/O DESCRIPTIONS (CONTINUED)

2: Available only on 44-pin devices (PIC18F46J53, PIC18F47J53, PIC18LF46J53 and PIC18LF47J53).

3: 5.5V tolerant.

	Pin N	Pin Number 44- 44- Ty QFN TQFP		D ff	Description		
Pin Name				Buffer Type			
					PORTD is a bidirectional I/O port.		
RD0/PMD0/SCL2	38 ⁽³⁾	38(3)					
RD0			I/O	ST/DIG	Digital I/O.		
PMD0			I/O	ST/TTL/	Parallel Master Port data.		
				DIG	20.000		
SCL2	(2)	(2)	I/O	l ² C	l ² C data input/output.		
RD1/PMD1/SDA2	39 (3)	39 (3)					
RD1			I/O	ST/DIG			
PMD1			I/O	ST/TTL/ DIG	Parallel Master Port data.		
SDA2			I/O	I ² C	l ² C data input/output.		
-	40(3)	40 ⁽³⁾	., O				
RD2/PMD2/RP19 RD2	40(3)	40(3)	I/O	ST/DIG	Digital I/O.		
PMD2			1/O	ST/TTL/	•		
				DIG			
RP19			I/O	ST/DIG	Remappable Peripheral Pin 19 input/output.		
RD3/PMD3/RP20	41 ⁽³⁾	41 ⁽³⁾					
RD3			I/O	ST/DIG	Digital I/O.		
PMD3			I/O	ST/TTL/			
				DIG			
RP20			I/O	ST/DIG	Remappable Peripheral Pin 20 input/output.		
RD4/PMD4/RP21	2 ⁽³⁾	2 ⁽³⁾					
RD4			I/O	ST/DIG	Digital I/O.		
PMD4			I/O	ST/TTL/	Parallel Master Port data.		
8804				DIG	Demonschle Devichenst Die 04 immet/endent		
RP21	(0)	(0)	I/O	ST/DIG	Remappable Peripheral Pin 21 input/output.		
RD5/PMD5/RP22	3 (3)	ვ (3)		07/010			
RD5			1/O	ST/DIG	Digital I/O. Parallel Master Port data.		
PMD5			I/O	ST/TTL/ DIG	Parallel Master Port data.		
RP22			I/O	ST/DIG	Remappable Peripheral Pin 22 input/output.		
RD6/PMD6/RP23	4 ⁽³⁾	4(3)					
RD6/PMD6/RP23	4,	4."/	I/O	ST/DIG	Digital I/O.		
PMD6			1/O	ST/TTL/			
			-	DIG			
RP23			I/O	ST/DIG	Remappable Peripheral Pin 23 input/output.		
RD7/PMD7/RP24	5 (3)	5 (3)					
RD7			I/O	ST/DIG			
PMD7			I/O	ST/TTL/	Parallel Master Port data.		
				DIG			
RP24			I/O	ST/DIG			
Legend: TTL = TTL compatib			0 1		CMOS = CMOS compatible input or output		
ST = Schmitt Trigge	er input wit		Sievel		Analog = Analog input O = Output		
I = Input P = Power					OD = Open-Drain (no P diode to VDD)		
DIG = Digital output					I^2C = Open-Drain, I^2C specific		
	disabled if	OSC1	and O	SC2 are	used for the clock function.		

PIC18F4XJ53 PINOUT I/O DESCRIPTIONS (CONTINUED) **TABLE 1-4:**

2: Available only on 44-pin devices (PIC18F46J53, PIC18F47J53, PIC18LF46J53 and PIC18LF47J53).

3: 5.5V tolerant.

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)								
Register	Register Applicable Devi		Power-on Reset, Brown-out Reset, Wake From Deep Sleep	MCLR Resets WDT Reset RESET Instruction Stack Resets CM Resets	Wake-up via WDT or Interrupt			
IPR1	PIC18F2XJ53	PIC18F4XJ53	1111 1111	1111 1111	uuuu uuuu			
PIR1	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu (3)			
PIE1	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu			
RCSTA2	PIC18F2XJ53	PIC18F4XJ53	0000 000x	0000 000x	uuuu uuuu			
OSCTUNE	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu			
T1GCON	PIC18F2XJ53	PIC18F4XJ53	00x0 0x00	0000 0x00	uuuu uuuu			
T3GCON	PIC18F2XJ53	PIC18F4XJ53	00x0 0x00	uuuu uxuu	uuuu uxuu			
TRISE ⁽⁵⁾	PIC18F2XJ53	PIC18F4XJ53	00111	uu111	uuuuu			
TRISD ⁽⁵⁾	PIC18F2XJ53	PIC18F4XJ53	1111 1111	1111 1111	uuuu uuuu			
TRISC	PIC18F2XJ53	PIC18F4XJ53	11111	11111	uuuuu			
TRISB	PIC18F2XJ53	PIC18F4XJ53	1111 1111	1111 1111	uuuu uuuu			
TRISA	PIC18F2XJ53	PIC18F4XJ53	111- 1111	111- 1111	uuu- uuuu			
LATE ⁽⁵⁾	PIC18F2XJ53	PIC18F4XJ53	xxx	uuu	uuu			
LATD ⁽⁵⁾	PIC18F2XJ53	PIC18F4XJ53	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATC	PIC18F2XJ53	PIC18F4XJ53	xxxxx	uuuuu	uuuuu			
LATB	PIC18F2XJ53	PIC18F4XJ53	xxxx xxxx	uuuu uuuu	uuuu uuuu			
LATA	PIC18F2XJ53	PIC18F4XJ53	xxx- xxxx	uuu- uuuu	uuu- uuuu			
DMACON1	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu			
OSCCON2	PIC18F2XJ53	PIC18F4XJ53	-0-1 01	_	-			
DMACON2	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu			
HLVDCON	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu			
PORTE ⁽⁵⁾	PIC18F2XJ53	PIC18F4XJ53	xxx	uuu	uuu			
PORTD ⁽⁵⁾	PIC18F2XJ53	PIC18F4XJ53	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PORTC	PIC18F2XJ53	PIC18F4XJ53	xxxx -xxx	uuuu -uuu	uuuu -uuu			
PORTB	PIC18F2XJ53	PIC18F4XJ53	xxxx xxxx	սսսս սսսս	uuuu uuuu			
PORTA	PIC18F2XJ53	PIC18F4XJ53	xxx- xxxx	uuu- uuuu	uuu- uuuu			
SPBRGH1	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu			
BAUDCON1	PIC18F2XJ53	PIC18F4XJ53	0100 0-00	0100 0-00	uuuu u-uu			
SPBRGH2	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu			
BAUDCON2	PIC18F2XJ53	PIC18F4XJ53	0100 0-00	0100 0-00	uuuu u-uu			

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- 4: See Table 5-1 for Reset value for specific condition.
- **5:** Not implemented for PIC18F2XJ53 devices.
- 6: Not implemented for "LF" devices.

TABLE 5-2:	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)									
Register	Applicable Devices		Power-on Reset, Brown-out Reset, Wake From Deep Sleep	MCLR Resets WDT Reset RESET Instruction Stack Resets CM Resets	Wake-up via WDT or Interrupt					
PMCONL	PIC18F2XJ53	PIC18F4XJ53	000- 0000	000- 0000	uuu- uuuu					
PMMODEH	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
PMMODEL	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
PMDOUT2H	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
PMDOUT2L	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
PMDIN2H	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
PMDIN2L	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
PMEH	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
PMEL	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
PMSTATH	PIC18F2XJ53	PIC18F4XJ53	00 0000	00 0000	uu uuuu					
PMSTATL	PIC18F2XJ53	PIC18F4XJ53	10 1111	10 1111	uu uuuu					
CVRCON	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
CCPTMRS0	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
CCPTMRS1	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
CCPTMRS2	PIC18F2XJ53	PIC18F4XJ53	0000 0000	0000 0000	uuuu uuuu					
DSGPR1 ⁽⁶⁾	PIC18F2XJ53	PIC18F4XJ53	uuuu uuuu	uuuu uuuu	uuuu uuuu					
DSGPR0 ⁽⁶⁾	PIC18F2XJ53	PIC18F4XJ53	uuuu uuuu	uuuu uuuu	uuuu uuuu					
DSCONH ⁽⁶⁾	PIC18F2XJ53	PIC18F4XJ53	000	000	uuu					
DSCONL ⁽⁶⁾	PIC18F2XJ53	PIC18F4XJ53	000	000	uuu					
DSWAKEH ⁽⁶⁾	PIC18F2XJ53	PIC18F4XJ53	d	0	u					
DSWAKEL ⁽⁶⁾	PIC18F2XJ53	PIC18F4XJ53	d-dd dd-d	0-00 00-0	u-uu uu-u					
ANCON1	PIC18F2XJ53	PIC18F4XJ53	00-0 0000	uu-u uuuu	uu-u uuuu					
ANCON0	PIC18F2XJ53	PIC18F4XJ53	0000 0000	uuuu uuuu	uuuu uuuu					
ALRMCFG	PIC18F2XJ53	PIC18F4XJ53	0000 0000	uuuu uuuu	uuuu uuuu					
ALRMRPT	PIC18F2XJ53	PIC18F4XJ53	0000 0000	uuuu uuuu	uuuu uuuu					
ALRMVALH	PIC18F2XJ53	PIC18F4XJ53	xxxx xxxx	uuuu uuuu	uuuu uuuu					
ALRMVALL	PIC18F2XJ53	PIC18F4XJ53	xxxx xxxx	uuuu uuuu	uuuu uuuu					
ODCON1	PIC18F2XJ53	PIC18F4XJ53	0000	uuuu	uuuu					
ODCON2	PIC18F2XJ53	PIC18F4XJ53	00	uu	uu					
ODCON3	PIC18F2XJ53	PIC18F4XJ53	00	uu	uu					
RTCCFG	PIC18F2XJ53	PIC18F4XJ53	0-00 0000	u-uu uuuu	u-uu uuuu					
RTCCAL	PIC18F2XJ53	PIC18F4XJ53	0000 0000	uuuu uuuu	uuuu uuuu					

TABLE 5-2:	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED))

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- **4:** See Table 5-1 for Reset value for specific condition.
- 5: Not implemented for PIC18F2XJ53 devices.
- 6: Not implemented for "LF" devices.

PIC18F47J53

TABLE 5-2:	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)									
Register	Applicable Devices		Power-on Reset, Brown-out Reset, Wake From Deep Sleep	MCLR Resets WDT Reset RESET Instruction Stack Resets CM Resets	Wake-up via WDT or Interrupt					
REFOCON	PIC18F2XJ53	PIC18F4XJ53	0-00 0000	u-uu uuuu	u-uu uuuu					
PADCFG1	PIC18F2XJ53	PIC18F4XJ53	000	uuu	uuu					
RTCVALH	PIC18F2XJ53	PIC18F4XJ53	0xxx xxxx	0uuu uuuu	0uuu uuuu					
RTCVALL	PIC18F2XJ53	PIC18F4XJ53	0xxx xxxx	0uuu uuuu	0uuu uuuu					
UCFG	PIC18F2XJ53	PIC18F4XJ53	00-0 0000	00-0 0000	uu-u uuuu					
UADDR	PIC18F2XJ53	PIC18F4XJ53	-000 0000	-uuu uuuu	-uuu uuuu					
UEIE	PIC18F2XJ53	PIC18F4XJ53	00 0000	00 0000	uu uuuu					
UIE	PIC18F2XJ53	PIC18F4XJ53	-000 0000	-000 0000	-uuu uuuu					
UEP15	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP14	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP13	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP12	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP11	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP10	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP9	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP8	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP7	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP6	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP5	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP4	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP3	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP2	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP1	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
UEP0	PIC18F2XJ53	PIC18F4XJ53	0 0000	0 0000	u uuuu					
CM3CON	PIC18F2XJ53	PIC18F4XJ53	0001 1111	uuuu uuuu	uuuu uuuu					
TMR5H	PIC18F2XJ53	PIC18F4XJ53	xxxx xxxx	_	_					
TMR5L	PIC18F2XJ53	PIC18F4XJ53	xxxx xxxx	—	-					
T5CON	PIC18F2XJ53	PIC18F4XJ53	0000 0000	_	-					
T5GCON	PIC18F2XJ53	PIC18F4XJ53	00x0 0x00	_	-					
TMR6	PIC18F2XJ53	PIC18F4XJ53	0000 0000	_	_					
PR6	PIC18F2XJ53	PIC18F4XJ53	1111 1111	_	-					
T6CON	PIC18F2XJ53	PIC18F4XJ53	-000 0000	_	_					

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

- 4: See Table 5-1 for Reset value for specific condition.
- 5: Not implemented for PIC18F2XJ53 devices.
- 6: Not implemented for "LF" devices.

11.1 Module Registers

The PMP module has a total of 14 Special Function Registers (SFRs) for its operation, plus one additional register to set configuration options. Of these, eight registers are used for control and six are used for PMP data transfer.

11.1.1 CONTROL REGISTERS

The eight PMP Control registers are:

- PMCONH and PMCONL
- PMMODEH and PMMODEL
- PMSTATL and PMSTATH
- PMEH and PMEL

The PMCON registers (Register 11-1 and Register 11-2) control basic module operations, including turning the module on or off. They also configure address multiplexing and control strobe configuration.

The PMMODE registers (Register 11-3 and Register 11-4) configure the various Master and Slave modes, the data width and interrupt generation.

The PMEH and PMEL registers (Register 11-5 and Register 11-6) configure the module's operation at the hardware (I/O pin) level.

The PMSTAT registers (Register 11-5 and Register 11-6) provide status flags for the module's input and output buffers, depending on the operating mode.

REGISTER 11-1: PMCONH: PARALLEL PORT CONTROL REGISTER HIGH BYTE (BANKED F5Fh)⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPEN	—	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN
bit 7							bit 0

Legend:				
		W = Writable bit	U = Unimplemented bit	, read as '0'
		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	1 = PMP	Parallel Master Port Enable enabled disabled, no off-chip access		
bit 6	Unimpler	nented: Read as '0'		
bit 5	PSIDL: S	top in Idle Mode bit		

- 1 = Discontinue module operation when device enters Idle mode
- 0 = Continue module operation in Idle mode
- bit 4-3 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = Reserved
 - 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins (only eight bits of address are available in this mode)
 - 00 = Address and data appear on separate pins (only eight bits of address are available in this mode)
- bit 2 **PTBEEN:** Byte Enable Port Enable bit (16-Bit Master mode)
 - 1 = PMBE port enabled
 - 0 = PMBE port disabled
- bit 1 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port enabled
 - 0 = PMWR/PMENB port disabled
- bit 0 PTRDEN: Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port enabled
 - 0 = PMRD/PMWR port disabled

Note 1: This register is only available on 44-pin devices.

13.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Reset on ECCP Special Event Trigger
- Device clock status flag (SOSCRUN)
- · Timer with gated control

Figure 13-1 displays a simplified block diagram of the Timer1 module.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

Timer1 is controlled through the T1CON Control register (Register 13-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON (T1CON<0>).

The Fosc clock source (TMR1CS<1:0> = 01) should not be used with the ECCP capture/compare features. If the timer will be used with the capture or compare features, always select one of the other timer clocking options.

REGISTER 13-1: T1CON: TIMER1 CONTROL REGISTER (ACCESS FCDh)

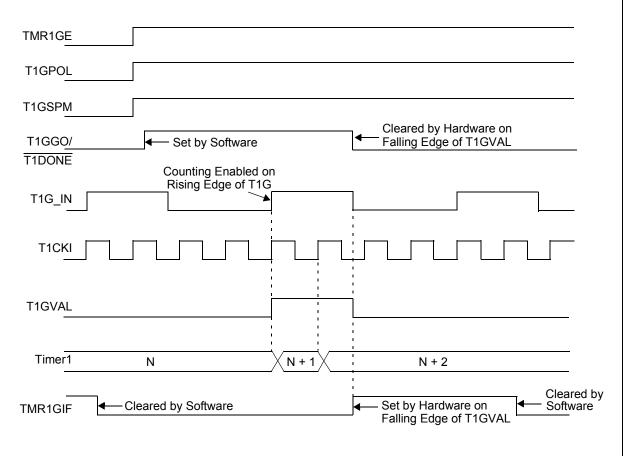
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	RD16	TMR10N
bit 7							bit 0

Legend:				
R = Readable bit W = V		W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Valu	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7-6	10 = Timer 01 = Timer	1:0>: Timer1 Clock Source S 1 clock source is the T1OSC 1 clock source is the system 1 clock source is the instruc	C or T1CKI pin i clock (Fosc) ⁽¹⁾	
bit 5-4	11 = 1:8 P 10 = 1:4 P 01 = 1:2 P	I:0>: Timer1 Input Clock Pre rescale value rescale value rescale value rescale value rescale value	escale Select bits	
bit 3	<u>When TMF</u> 1 = Power 0 = Timer1 <u>When TMF</u> 1 = Power		elect bit and supply the Timer1 clock fro clock is from the T1CKI input pi	
bit 2	<u>TMR1CS<</u> 1 = Do not 0 = Synchr <u>TMR1CS<</u>	synchronize external clock i onize external clock input 1:0> = 0x:	-	> = 0x.
bit 1	1 = Enable	Bit Read/Write Mode Enable es register read/write of Time es register read/write of Time	er1 in one 16-bit operation	
bit 0	TMR1ON: 1 = Enable 0 = Stops			
Note 1:	The Fosc cl	ock source should not be sele	cted if the timer will be used with	the ECCP capture/compare featur

2: The Timer1 oscillator crystal driver is powered whenever T1OSCEN (T1CON<3>) or T3OSCEN (T3CON<3>) = 1. The circuit is enabled by the logical OR of these two bits. When disabled, the inverter and feedback resistor are disabled to eliminate power drain. The TMR1ON and TMR3ON bits do not have to be enabled to power up the crystal driver.

13.8.4 TIMER1 GATE SINGLE PULSE MODE

When Timer1 Gate Single Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/T1DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/T1DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/T1DONE bit is once again set in software.


TIMER1 GATE SINGLE PULSE MODE

Clearing the T1GSPM bit of the T1GCON register will also clear the T1GGO/T1DONE bit. See Figure 13-6 for timing details.

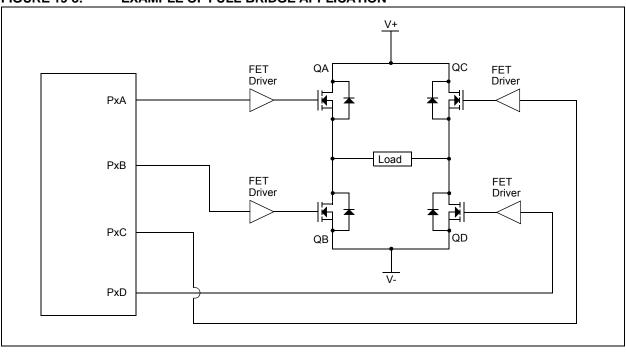
Enabling the Toggle mode and the Single Pulse mode, simultaneously, will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 13-7 for timing details.

13.8.5 TIMER1 GATE VALUE STATUS

When the Timer1 gate value status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

FIGURE 13-6:

19.4.2 FULL-BRIDGE MODE

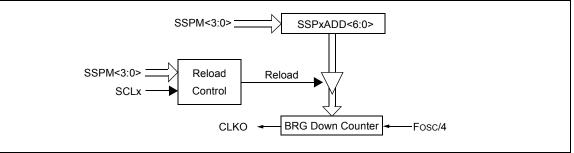

In Full-Bridge mode, all four pins are used as outputs. An example of a full-bridge application is provided in Figure 19-8.

In the Forward mode, the PxA pin is driven to its active state and the PxD pin is modulated, while the PxB and PxC pins are driven to their inactive state, as shown in Figure 19-9.

FIGURE 19-8: EXAMPLE OF FULL-BRIDGE APPLICATION

In the Reverse mode, the PxC pin is driven to its active state and the PxB pin is modulated, while the PxA and PxD pins are driven to their inactive state, as shown in Figure 19-9.

The PxA, PxB, PxC and PxD outputs are multiplexed with the port data latches. The associated TRIS bits must be cleared to configure the PxA, PxB, PxC and PxD pins as outputs.



20.5.7.1 Baud Rate and Module Interdependence

Because MSSP1 and MSSP2 are independent, they can operate simultaneously in I^2C Master mode at different baud rates. This is done by using different BRG reload values for each module.

Because this mode derives its basic clock source from the system clock, any changes to the clock will affect both modules in the same proportion. It may be possible to change one or both baud rates back to a previous value by changing the BRG reload value.

FIGURE 20-19: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 20-3: I²C CLOCK RATE w/BRG

Fosc	Fcy	Fcy * 2	BRG Value	FscL (2 Rollovers of BRG)
40 MHz	10 MHz	20 MHz	18h	400 kHz ⁽¹⁾
40 MHz	10 MHz	20 MHz	1Fh	312.5 kHz
40 MHz	10 MHz	20 MHz	63h	100 kHz
16 MHz	4 MHz	8 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	8 MHz	0Ch	308 kHz
16 MHz	4 MHz	8 MHz	27h	100 kHz
4 MHz	1 MHz	2 MHz	02h	333 kHz ⁽¹⁾
4 MHz	1 MHz	2 MHz	09h	100 kHz
4 MHz	1 MHz	2 MHz	00h	1 MHz ⁽¹⁾

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

21.1 Baud Rate Generator (BRG)

The BRG is a dedicated, 8-bit or 16-bit generator that supports both the Asynchronous and Synchronous modes of the EUSART. By default, the BRG operates in 8-bit mode; setting the BRG16 bit (BAUDCONx<3>) selects 16-bit mode.

The SPBRGHx:SPBRGx register pair controls the period of a free-running timer. In Asynchronous mode, the BRGH (TXSTAx<2>) and BRG16 (BAUDCONx<3>) bits also control the baud rate. In Synchronous mode, BRGH is ignored.

Table 21-1 provides the formula for computation of the baud rate for different EUSART modes, which only apply in Master mode (internally generated clock).

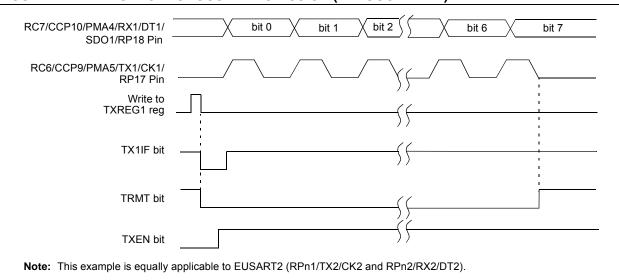
Given the desired baud rate and Fosc, the nearest integer value for the SPBRGHx:SPBRGx registers can be calculated using the formulas in Table 21-1. From this, the error in baud rate can be determined. An example calculation is provided in Example 21-1. Typical baud rates and error values for the various Asynchronous modes are provided in Table 21-2. It may be advantageous to use the high baud rate (BRGH = 1) or the 16-bit BRG to reduce the baud rate error, or achieve a slow baud rate for a fast oscillator frequency.

TABLE 21-1:BAUD RATE FORMULASTABLE 21-4:

Writing a new value to the SPBRGHx:SPBRGx registers causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

21.1.1 OPERATION IN POWER-MANAGED MODES

The device clock is used to generate the desired baud rate. When one of the power-managed modes is entered, the new clock source may be operating at a different frequency. This may require an adjustment to the value in the SPBRGx register pair.


21.1.2 SAMPLING

The data on the RXx pin (either RC7/CCP10/PMA4/ RX1/DT1/SDO1/RP18 or RPn2/RX2/DT2) is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RXx pin.

Configuration		its	BRG/EUSART Mode	Baud Rate Formula
SYNC	BRG16	BRGH	BRG/EUSART MODE	Dauu Kale Formula
0	0	0	8-bit/Asynchronous	Fosc/[64 (n + 1)]
0	0	1	8-bit/Asynchronous	Fosc/[16 (n + 1)]
0	1	0	16-bit/Asynchronous	1 USC/[10 (II + 1)]
0	1	1	16-bit/Asynchronous	
1	0	x	8-bit/Synchronous	Fosc/[4 (n + 1)]
1	1	x	16-bit/Synchronous	

Legend: x = Don't care, n = value of SPBRGHx:SPBRGx register pair

PIC18F47J53

FIGURE 21-12: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 21-7:	REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION
-------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
TXREGx	EUSARTx T	ransmit Regis	ster					
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCONx	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN
SPBRGHx	EUSARTx B	aud Rate Ge	nerator High	Byte				
SPBRGx	EUSARTx B	aud Rate Ge	nerator Low I	Byte				
ODCON2	—	_	_	_	CCP10OD	CCP9OD	U2OD	U10D

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: These pins are only available on 44-pin devices.

21.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTAx<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CKx pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any low-power mode.

21.4.1 EUSART SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes is identical, except in the case of Sleep mode.

If two words are written to the TXREGx, and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREGx register.
- c) Flag bit, TXxIF, will not be set.
- d) When the first word has been shifted out of TSR, the TXREGx register will transfer the second word to the TSR and flag bit, TXxIF, will now be set.

e) If enable bit, TXxIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXxIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting enable bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREGx register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF		
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF		
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE		
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP		
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF		
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE		
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP		
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D		
TXREGx	EUSARTx T	ransmit Regis	ter							
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D		
BAUDCONx	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN		
SPBRGHx	EUSARTx B	EUSARTx Baud Rate Generator High Byte								
SPBRGx	EUSARTx B	EUSARTx Baud Rate Generator Low Byte								

TABLE 21-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: These pins are only available on 44-pin devices.

26.0 HIGH/LOW VOLTAGE DETECT (HLVD)

The High/Low-Voltage Detect (HLVD) module can be used to monitor the absolute voltage on VDD or the HLVDIN pin. This is a programmable circuit that allows the user to specify both a device voltage trip point and the direction of change from that point.

If the module detects an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt. The High/Low-Voltage Detect Control register (Register 26-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.

Figure 26-1 provides a block diagram for the HLVD module.

REGISTER 26-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER (ACCESS F85h)

R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
VDIRMAG	BGVST	IRVST	HLVDEN	HLVDL3 ⁽¹⁾	HLVDL2 ⁽¹⁾	HLVDL1 ⁽¹⁾	HLVDL0 ⁽¹⁾	
bit 7			•			•	bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown	

bit 7	VDIRMAG: Voltage Direction Magnitude Select bit
	 1 = Event occurs when the voltage equals or exceeds the trip point (HLVDL<3:0>) 0 = Event occurs when the voltage equals or falls below the trip point (HLVDL<3:0>)
bit 6	BGVST: Band Gap Reference Voltages Stable Status Flag bit 1 = Indicates internal band gap voltage references is stable 0 = Indicates internal band gap voltage reference is not stable
bit 5	IRVST: Internal Reference Voltage Stable Flag bit
	 1 = Indicates that the voltage detect logic will generate the interrupt flag at the specified voltage range 0 = Indicates that the voltage detect logic will not generate the interrupt flag at the specified voltage range and the HLVD interrupt should not be enabled
bit 4	HLVDEN: High/Low-Voltage Detect Power Enable bit
	1 = HLVD is enabled0 = HLVD is disabled
bit 3-0	HLVDL<3:0>: Voltage Detection Limit bits ⁽¹⁾
	1111 = External analog input is used (input comes from the HLVDIN pin) 1110 = Maximum setting
	•
	• 0000 = Minimum setting

Note 1: See Table 31-8 in Section 31.0 "Electrical Characteristics" for specifications.

The module is enabled by setting the HLVDEN bit. Each time the module is enabled, the circuitry requires some time to stabilize. The IRVST bit is a read-only bit that indicates when the circuit is stable. The module can generate an interrupt only after the circuit is stable and IRVST is set. The VDIRMAG bit determines the overall operation of the module. When VDIRMAG is cleared, the module monitors for drops in VDD below a predetermined set point. When the bit is set, the module monitors for rises in VDD above the set point.

REGISTER 27-3:	CTMUICON: CTMU CURRENT CONTROL REGISTER (ACCESS FB1h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0			
bit 7		•					bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
	ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current 011110 000001 = Minimum positive change from nominal current 000000 = Nominal current output specified by IRNG<1:0> 111111 = Minimum negative change from nominal current 100010 100001 = Maximum negative change from nominal current									
bit 1-0	IRNG<1:0>: Current Source Range Select bits $11 = 100 \times Base current$ $10 = 10 \times Base current$ $01 = Base current level (0.55 \muA nominal)00 = Current source disabled$									

TABLE 27-1: REGISTERS ASSOCIATED WITH CTMU MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CTMUCONH	CTMUEN		CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
CTMUCONL	EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
CTMUICON	ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP

Legend: — = unimplemented, read as '0'. Shaded cells are not used during CTMU module.

28.3 On-Chip Voltage Regulator

Note 1:	The on-chip voltage regulator is only						
	available in parts designated with an "F",						
	such as PIC18F26J53. The on-chip						
	regulator is disabled on devices with "LF"						
	in their part number.						

2: The VDDCORE/VCAP pin must never be left floating. On "F" devices, it must be connected to a capacitor, of size CEFC, to ground. On "LF" devices, VDDCORE/VCAP must be connected to a power supply source between 2.0V and 2.7V.

The digital core logic of the PIC18F47J53 family devices is designed on an advanced manufacturing process, which requires 2.0V to 2.7V. The digital core logic obtains power from the VDDCORE/VCAP power supply pin.

However, in many applications it may be inconvenient to run the I/O pins at the same core logic voltage, as it would restrict the ability of the device to interface with other, higher voltage devices, such as those run at a nominal 3.3V. Therefore, all PIC18F47J53 family devices implement a dual power supply rail topology. The core logic obtains power from the VDDCORE/VCAP pin, while the general purpose I/O pins obtain power from the VDD pin of the microcontroller, which may be supplied with a voltage between 2.15V to 3.6V ("F" device) or 2.0V to 3.6V ("LF" device).

This dual supply topology allows the microcontroller to interface with standard 3.3V logic devices, while running the core logic at a lower voltage of nominally 2.5V.

In order to make the microcontroller more convenient to use, an integrated 2.5V low dropout, low quiescent current linear regulator has been integrated on the die inside PIC18F47J53 family devices. This regulator is designed specifically to supply the core logic of the device. It allows PIC18F47J53 family devices to effectively run from a single power supply rail, without the need for external regulators.

The on-chip voltage regulator is always enabled on "F" devices. The VDDCORE/VCAP pin simultaneously serves as the regulator output pin and the core logic supply power input pin. A capacitor should be connected to the VDDCORE/VCAP pin to ground and is necessary for regulator stability. For example connections for PIC18F and PIC18LF devices, see Figure 28-2.

On "LF" devices, the on-chip regulator is always disabled. This allows the device to save a small amount of quiescent current consumption, which may be advantageous in some types of applications, such as those which will entirely be running at a nominal 2.5V. On "LF" devices, the VDDCORE/VCAP pin still serves as the core logic power supply input pin, and therefore, must be connected to a 2.0V to 2.7V supply rail at the application circuit board level. On these devices, the

I/O pins may still optionally be supplied with a voltage between 2.0V to 3.6V, provided that VDD is always greater than, or equal to, VDDCORE/VCAP. For example connections for PIC18F and PIC18LF devices, see Figure 28-2.

Note:	In parts designated with an "LF", such as					
	PIC18LF47J53,	VDDCORE	must	never		
	exceed VDD.					

The specifications for core voltage and capacitance are listed in Section 31.3 "DC Characteristics: PIC18F47J53 Family (Industrial)".

28.3.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION

On "F" devices, the on-chip regulator provides a constant voltage of 2.5V nominal to the digital core logic. The regulator can provide this level from a VDD of about 2.5V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 2.5V. When the VDD supply input voltage drops too low to regulate 2.5V, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD, with a typical voltage drop of 100 mV or less.

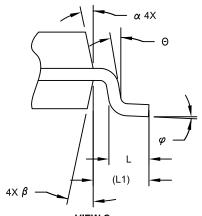
The on-chip regulator includes a simple Low-Voltage Detect (LVD) circuit. This circuit is separate and independent of the High/Low-Voltage Detect (HLVD) module described in Section 26.0 "High/Low Voltage Detect (HLVD)". The on-chip regulator LVD circuit continuously monitors the VDDCORE voltage level and updates the LVDSTAT bit in the WDTCON register. The LVD detect threshold is set slightly below the normal regulation set point of the on-chip regulator.

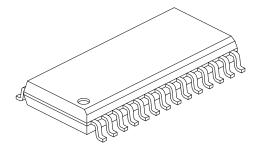
Application firmware may optionally poll the LVDSTAT bit to determine when it is safe to run at maximum rated frequency, so as not to inadvertently violate the voltage versus frequency requirements provided by Figure 31-1.

The VDDCORE monitoring LVD circuit is only active when the on-chip regulator is enabled. On "LF" devices, the Analog-to-Digital Converter and the HLVD module can still be used to provide firmware with VDD and VDDCORE voltage level information.

Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions	
100	Тнідн	Clock High Time	100 kHz mode	2(Tosc)(BRG + 1)	—	μS		
			400 kHz mode	2(Tosc)(BRG + 1)		μs		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		μS		
101 TLOW	Clock Low Time	100 kHz mode	2(Tosc)(BRG + 1)	—	μs			
			400 kHz mode	2(Tosc)(BRG + 1)	_	μs		
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)		μS		
102 TR	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	300	ns		
103	TF	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	100	ns	1	
90 Tsu:sta		100 kHz mode	2(Tosc)(BRG + 1)	_	μs	Only relevant for		
		Setup Time	400 kHz mode	2(Tosc)(BRG + 1)		μs	Repeated Start condition	
		1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	μS	1		
91 Thd:sta	Start Condition	100 kHz mode	2(Tosc)(BRG + 1)	_	μS	After this period, the fir		
		Hold Time	400 kHz mode	2(Tosc)(BRG + 1)	_	μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	_	μs		
106 Thd:dat	THD:DAT	T Data Input Hold Time	100 kHz mode	0	_	ns		
			400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	TBD	_	ns		
107	TSU:DAT	U:DAT Data Input Setup Time	100 kHz mode	250		ns	(Note 2)	
			400 kHz mode	100	_	ns		
			1 MHz mode ⁽¹⁾	TBD	—	ns	1	
92	Tsu:sto	SU:STO Stop Condition Setup Time	100 kHz mode	2(Tosc)(BRG + 1)	_	μS		
			400 kHz mode	2(Tosc)(BRG + 1)	—	μS	1	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	μS	1	
109 Taa	Output Valid from Clock	100 kHz mode		3500	ns			
		400 kHz mode	_	1000	ns			
			1 MHz mode ⁽¹⁾	_	—	ns		
110 TBUF	TBUF	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be	
			400 kHz mode	1.3	—	μS	free before a new	
			1 MHz mode ⁽¹⁾	TBD	—	μS	transmission can start	
D102	CB Bus Capacitive Loading		—	400	pF			

TABLE 31-27: MSSPx I ² C BUS DATA REQUIREMENTS


Legend: TBD = To Be Determined


Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.

^{2:} A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but parameter #107 ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCLx line is released.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	Ν		28		
Pitch	e 1.27 BSC				
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.18	-	0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5°	-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2