

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf26j53t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.3.5 SPECIAL FUNCTION REGISTERS

The SFRs are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy more than the top half of Bank 15 (F40h to FFFh). Table 6-2, Table 6-3 and Table 6-4 provide a list of these registers.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and Interrupt registers are described in their corresponding chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of the peripheral features are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's

Note: The SFRs located between EB0h and F5Fh are not part of the Access Bank. Either BANKED instructions (using BSR) or the MOVFF instruction should be used to access these locations. When programming in MPLAB[®] C18, the compiler will automatically use the appropriate addressing mode.

TABLE 6-2: ACCESS BANK SPECIAL FUNCTION REGISTER MAP

FFFhTOSUFDFhINDE2 ⁽¹⁾ FBFhPSTR1CONF9FhIPR1F7FhSPBRGH1FFChTOSLFDDhPOSTIDC2 ⁽¹⁾ FBEhECCP1ASF9DhPIR1F7EhBAUDCON1FFChSTSKPTRFDChPREINC2 ⁽¹⁾ FBChCCPR1HF9ChRCSTA2F7ChBAUDCON2FFBhPCLATUFDBhPLUSW2 ⁽¹⁾ FBBhCCPR1LF9BhOSCTUNEF7BhTMR3HFFAhPCLATHFDAhFSR2LFBAhCCP1CONF9AhF1GCONF7AhTMR3LFF9hPCLFDDhFSR2LFBAhCCP1CONF9AhF1GCONF7AhTMR4LFF7hTBLPTRUFDBhSTATUSF6BhECCP2ASF9AhF1GCONF7AhTMR4LFF7hTBLPTRLFDBhTMR0LF6BhCCP2CHF97hT3GCONF77hPR4FF7hTBLPTRLFDBhTMR0LF6BhCCP2CNF93hTRISEF7AhSSP2BUFFF4hPRODLFD4h ⁽⁵⁾ F64hCCP2CONF93hTRISEF7AhSSP22OT1FF3hPRODLFD2hCM1CONF62hCTMUCONLF93hTRISEF7AhSSP22ON1FF7hINTCONFD2hCM1CONF62hCTMUCONLF93hTRISEF7AhSSP22ON1FF7hINTCONFD2hCM1CONF62hCTMUCONLF93hTRISEF7AhSSP22ON1FF7hINTCONFD2hCM1CONF64h <t< th=""><th>Address</th><th>Name</th><th>Address</th><th>Name</th><th>Address</th><th>Name</th><th>Address</th><th>Name</th><th>Address</th><th>Name</th></t<>	Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
FFDhTOSLFDDhPOSTDEC2 ⁽¹⁾ FBDhECCP1DELF9DhPIE1F7DhSPBRGH2FFChSTKPTRFDChPREINC2 ⁽¹⁾ FBChCCPR1HF9ChRCSTA2F7ChBAUDCON2FFBhPCLATUFDBhPLUSW2 ⁽¹⁾ FBBhCCPR1LF9BhOSCTUNEF7BhTMR3HFFAhPCLATHFDAhFSR2HFBBhCCP1CONF99hIPRSF78hTMR3LFF8hPCLFD9hFSR2LFB9hPSTR2CONF99hIPRSF78hTMR4FF7hTBLPTRUFD8hSTATUSFB8hECCP2ASF99hIPRSF78hTMR4FF7hTBLPTRLFD6hTMR0HF87hECCP2DELF97hT3GCONF77hPR4FF6hTBLPTRLFD6hTMR0LF86hCCPR2LF99hTRISEF76hT4CONFF8hTABLATFD6hTMR0LF86hCCPR2LF99hTRISEF76hSSP2B/FFF3hPRODLFD3hOSCCONF63hCTMUCONLF92hTRISBF73hSSP2STATFF7hINTCONFD2hCM1CONF62hCTMUCONLF92hTRISAF77hSSP2CON1FF1hINTCONFD2hCM1CONF62hCTMUCONLF92hTRISAF77hSSP2CON1FF2hINTCONFD2hCM1CONF62hCTMUCONLF92hTRISAF77hSSP2CON1FF2hINTCONFD2hCM1CONF62hCTMUCONL<	FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	PSTR1CON	F9Fh	IPR1	F7Fh	SPBRGH1
FFCh STKPTR FDCh PREINC2 ⁽¹⁾ FBCh CCPR1H F9Ch RCSTA2 F7Ch BAUDCON2 FFBh PCLATU FDBh PLUSW2 ⁽¹⁾ FBBh CCPR1L F9Bh OSCTUNE F7Bh TMR3H FF5h PCL FDBh FSR2H FBBh CCPR1C F9Bh TIGCON F7Ah TMR3H FF5h FDL FDBh STATUS FBBh ECCP2AS F9Bh PR5 F7bh TMR4 FF7h TBLPTRH FD7h TMR0H FB6h CCPR2H F96h TRISE F76h SSP2BUF FF5h TABLAT FD6h TMR0L FB6h CCPR2H F96h TRISE F76h SSP2BUF FF5h TABLAT FD5h TOCON F85h CCPR2H F96h TRISE F76h SSP2BUF FF3h PRODL FD3h OSCCON F83h CTMUCONH F93h TRISE F73h SSP2CON1 FF7h INTCON </td <td>FFEh</td> <td>TOSH</td> <td>FDEh</td> <td>POSTINC2⁽¹⁾</td> <td>FBEh</td> <td>ECCP1AS</td> <td>F9Eh</td> <td>PIR1</td> <td>F7Eh</td> <td>BAUDCON1</td>	FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	ECCP1AS	F9Eh	PIR1	F7Eh	BAUDCON1
FFBhPCLATUFDBhPLUSW2 ⁽¹⁾ FBBhCCPR1LF9BhOSCTUNEF7BhTMR3HFFAhPCLATHFDAhFSR2HFBAhCCP1CONF9AhT1GCONF7AhTMR3LFF8hPCLFD9hFSR2LFB9hPSTR2CONF99hIPR5F78hTMR3LFF8hTBLPTRUFD8hSTATUSF88hECCP2ASF99hPIR5F78hTMR44FF7hTBLPTRHFD7hTMR0HFB7hECCP2DELF97hT3GCONF77hTMR44FF6hTBLPTRHFD6hTMR0LFB6hCCPR2HF96hTRISEF76hT4CONFF5hTABLATFD6hT0CONFB6hCCPR2LF96hTRISEF76hSSP2BUFFF7hPRODHFD4h6 ⁽⁰⁾ FB4hCCP2CONF94hTRISEF77hSSP2DU ³ FF3hPRODLFD2hCM1CONFB3hCTMUCONLF93hTRISBF73hSSP2CON2FF7hINTCONFD2hCM1CONFB1hCTMUCONLF93hTRISBF73hSSP2CON2FF7hINTCON2FD1hCM2CONFB1hCTMUCONLF93hTRISBF73hSSP2CON2FF7hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFE7hINTCON1FCChTMR1HFAFhRCREG1F87hPIR4F66hPMADDRI(2.4)FE6hPOSTDEC0 ⁽¹⁾ FCChTMR2FAChRCST11 <td>FFDh</td> <td>TOSL</td> <td>FDDh</td> <td>POSTDEC2⁽¹⁾</td> <td>FBDh</td> <td>ECCP1DEL</td> <td>F9Dh</td> <td>PIE1</td> <td>F7Dh</td> <td>SPBRGH2</td>	FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	ECCP1DEL	F9Dh	PIE1	F7Dh	SPBRGH2
FFAh PCLATH FDAh FSR2H FBAh CCP1CON F9Ah T1GCON F7Ah TMR3L FF9h PCL FD9h FSR2L FB9h PSTR2CON F99h IPR5 F79h T3CON FF8h TBLPTRU FD8h STATUS FB8h ECCP2AS F98h PIR5 F78h TMR4 FF7h TBLPTRU FD8h STATUS FB8h ECCP2AS F98h PIR5 F78h TMR4 FF7h TBLPTRL FD6h TMR0L FB7h CCCP2AS F98h TRISE F76h T3GCON F77h PR4 FF6h TABLAT FD6h TMR0L F86h CCP2CON F94h TRISE F76h SSP2BUF FF4h PRODL FD3h OSCCON F83h CTMUCONL F92h TRISA F72h SSP2CON1 FF1h INTCON FD2h CM1CON F81h CTMUCONL F91h PIE5 F71h SSP2CON2	FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR1H	F9Ch	RCSTA2	F7Ch	BAUDCON2
FF9hPCLFD9hFSR2LFB9hPSTR2CONF99hIPR5F79hT3CONFF8hTBLPTRUFD8hSTATUSFB8hECCP2ASF98hPIR5F78hTMR4FF7hTBLPTRLFD7hTMR0HFB7hECCP2DELF97hT3GCONF77hPR4FF6hTBLPTRLFD8hTMR0LFB6hCCPR2HF96hTRISEF76hT4CONFF6hTABLATFD5hTOCONFB5hCCPR2LF96hTRISEF76hSSP2AD0 ³ FF7hPRODLFD3hOSCCONFB3hCTMUCONLF93hTRISBF77hSSP2AD0 ³ FF7hINTCONFD2hCM1CONFB2hCTMUCONLF99hIPR4F77hSSP2AD0 ³ FF7hINTCONFD2hCM1CONFB1hCTMUCONLF99hIPR4F77hSSP2AD0 ³ FF7hINTCONFD2hCM1CONFB1hCTMUCONLF99hIPR4F77hSSP2AD0 ⁴ FF7hINTCON2FD1hCM2CONFB1hCTMUCONLF99hIPR4F77hSSP2CON2FF7hINTCON3FD0hRCONFB0hSPBRG1F99hIPR4F6FhPMADDRH ^{2,4} FE6hPOSTINC0 ⁽¹⁾ FCChTMR1LFAEhTXREG1F8FhPIR4F6FhPMADDRH ^{2,4} FE6hPOSTINC0 ⁽¹⁾ FCChTMR2FAChRCST11F80hLATCF66hPMADDRH ^{2,4} FE6hPREINC0 ⁽¹⁾ FCChTMR2	FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR1L	F9Bh	OSCTUNE	F7Bh	TMR3H
FF8h TBLPTRU FD8h STATUS FB8h ECCP2AS F98h PIR5 F78h TMR4 FF7h TBLPTRH FD7h TMR0H FB7h ECCP2DEL F97h T3GCON F77h PR4 FF6h TBLPTRL FD6h TMR0L FB6h CCPR2H F96h TRISD F77h SP22BUF FF6h TABLAT FD5h TOCON FB6h CCPR2L F98h TRISD F75h SSP2BUF FF7h PRODH FD4h 6'' FB4h CCP2CON F94h TRISD F77h SSP2CON2 FF3h PRODL FD3h OSCCON FB3h CTMUCONL F92h TRISA F72h SSP2CON2 FF7h INTCON2 FD1h CM2CON FB1h CTMUCONL F92h TRISA F72h SSP2CON2 FF6h INTCON3 FD0h RCON FB0h SPBRG1 F90h IPR4 F6h PMADDRH ^{(2,4}) FEEh IND	FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP1CON	F9Ah	T1GCON	F7Ah	TMR3L
FF7hTBLPTRHFD7hTMR0HFB7hECCP2DELF97hT3GCONF77hPR4FF6hTBLPTRLFD6hTMR0LFB6hCCPR2HF96hTRISEF76hT4CONFF5hTABLATFD5hT0CONFB5hCCPR2LF95hTRISDF77hSSP2BUFFF4hPRODHFD4h6^0FB4hCCP2CONF94hTRISCF74hSSP2AD0 ³ FF3hPRODLFD3hOSCCONFB3hCTMUCONHF93hTRISBF73hSSP2CON1FF1hINTCONFD2hCM1CONFB2hCTMUCONLF93hTRISAF72hSSP2CON1FF1hINTCON2FD1hCM2CONFB1hCTMUCONLF93hTRISAF72hSSP2CON1FF6hINTCON3FD0hRCONFB1hCTMUCONF91hPIE5F71hSSP2CON2FF6hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F66hPMADDRH ^(2,4) FEEhINDF0 ⁽¹⁾ FCFhTMR1LFAEhTXREG1F86hPIE4F66hPMDIN14 ^(2,4) FEEhPOSTINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F80hLATCF60hPMDIN14 ^(2,4) FEEhPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F80hLATCF60hPMDIN14 ^(2,4) FEEhPOSTINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F80hLATCF60hPMDIN14 ^(2,4) FEEhPREINC0 ⁽¹⁾ FCCh </td <td>FF9h</td> <td>PCL</td> <td>FD9h</td> <td>FSR2L</td> <td>FB9h</td> <td>PSTR2CON</td> <td>F99h</td> <td>IPR5</td> <td>F79h</td> <td>T3CON</td>	FF9h	PCL	FD9h	FSR2L	FB9h	PSTR2CON	F99h	IPR5	F79h	T3CON
FF6hTBLPTRLFD6hTMR0LFB6hCCPR2HF96hTRISEF76hT4CONFF5hTABLATFD5hT0CONFB5hCCPR2LF95hTRISDF75hSSP2BUFFF4hPRODHFD4h(6)FB4hCCP2CONF94hTRISCF74hSSP2ADD(3)FF3hPRODLFD3hOSCCONFB3hCTMUCONHF93hTRISBF73hSSP2STATFF2hINTCONFD2hCM1CONFB2hCTMUCONLF92hTRISAF72hSSP2CON1FF1hINTCON2FD1hCM2CONFB1hCTMUCONLF91hPIE5F71hSSP2CON2FF0hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMTATFE6hINDF0f0FCFhTMR1HFAFhRCREG1F8FhPIR4F6fhPMADDRH ^(2,4) FE6hPOSTINC0f0FCChTMR1LFAChTXSTA1F80hLATE ⁽²⁾ F6DhPMDIN1H ⁽²⁾ FE6hPREINC0f0FCChTMR2FAChRCSTA1F80hLATCF68hPMDIN1H ⁽²⁾ FE6hPREINC0f0FCChTMR2FAChRCSTA1F80hLATCF68hTXADDRLFE6hPREINC0f0FCChTMR2FAChRCSTA1F80hLATCF68hTXADDRLFE6hPSR0LFCAhT2CONFAAhRCREG2F88hLATCF68hTXADDRLFE8hPLUSW0 ⁽¹⁾ FCAhT2CONFAAh<	FF8h	TBLPTRU	FD8h	STATUS	FB8h	ECCP2AS	F98h	PIR5	F78h	TMR4
FFshTABLATFDshTOCONFBshCCPR2LF9shTRISDF75hSSP2BUFFF4hPRODHFD4h(5)FB4hCCP2CONF94hTRISCF74hSSP2ADD(3)FF3hPRODLFD3hOSCCONFB3hCTMUCONHF93hTRISBF73hSSP2STATFF2hINTCONFD2hCM1CONFB2hCTMUCONLF92hTRISAF72hSSP2CON1FF1hINTCON2FD1hCM2CONFB1hCTMUICONF91hPIE5F71hSSP2CON2FF0hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFEFhINDF0(1)FCFhTMR1HFAFhRCREG1F8FhPIE4F66hPMADDRI(2.4)FEChPOSTINC0(1)FCEhTMR1LFAEhTXREG1F8EhPIE4F66hPMADDRI(2.4)FEChPREINC0(1)FCChTMR2FAChRCSTA1F8ChLATE(2)F60hPMDIN1L(2)FEBhPLISW0(1)FCChTMR2FAChRCREG2F88hLATCF68hTXADDRLFEAhFSR0LFCAhT2CONFAAhRCREG2F88hLATAF69hRXADDRLFE8hPLISW0(1)FCAhT2CONFAAhRCREG2F88hLATAF69hRXADDRLFE8hPSR0LFCAhT2CONFAAhTXSTA2F88hDMACON1F68hRXADDRLFE8hPSR0LFCAhSSP1ADD(3)FA8h<	FF7h	TBLPTRH	FD7h	TMR0H	FB7h	ECCP2DEL	F97h	T3GCON	F77h	PR4
FF4hPRODHFD4h(5)FB4hCCP2CONF94hTRISCF74hSSP2ADD(3)FF3hPRODLFD3hOSCCONFB3hCTMUCONHF93hTRISBF73hSSP2STATFF2hINTCONFD2hCM1CONFB2hCTMUCONLF92hTRISAF72hSSP2CON1FF1hINTCON2FD1hCM2CONFB1hCTMUCONLF92hTRISAF72hSSP2CON2FF0hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFEFhINDF0 ⁽¹⁾ FCFhTMR1HFAFhRCREG1F8FhPIR4F6FhPMADDRI ^(2,4) FEChPOSTIDC0 ⁽¹⁾ FCChTMR1LFAChTXREG1F8EhPIE4F66hPMADDRI ^(2,4) FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATE ⁽²⁾ F60hPMDIN14 ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8chLATCF68hTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F88hLATAF68hTXADDRLFEAhFSR0LFCAhSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE8hPOSTIDC1 ⁽¹⁾ FCAhSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE8hPOSTIDC1 ⁽¹⁾ FCAhSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE8hP	FF6h	TBLPTRL	FD6h	TMR0L	FB6h	CCPR2H	F96h	TRISE	F76h	T4CON
Fr3hPRODLFD3hOSCCONFB3hCTMUCONHF93hTRISBF73hSSP2STATFF3hNTCONFD2hCM1CONFB3hCTMUCONHF93hTRISBF73hSSP2STATFF1hINTCON2FD1hCM2CONFB1hCTMUCONLF92hTRISAF72hSSP2CON1FF1hINTCON3FD0hRCONFB1hCTMUCONF91hPIE5F71hSSP2CON1FF6hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFEFhINDF0 ⁽¹⁾ FCFhTMR1HFAFhRCREG1F8FhPIR4F6FhPMADDRH ^(2,4) FE6hPOSTDEC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F80hLATE ⁽²⁾ F60hPMDIN1H ⁽²⁾ FE6hPOSTDEC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8chLATE ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FE6hPEINC0 ⁽¹⁾ FCChTMR2FAAhRCREG2F88hLATCF68hTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F88hLATAF69hRXADDRLFE8hVREGFC8hSSP1BUFFA9hTXREG2F88hLATAF69hRXADDRLFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE8hWREGFC8hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE6hPOSTDEC1 ⁽¹⁾ FC7hSSP	FF5h	TABLAT	FD5h	TOCON	FB5h	CCPR2L	F95h	TRISD	F75h	SSP2BUF
FF2hINTCONFD2hCM1CONFB2hCTMUCONLF92hTRISAF72hSSP2CON1FF1hINTCON2FD1hCM2CONFB1hCTMUICONF91hPIE5F71hSSP2CON2FF0hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFEFhINDF0 ⁽¹⁾ FCFhTMR1HFAFhRCREG1F8FhPIR4F6FhPMADDRH ^(2,4) FEbhPOSTDEC0 ⁽¹⁾ FCChTMR1LFAEhTXREG1F8EhPIE4F6EhPMADDRL ^(2,4) FEbhPOSTDEC0 ⁽¹⁾ FCChT1CONFADhTXSTA1F8DhLATE ⁽²⁾ F6ChPMDIN1H ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATD ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRLFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE6hPOSTIDC1 ⁽¹⁾ FC7hSSP1CON2FA5hIPR3F86hDMACON2F66hDMABCLFE6hPOSTIDC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F86hDMACON2F66hDMABCLFE6hPOSTIDC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F86hDMACON2F66hDMABCLFE6h <t< td=""><td>FF4h</td><td>PRODH</td><td>FD4h</td><td>(5)</td><td>FB4h</td><td>CCP2CON</td><td>F94h</td><td>TRISC</td><td>F74h</td><td>SSP2ADD⁽³⁾</td></t<>	FF4h	PRODH	FD4h	(5)	FB4h	CCP2CON	F94h	TRISC	F74h	SSP2ADD ⁽³⁾
FF1hINTCON2FD1hCM2CONFB1hCTMUICONF91hPIE5F71hSSP2CON2FF0hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFEFhINDF0 ⁽¹⁾ FCFhTMR1HFAFhRCREG1F8FhPIR4F6FhPMADDRH ^(2,4) FEEhPOSTDEC0 ⁽¹⁾ FCChTMR1LFAFhRCREG1F8FhPIR4F6EhPMADDRL ^(2,4) FEChPOSTDEC0 ⁽¹⁾ FCChTMR1LFAChTXSTA1F8DhLATE ⁽²⁾ F6ChPMDIN1H ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATD ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATCF6BhPMDIN1L ⁽²⁾ FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0LFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRLFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE8hPOSTINC1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁶⁾ F67hDMABCLFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONF	FF3h	PRODL	FD3h	OSCCON	FB3h	CTMUCONH	F93h	TRISB	F73h	SSP2STAT
FF0hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFEFhINDF0 ⁽¹⁾ FCFhTMR1HFAFhRCREG1F8FhPIR4F6FhPMADDRH ^(2,4) FEEhPOSTINC0 ⁽¹⁾ FCChTMR1LFAEhTXREG1F8EhPIE4F6EhPMADDRL ^(2,4) FEDhPOSTDEC0 ⁽¹⁾ FCChT1CONFADhTXSTA1F8DhLATE ⁽²⁾ F6ChPMDIN1H ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATD ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRLFE8hWREGFC8hSSP18UFFA9hTXREG2F89hLATAF69hRXADDRHFE7hINDF1 ⁽¹⁾ FC7hSSP18TATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE6hPOSTDEC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F65hHLVDCONF65hUCONFE6hPOSTDEC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F65hHLVDCONF65hUCONFE6hPOSTDEC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F65hHLVDCONF65hUCONFE6h <t< td=""><td>FF2h</td><td>INTCON</td><td>FD2h</td><td>CM1CON</td><td>FB2h</td><td>CTMUCONL</td><td>F92h</td><td>TRISA</td><td>F72h</td><td>SSP2CON1</td></t<>	FF2h	INTCON	FD2h	CM1CON	FB2h	CTMUCONL	F92h	TRISA	F72h	SSP2CON1
FEFhINDF0 ⁽¹⁾ FCFhTMR1HFAFhRCREG1F8FhPIR4F6FhPMADDRH ^(2,4) FEEhPOSTINC0 ⁽¹⁾ FCEhTMR1LFAEhTXREG1F8EhPIE4F6EhPMADDRL ^(2,4) FEDhPOSTDEC0 ⁽¹⁾ FCDhT1CONFADhTXSTA1F8DhLATE ⁽²⁾ F6DhPMDIN1H ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATD ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRLFE9hFSR0LFC9hSSP18UFFA9hTXREG2F89hLATAF69hRXADDRHFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE4hPREINC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F85hHLVDCONF66hUCONFE4hPREINC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F85hHLVDCONF66hUCONFE4hPREINC1 ⁽¹⁾ FC6hADRESHFA4hPIR3F84hPORTE ⁽²⁾ F64hUSTATFE	FF1h	INTCON2	FD1h	CM2CON	FB1h	CTMUICON	F91h	PIE5	F71h	SSP2CON2
FEEhPOSTINCO ⁽¹⁾ FCEhTMR1LFAEhTXREG1F8EhPIE4F6EhPMADDRL ^(2,4) FEDhPOSTDECO ⁽¹⁾ FCDhT1CONFADhTXSTA1F8DhLATE ⁽²⁾ F6DhPMDIN1H ⁽²⁾ FEChPREINCO ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATD ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRLFE9hFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRLFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE7hINDF1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTDEC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE3hPOSTDEC1 ⁽¹⁾ FC3hADRESLFA3hPIE3F83hPORTE ⁽²⁾ F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F81hPORTEF61hUFRMH	FF0h	INTCON3	FD0h	RCON	FB0h	SPBRG1	F90h	IPR4	F70h	CMSTAT
FEDhPOSTDEC0 ⁽¹⁾ FCDhT1CONFADhTXSTA1F8DhLATE ⁽²⁾ F6DhPMDIN1H ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATD ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRHFE9hFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRHFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTDEC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1 ⁽¹⁾ FC3hSSP1CON2FA3hIPR3F83hHLVDCONF65hUCONFE4hPREINC1 ⁽¹⁾ FC4hADRESHFA4hPIR3F83hPORTD ⁽²⁾ F64hUSTATFE2hFSR1HFC2hADCON0FA2hIPR2F81hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	RCREG1	F8Fh	PIR4	F6Fh	PMADDRH ^(2,4)
FEChPREINCO(1)FCChTMR2FAChRCSTA1F8ChLATD(2)F6ChPMDIN1L(2)FEBhPLUSW0(1)FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRHFE9hFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRLFE8hWREGFC8hSSP1ADD(3)FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1(1)FC7hSSP1STATFA7hEECON2F87hOSCCON2(5)F67hDMABCLFE6hPOSTINC1(1)FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1(1)FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1(1)FC3hADRESLFA3hPIE3F83hPORTD(2)F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F81hPORTBF61hUFRMHFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	TXREG1	F8Eh	PIE4	F6Eh	PMADDRL ^(2,4)
FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRHFE9hFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRLFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1 ⁽¹⁾ FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1 ⁽¹⁾ FC3hADRESHFA3hPIE3F83hPORTD ⁽²⁾ F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F81hPORTBF61hUFRMHFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXSTA1	F8Dh	LATE ⁽²⁾	F6Dh	PMDIN1H ⁽²⁾
FEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRHFE9hFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRLFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1 ⁽¹⁾ FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1 ⁽¹⁾ FC4hADRESHFA4hPIR3F84hPORTE ⁽²⁾ F64hUSTATFE3hPLUSW1 ⁽¹⁾ FC3hADRESLFA3hPIE3F83hPORTD ⁽²⁾ F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	RCSTA1	F8Ch	LATD ⁽²⁾	F6Ch	PMDIN1L ⁽²⁾
FE9hFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRLFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1 ⁽¹⁾ FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1 ⁽¹⁾ FC4hADRESHFA4hPIR3F84hPORTE ⁽²⁾ F64hUSTATFE3hPLUSW1 ⁽¹⁾ FC3hADRESLFA3hPIE3F83hPORTD ⁽²⁾ F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	SPBRG2	F8Bh	LATC	F6Bh	TXADDRL
FE8hWREGFC8hSSP1ADD(3)FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1(1)FC7hSSP1STATFA7hEECON2F87hOSCCON2(5)F67hDMABCLFE6hPOSTINC1(1)FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1(1)FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1(1)FC4hADRESHFA4hPIR3F84hPORTE(2)F64hUSTATFE3hPLUSW1(1)FC3hADRESLFA3hPIE3F83hPORTD(2)F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FEAh	FSR0H	FCAh	T2CON	FAAh	RCREG2	F8Ah	LATB	F6Ah	TXADDRH
FE7hINDF1(1)FC7hSSP1STATFA7hEECON2F87hOSCCON2(5)F67hDMABCLFE6hPOSTINC1(1)FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1(1)FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1(1)FC4hADRESHFA4hPIR3F84hPORTE(2)F64hUSTATFE3hPLUSW1(1)FC3hADRESLFA3hPIE3F83hPORTD(2)F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FE9h	FSR0L	FC9h	SSP1BUF	FA9h	TXREG2	F89h	LATA	F69h	RXADDRL
FE6hPOSTINC1(1)FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1(1)FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1(1)FC4hADRESHFA4hPIR3F84hPORTE(2)F64hUSTATFE3hPLUSW1(1)FC3hADRESLFA3hPIE3F83hPORTD(2)F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FE8h	WREG	FC8h	SSP1ADD ⁽³⁾	FA8h	TXSTA2	F88h	DMACON1	F68h	RXADDRH
FE5hPOSTDEC1 ⁽¹⁾ FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1 ⁽¹⁾ FC4hADRESHFA4hPIR3F84hPORTE ⁽²⁾ F64hUSTATFE3hPLUSW1 ⁽¹⁾ FC3hADRESLFA3hPIE3F83hPORTD ⁽²⁾ F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FE7h		FC7h	SSP1STAT	FA7h	EECON2	F87h	OSCCON2 ⁽⁵⁾	F67h	DMABCL
FE4hPREINC1(1)FC4hADRESHFA4hPIR3F84hPORTE(2)F64hUSTATFE3hPLUSW1(1)FC3hADRESLFA3hPIE3F83hPORTD(2)F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FE6h	POSTINC1 ⁽¹⁾	FC6h	SSP1CON1	FA6h	EECON1	F86h	DMACON2	F66h	DMABCH
FE3hPLUSW1(1)FC3hADRESLFA3hPIE3F83hPORTD(2)F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FE5h	POSTDEC1 ⁽¹⁾	FC5h	SSP1CON2	FA5h	IPR3	F85h	HLVDCON	F65h	UCON
FE2h FSR1H FC2h ADCON0 FA2h IPR2 F82h PORTC F62h UIR FE1h FSR1L FC1h ADCON1 FA1h PIR2 F81h PORTB F61h UFRMH	FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE ⁽²⁾	F64h	USTAT
FE1h FSR1L FC1h ADCON1 FA1h PIR2 F81h PORTB F61h UFRMH	FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD ⁽²⁾	F63h	UEIR
	FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC	F62h	UIR
FE0h BSR FC0h WDTCON FA0h PIE2 F80h PORTA F60h UFRML	FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB	F61h	UFRMH
	FE0h	BSR	FC0h	WDTCON	FA0h	PIE2	F80h	PORTA	F60h	UFRML

Note 1: This is not a physical register.

2: This register is not available on 28-pin devices.

3: SSPxADD and SSPxMSK share the same address.

4: PMADDRH and PMDOUTH share the same address and PMADDRL and PMDOUTL share the same address. PMADDRx is used in Master modes and PMDOUTx is used in Slave modes.

5: Reserved: Do not write to this location.

REGISTER 9-17: IPR4: PERIPHERAL INTERRUPT PRIORITY REGISTER 4 (ACCESS F90h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
CCP10IP	CCP9IP	CCP8IP	CCP7IP	CCP6IP	CCP5IP	CCP4IP	CCP3IP
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	itable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

1 = High priority0 = Low priority

bit 0 CCP3IP: ECCP3 Interrupt Priority bit

1 = High priority

0 = Low priority

REGISTER 9-18: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5 (ACCESS F99h)

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	CM3IP	TMR8IP	TMR6IP	TMR5IP	TMR5GIP	TMR1GIP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5	CM3IP: Comparator3 Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 4	TMR8IP: TMR8 to PR8 Match Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 3	TMR6IP: TMR6 to PR6 Match Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 2	TMR5IP: TMR5 Overflow Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 1	TMR5GIP: TMR5 Gate Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 0	TMR1GIP: TMR1 Gate Interrupt Priority bit
	1 = High priority
	0 = Low priority

REGISTER 10-8: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3 (BANKED EE3h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	INTR3R4	INTR3R3	INTR3R2	INTR3R1	INTR3R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 INTR3R<4:0>: Assign External Interrupt 3 (INT3) to the Corresponding RPn Pin bits

REGISTER 10-9: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4 (BANKED EE4h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T0CKR4	T0CKR3	T0CKR2	T0CKR1	T0CKR0
bit 7							bit 0

Legend:	R/W = Readable bit, V	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5	Unimplemented: Read as '0'
bit 4-0	TOCKR<4:0>: Timer0 External Clock Input (T0CKI) to the Corresponding RPn Pin bits

REGISTER 10-10: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6 (BANKED EE6h)

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0
bit 7							bit 0

Legend:	R/W = Readable bit, \	Writable bit if IOLOCK = 0	
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0 T3CKR<4:0>: Timer3 External Clock Input (T3CKI) to the Corresponding RPn Pin bits

REGISTER 10-33: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9 (BANKED EC9h)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—		RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 7							bit 0

Legend:	R/W = Readable bit, Writab	ole bit if IOLOCK = 0	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP9R<4:0>:** Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-34: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10 (BANKED ECAh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0

Legend:	R/W = Readable bit, \	Writable bit if IOLOCK = 0	
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-14 for peripheral function numbers)

REGISTER 10-35: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11 (BANKED ECBh)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 7							bit 0

Legend:	R/\overline{W} = Readable bit, W	R/\overline{W} = Readable bit, Writable bit if IOLOCK = 0				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-14 for peripheral function numbers)

11.3 MASTER PORT MODES

In its Master modes, the PMP module provides an 8-bit data bus, up to 16 bits of address, and all the necessary control signals to operate a variety of external parallel devices, such as memory devices, peripherals and slave microcontrollers. To use the PMP as a master, the module must be enabled (PMPEN = 1) and the mode must be set to one of the two possible Master modes (PMMODEH<1:0> = 10 or 11).

Because there are a number of parallel devices with a variety of control methods, the PMP module is designed to be extremely flexible to accommodate a range of configurations. Some of these features include:

- 8-Bit and 16-Bit Data modes on an 8-bit data bus
- Configurable address/data multiplexing
- · Up to two chip select lines
- Up to 16 selectable address lines
- · Address auto-increment and auto-decrement
- · Selectable polarity on all control lines
- Configurable Wait states at different stages of the read/write cycle

11.3.1 PMP AND I/O PIN CONTROL

Multiple control bits are used to configure the presence or absence of control and address signals in the module. These bits are PTBEEN, PTWREN, PTRDEN and PTEN<15:0>. They give the user the ability to conserve pins for other functions and allow flexibility to control the external address. When any one of these bits is set, the associated function is present on its associated pin; when clear, the associated pin reverts to its defined I/O port function.

Setting a PTENx bit will enable the associated pin as an address pin and drive the corresponding data contained in the PMADDR register. Clearing a PTENx bit will force the pin to revert to its original I/O function.

For the pins configured as chip select (PMCS1 or PMCS2) with the corresponding PTENx bit set, the PTEN0 and PTEN1 bits will also control the PMALL and PMALH signals. When multiplexing is used, the associated address latch signals should be enabled.

11.3.2 READ/WRITE-CONTROL

The PMP module supports two distinct read/write signaling methods. In Master Mode 1, read and write strobes are combined into a single control line, PMRD/PMWR. A second control line, PMENB, determines when a read or write action is to be taken. In Master Mode 2, separate read and write strobes (PMRD and PMWR) are supplied on separate pins.

All control signals (PMRD, PMWR, PMBE, PMENB, PMAL and PMCSx) can be individually configured as either positive or negative polarity. Configuration is controlled by separate bits in the PMCONL register. Note that the polarity of control signals that share the same output pin (for example, PMWR and PMENB) are controlled by the same bit; the configuration depends on which Master Port mode is being used.

11.3.3 DATA WIDTH

The PMP supports data widths of both 8 bits and 16 bits. The data width is selected by the MODE16 bit (PMMODEH<2>). Because the data path into and out of the module is only 8 bits wide, 16-bit operations are always handled in a multiplexed fashion, with the Least Significant Byte (LSB) of data being presented first. To differentiate data bytes, the byte enable control strobe, PMBE, is used to signal when the Most Significant Byte (MSB) of data is being presented on the data lines.

11.3.4 ADDRESS MULTIPLEXING

In either of the Master modes (PMMODEH<1:0> = 1x), the user can configure the address bus to be multiplexed together with the data bus. This is accomplished by using the ADRMUX<1:0> bits (PMCONH<4:3>). There are three address multiplexing modes available. Typical pinout configurations for these modes are displayed in Figure 11-9, Figure 11-10 and Figure 11-11.

In Demultiplexed mode (PMCONH<4:3> = 00), data and address information are completely separated. Data bits are presented on PMD<7:0> and address bits are presented on PMADDRH<6:0> and PMADDRL<7:0>.

In Partially Multiplexed mode (PMCONH<4:3> = 01), the lower eight bits of the address are multiplexed with the data pins on PMD<7:0>. The upper eight bits of the address are unaffected and are presented on PMADDRH<6:0>. The PMA0 pin is used as an address latch and presents the Address Latch Low (PMALL) enable strobe. The read and write sequences are extended by a complete CPU cycle during which the address is presented on the PMD<7:0> pins.

In Fully Multiplexed mode (PMCONH<4:3> = 10), the entire 16 bits of the address are multiplexed with the data pins on PMD<7:0>. The PMA0 and PMA1 pins are used to present Address Latch Low (PMALL) enable and Address Latch High (PMALH) enable strobes, respectively. The read and write sequences are extended by two complete CPU cycles. During the first cycle, the lower eight bits of the address are presented on the PMD<7:0> pins with the PMALL strobe active. During the second cycle, the upper eight bits of the address are presented on the PMD<7:0> pins with the PMALH strobe active. In the event the upper address bits are configured as chip select pins, the corresponding address bits are automatically forced to '0'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	
PIR5	_	_	CM3IF	TMR8IF	TMR6IF	TMR5IF	TMR5GIF	TMR1GIF	
PIE5	_	_	CM3IE	TMR8IE	TMR6IE	TMR5IE	TMR5GIE	TMR1GIE	
PIR2	OSCFIF	CM2IF	CM1IF	USBIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF	
PIE2	OSCFIE	CM2IE	CM1IE	USBIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE	
TMR3H	Timer3 Regi	ster High Byte	e						
TMR3L	Timer3 Regi	ster Low Byte	;						
T3GCON	TMR3GE	T3GPOL	T3GTM	T3GSPM	T3GGO/ T3DONE	T3GVAL	T3GSS1	T3GSS0	
T3CON	TMR3CS1	TMR3CS0	T3CKPS1	T3CKPS0	T3OSCEN	T3SYNC	RD16	TMR3ON	
TMR5H	Timer5 Regi	ster High Byte	e						
TMR5L	Timer5 Regi	ster Low Byte	9						
T5GCON	TMR5GE	T5GPOL	T5GTM	T5GSPM	T5GGO/ T5DONE	T5GVAL	T5GSS1	T5GSS0	
T5CON	TMR5CS1	TMR5CS0	T5CKPS1	T5CKPS0	T5OSCEN	T5SYNC	RD16	TMR5ON	
OSCCON2	_	SOSCRUN		SOSCDRV	SOSCGO	PRISD	_		
CCPTMRS0	C3TSEL1	C3TSEL0	C2TSEL2	C2TSEL1	C2TSEL0	C1TSEL2	C1TSEL1	C1TSEL0	
CCPTMRS1	C7TSEL1	C7TSEL0	_	C6TSEL0	_	C5TSEL0	C4TSEL1	C4TSEL0	
CCPTMRS1	_	_	_	C10TSEL0		C9TSEL0	C8TSEL1	C8TSEL0	
CCPTMRS2	_	_	_	C10TSEL0	_	C9TSEL0	C8TSEL1	C8TSEL0	

TABLE 15-5: REGISTERS ASSOCIATED WITH TIMER3/5 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSCON1	SSCON0	TXINC	RXINC	DUPLEX1	DUPLEX0	DLYINTEN	DMAEN			
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle		x = Bit is unkn	own			
bit 7-6	SSCON-1.0	SSDMA Out	out Control bit	ts (Master mod	es only)					
				of 4 bytes; DLY	• /	vs reset low				
	01 = SSDMA	is asserted for	the duration	of 2 bytes; DLY	INTEN is alway	ys reset low				
				of 1 byte; DLYI						
			•		NIEN bit is sof	tware programn	nable			
bit 5		mit Address Ir								
				as the transfer						
						XADDR<11:0>				
bit 4	0 = The transmit address is always set to the initial value of TXADDR<11:0> RXINC: Receive Address Increment Enable bit									
				as the transfer p	progresses.					
	1 = The recei	ved address is	to be increme	ented from the	initial value of F	RXADDR<11:0>				
	0 = The recei	ved address is	always set to	the initial value	e of RXADDR<	11:0>				
bit 3-2	DUPLEX<1:0>: Transmit/Receive Operating Mode Select bits									
	10 = SPI DMA operates in Full-Duplex mode, data is simultaneously transmitted and received									
	 01 = DMA operates in Half-Duplex mode, data is transmitted only 00 = DMA operates in Half-Duplex mode, data is received only 									
bit 1	-	elay Interrupt	-		a only					
		•		the number of	f Tox ovcles sp	ecified in DLYC	YC<2 [.] 0> ha			
		the latest com					10 2.0 114			
		upt is enabled upt is disabled		> must be set t	oʻ00'					
bit 0		A Operation St								
	This bit is set	by the users'	software to st	art the DMA op eted or aborted		eset back to zero	o by the DM			
	1 = DMA is in	•	·							
	0 = DMA is n	at in an anian								

REGISTER 20-3: DMACON1: DMA CONTROL REGISTER 1 (ACCESS F88h)

REGISTER 20-7: SSPxCON2: MSSPx CONTROL REGISTER 2 (I²C MASTER MODE) (1, ACCESS FC5h; 2, F71h)

	(1,71		, _, ,				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN ⁽³⁾	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾
bit 7		1					bit 0
Legend:							
R = Reada	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	id as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	1 = Enable in	ral Call Enable terrupt when a all address dis	general call ad		is received in	the SSPxSR	
bit 6	ACKSTAT: Ad 1 = Acknowle	cknowledge Sta dge was not re dge was receiv	atus bit (Master ceived from sla		e only)		
bit 5	ACKDT: Ackr 1 = Not Ackro 0 = Acknowle	0	bit (Master Rec	ceive mode onl	y) ⁽¹⁾		
bit 4	1 = Initiates automatio	nowledge Sequ Acknowledge cally cleared by edge sequence	sequence on hardware		CLx pins, and	d transmits ACI	KDT data bit;
bit 3		ive Enable bit (l Receive mode f dle		e mode only) ⁽²⁾			
bit 2		ondition Enable Stop condition o dition Idle		CLx pins; autor	natically clear	ed by hardware	
bit 1	1 = Initiates F	ated Start Conc Repeated Start d Start condition	condition on SI		pins; automa	tically cleared by	/ hardware
bit 0				CLx pins; autor	natically clear	ed by hardware	
2:	Value that will be If the I ² C module (or writes to the S	is active, these	bits may not b		• ·		

3: This bit is not implemented in I²C Master mode.

20.5.4 CLOCK STRETCHING

Both 7-Bit and 10-Bit Slave modes implement automatic clock stretching during a transmit sequence.

The SEN bit (SSPxCON2<0>) allows clock stretching to be enabled during receives. Setting SEN will cause the SCLx pin to be held low at the end of each data receive sequence.

20.5.4.1 Clock Stretching for 7-Bit Slave Receive Mode (SEN = 1)

In 7-Bit Slave Receive mode, on the falling edge of the ninth clock at the end of the ACK sequence, if the BF bit is set, the CKP bit in the SSPxCON1 register is automatically cleared, forcing the SCLx output to be held low. The CKP bit being cleared to '0' will assert the SCLx line low. The CKP bit must be set in the user's ISR before reception is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and read the contents of the SSPxBUF before the master device can initiate another receive sequence. This will prevent buffer overruns from occurring (see Figure 20-15).

- Note 1: If the user reads the contents of the SSPxBUF before the falling edge of the ninth clock, thus clearing the BF bit, the CKP bit will not be cleared and clock stretching will not occur.
 - 2: The CKP bit can be set in software regardless of the state of the BF bit. The user should be careful to clear the BF bit in the ISR before the next receive sequence in order to prevent an overflow condition.

20.5.4.2 Clock Stretching for 10-Bit Slave Receive Mode (SEN = 1)

In 10-Bit Slave Receive mode, during the address sequence, clock stretching automatically takes place but CKP is not cleared. During this time, if the UA bit is set after the ninth clock, clock stretching is initiated. The UA bit is set after receiving the upper byte of the 10-bit address and following the receive of the second byte of the 10-bit address with the R/W bit cleared to '0'. The release of the clock line occurs upon updating SSPxADD. Clock stretching will occur on each data receive sequence, as described in 7-bit mode.

Note: If the user polls the UA bit and clears it by updating the SSPxADD register before the falling edge of the ninth clock occurs, and if the user has not cleared the BF bit by reading the SSPxBUF register before that time, then the CKP bit will still NOT be asserted low. Clock stretching on the basis of the state of the BF bit only occurs during a data sequence, not an address sequence.

20.5.4.3 Clock Stretching for 7-Bit Slave Transmit Mode

The 7-Bit Slave Transmit mode implements clock stretching by clearing the CKP bit, after the falling edge of the ninth clock, if the BF bit is clear. This occurs regardless of the state of the SEN bit.

The user's Interrupt Service Routine (ISR) must set the CKP bit before transmission is allowed to continue. By holding the SCLx line low, the user has time to service the ISR and load the contents of the SSPxBUF before the master device can initiate another transmit sequence (see Figure 20-10).

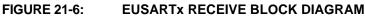
- Note 1: If the user loads the contents of SSPxBUF, setting the BF bit before the falling edge of the ninth clock, the CKP bit will not be cleared and clock stretching will not occur.
 - **2:** The CKP bit can be set in software regardless of the state of the BF bit.

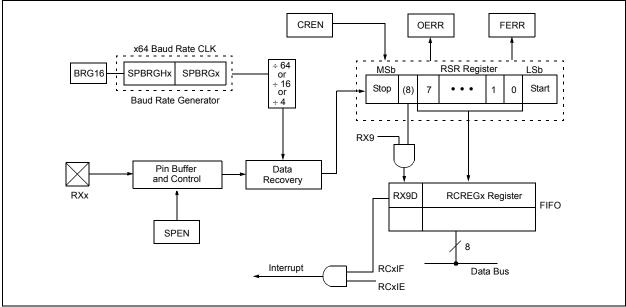
20.5.4.4 Clock Stretching for 10-Bit Slave Transmit Mode

In 10-Bit Slave Transmit mode, clock stretching is controlled during the first two address sequences by the state of the UA bit, just as it is in 10-Bit Slave Receive mode. The first two addresses are followed by a third address sequence, which contains the high-order bits of the 10-bit address and the R/W bit set to '1'. After the third address sequence is performed, the UA bit is not set, the module is now configured in Transmit mode and clock stretching is controlled by the BF flag as in 7-Bit Slave Transmit mode (see Figure 20-13).

21.2.2 EUSART ASYNCHRONOUS RECEIVER

The receiver block diagram is displayed in Figure 21-6. The data is received on the RXx pin and drives the data recovery block. The data recovery block is actually a high-speed shifter, operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc. This mode would typically be used in RS-232 systems.


To set up an Asynchronous Reception:


- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing bit, SYNC, and setting bit, SPEN.
- 3. If interrupts are desired, set enable bit, RCxIE.
- 4. If 9-bit reception is desired, set bit, RX9.
- 5. Enable the reception by setting bit, CREN.
- Flag bit, RCxIF, will be set when reception is complete and an interrupt will be generated if enable bit, RCxIE, was set.
- Read the RCSTAx register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREGx register.
- 9. If any error occurred, clear the error by clearing enable bit, CREN.
- 10. If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

21.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- 1. Initialize the SPBRGHx:SPBRGx registers for the appropriate baud rate. Set or clear the BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are required, set the RCEN bit and select the desired priority level with the RCxIP bit.
- 4. Set the RX9 bit to enable 9-bit reception.
- 5. Set the ADDEN bit to enable address detect.
- 6. Enable reception by setting the CREN bit.
- 7. The RCxIF bit will be set when reception is complete. The interrupt will be Acknowledged if the RCxIE and GIE bits are set.
- 8. Read the RCSTAx register to determine if any error occurred during reception, as well as read bit 9 of data (if applicable).
- 9. Read RCREGx to determine if the device is being addressed.
- 10. If any error occurred, clear the CREN bit.
- 11. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and interrupt the CPU.

23.5.3 USB ERROR INTERRUPT STATUS REGISTER (UEIR)

The USB Error Interrupt Status register (Register 23-9) contains the flag bits for each of the error sources within the USB peripheral. Each of these sources is controlled by a corresponding interrupt enable bit in the UEIE register. All of the USB error flags are ORed together to generate the USB Error Interrupt Flag (UERRIF) at the top level of the interrupt logic.

Each error bit is set as soon as the error condition is detected. Thus, the interrupt will typically not correspond with the end of a token being processed.

Once an interrupt bit has been set by the SIE, it must be cleared in software by writing a '0'.

REGISTER 23-9: UEIR: USB ERROR INTERRUPT STATUS REGISTER (ACCESS F63h)

R/C-0	U-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0		
BTSEF	—	—	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF		
bit 7							bit 0		
Legend:									
R = Readable b	bit	C = Clearable	e bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown		
bit 7	BTSEF: Bit St	tuff Error Flag	bit						
		f error has bee							
	0 = No bit stu	Iff error has be	en detected						
bit 6-5	Unimplemented: Read as '0'								
bit 4		Turnaround Tir		•					
	 1 = Bus turnaround time-out has occurred (more than 16 bit times of Idle from previous EOP elapsed) 0 = No bus turnaround time-out has occurred 								
				rred					
bit 3	DFN8EF: Data Field Size Error Flag bit								
	 1 = The data field was not an integral number of bytes 0 = The data field was an integral number of bytes 								
bit 2		RC16 Failure F	•	T OF Dytes					
5112	1 = The CRC		lag bit						
	0 = The CRC								
bit 1	CRC5EF: CR	C5 Host Error	Flag bit						
	1 = The toker	n packet was r	ejected due to	a CRC5 error					
	0 = The toker	n packet was a	ccepted						
bit 0	PIDEF: PID C	heck Failure F	lag bit						
	1 = PID chec								
	0 = PID chec	k passed							

PIC18F47J53

EXAMPLE 27-1: SETUP FOR CTMU CALIBRATION ROUTINES

```
#include <pl8cxxx.h>
void setup(void)
{ //CTMUCON - CTMU Control register
  CTMUCONH = 0 \times 00;
                         //make sure CTMU is disabled
  CTMUCONL = 0 \times 90;
  //CTMU continues to run when emulator is stopped,CTMU continues
  //to run in idle mode, Time Generation mode disabled, Edges are blocked
  //No edge sequence order, Analog current source not grounded, trigger
  //output disabled, Edge2 polarity = positive level, Edge2 source =
  //source 0, Edgel polarity = positive level, Edgel source = source 0,
  //CTMUICON - CTMU Current Control Register
  CTMUICON = 0 \times 01;
                           //0.55uA, Nominal - No Adjustment
//Setup AD converter;
TRISA=0x04;
                            //set channel 2 as an input
  // Configured AN2 as an analog channel
  // ANCON0
  ANCON0 = 0XFB;
  // ANCON1
  ANCON1 = 0X1F;
  // ADCON1
                       // Resulst format 1= Right justified
  ADCON1bits.ADFM=1;
  ADCON1bits.ADCAL=0;
                        // Normal A/D conversion operation
                        // Acquition time 7 = 20TAD 2 = 4TAD 1=2TAD
  ADCON1bits.ACQT=1;
  ADCON1bits.ADCS=2;
                         // Clock conversion bits 6= FOSC/64 2=FOSC/32
     // ADCON0
                     // Vref+ = AVdd
  ADCON0bits.VCFG0 =0;
                        // Vref- = AVss
  ADCON0bits.VCFG1 =0;
  ADCON0bits.CHS=2;
                         // Select ADC channel
  ADCON0bits.ADON=1;
                        // Turn on ADC
}
```

27.3.2 CAPACITANCE CALIBRATION

There is a small amount of capacitance from the internal A/D Converter sample capacitor as well as stray capacitance from the circuit board traces and pads that affect the precision of capacitance measurements. A measurement of the stray capacitance can be taken by making sure the desired capacitance to be measured has been removed. The measurement is then performed using the following steps:

- 1. Initialize the A/D Converter and the CTMU.
- 2. Set EDG1STAT (= 1).
- 3. Wait for a fixed delay of time, *t*.
- 4. Clear EDG1STAT.
- 5. Perform an A/D conversion.
- 6. Calculate the stray and A/D sample capacitances:

$$C_{\text{OFFSET}} = C_{\text{STRAY}} + C_{\text{AD}} = (I \cdot t) / V$$

where *I* is known from the current source measurement step, *t* is a fixed delay and *V* is measured by performing an A/D conversion.

This measured value is then stored and used for calculations of time measurement or subtracted for capacitance measurement. For calibration, it is expected that the capacitance of CSTRAY + CAD is approximately known. CAD is approximately 4 pF.

An iterative process may need to be used to adjust the time, t, that the circuit is charged to obtain a reasonable voltage reading from the A/D Converter. The value of t may be determined by setting COFFSET to a theoretical value, then solving for t. For example, if CSTRAY is theoretically calculated to be 11 pF, and V is expected to be 70% of VDD or 2.31V, then t would be:

$$(4 \text{ pF} + 11 \text{ pF}) \bullet 2.31 \text{V}/0.55 \ \mu\text{A}$$

or 63 µs.

See Example 27-3 for a typical routine for CTMU capacitance calibration.

28.2 Watchdog Timer (WDT)

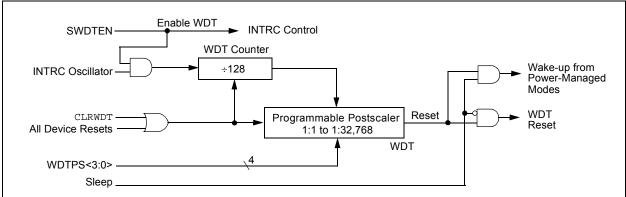
PIC18F47J53 family devices have both a conventional WDT circuit and a dedicated, Deep Sleep capable Watchdog Timer. When enabled, the conventional WDT operates in normal Run, Idle and Sleep modes. This data sheet section describes the conventional WDT circuit.

The dedicated, Deep Sleep capable WDT can only be enabled in Deep Sleep mode. This timer is described in Section 4.6.4 "Deep Sleep Watchdog Timer (DSWDT)".

The conventional WDT is driven by the INTRC oscillator. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

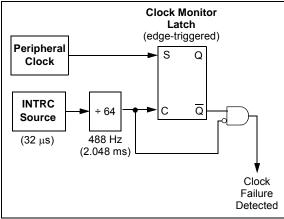
The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by the WDTPS bits in Configuration Register 2H. Available periods range from about 4 ms to 135 seconds (2.25 minutes depending on voltage, temperature and WDT postscaler). The WDT and postscaler are cleared

FIGURE 28-1: WDT BLOCK DIAGRAM


whenever a SLEEP or CLRWDT instruction is executed, or a clock failure (primary or Timer1 oscillator) has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: When a CLRWDT instruction is executed, the postscaler count will be cleared.

28.2.1 CONTROL REGISTER

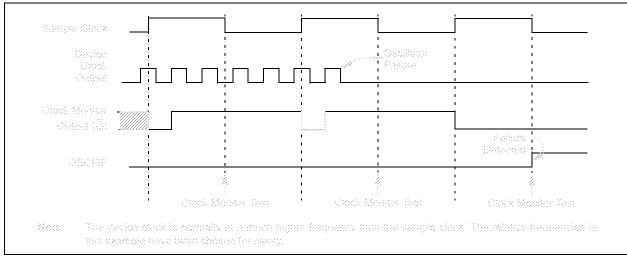

The WDTCON register (Register 28-11) is a readable and writable register. The SWDTEN bit enables or disables WDT operation. This allows software to override the WDTEN Configuration bit and enable the WDT only if it has been disabled by the Configuration bit.

LVDSTAT is a read-only status bit that is continuously updated and provides information about the current level of VDDCORE. This bit is only valid when the on-chip voltage regulator is enabled.

PIC18F47J53

Clock failure is tested for on the falling edge of the sample clock. If a sample clock falling edge occurs while the clock monitor is still set, and a clock failure has been detected (Figure 28-5), the following results:

- The FSCM generates an oscillator fail interrupt by setting bit, OSCFIF (PIR2<7>);
- The device clock source is switched to the internal oscillator block (OSCCON is not updated to show the current clock source this is the Fail-safe condition); and
- · The WDT is reset.


During switchover, the postscaler frequency from the internal oscillator block may not be sufficiently stable for timing-sensitive applications. In these cases, it may be desirable to select another clock configuration and enter an alternate power-managed mode. This can be done to attempt a partial recovery or execute a controlled shutdown. See Section 4.1.4 "Multiple Sleep Commands" and Section 28.4.1 "Special Considerations For Using Two-speed Start-up" for more details.

The FSCM will detect failures of the primary or secondary clock sources only. If the internal oscillator block fails, no failure would be detected, nor would any action be possible.

28.5.1 FSCM AND THE WATCHDOG TIMER

Both the FSCM and the WDT are clocked by the INTRC oscillator. Since the WDT operates with a separate divider and counter, disabling the WDT has no effect on the operation of the INTRC oscillator when the FSCM is enabled.

As already noted, the clock source is switched to the INTRC clock when a clock failure is detected; this may mean a substantial change in the speed of code execution. If the WDT is enabled with a small prescale value, a decrease in clock speed allows a WDT time-out to occur and a subsequent device Reset. For this reason, Fail-Safe Clock Monitor events also reset the WDT and postscaler, allowing it to start timing from when execution speed was changed and decreasing the likelihood of an erroneous time-out.

FIGURE 28-5: FSCM TIMING DIAGRAM

CLRF	Clear f			CLR	WDT	Clear Wate	hdog Timer		
Syntax:	CLRF f {,a	}		Synt	ax:	CLRWDT			
Operands:	$0 \leq f \leq 255$			Ope	rands:	None			
	a ∈ [0,1]			Ope	ration:	$000h \rightarrow WI$	DT,		
Operation:	$\begin{array}{l} 000h \rightarrow f, \\ 1 \rightarrow Z \end{array}$					$1 \rightarrow \overline{\text{TO}},$	OT postscaler,		
Status Affected:	Z					$1 \rightarrow PD$			
Encoding:	0110	101a fff	f ffff	Statu	us Affected:	TO, PD			
Description:	Clears the c	ontents of the	specified	Enco	oding:	0000	0000 000		
	register.			Desc	cription:		truction resets		
	,	e Access Ban				•	e WDT. Status	esets the post-	
	If 'a' is '1', th GPR bank (o	e BSR is used default)	d to select the			PD, are set			
	```	id the extende	ad instruction	Word	ds:	1			
		ed, this instruc		Cycl	es:	1			
		iteral Offset A	•	QC	cycle Activity:				
		ever f ≤ 95 (5F <b>2.3 "Byte-Ori</b>			Q1	Q2	Q3	Q4	
		d Instructions			Decode	No	Process	No	
	Literal Offse	et Mode" for o	details.			operation	Data	operation	
Words:	1			_					
Cycles:	1			Exar	<u>mple:</u>	CLRWDT			
Q Cycle Activity:					Before Instruc WDT Co		?		
Q1	Q2	Q3	Q4		After Instructio		?		
Decode	Read	Process	Write		WDT Co		00h		
	register 'f'	Data	register 'f'				0		
<b>E</b> uropean les					TO PD	=	1 1		
Example:	CLRF	FLAG_REG,	1						
Before Instruc									
FLAG_R After Instructio		I							
FLAG_R	EG = 00h	I							

			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial			
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions
	VIL	Input Low Voltage				
		All I/O ports:				
D030		with TTL Buffer ⁽⁴⁾	Vss	0.15 Vdd	V	VDD < 3.3V
D030A		with TTL Buffer ⁽⁴⁾	Vss	0.8	V	3.3V < VDD < 3.6V
D031		with Schmitt Trigger Buffer	Vss	0.2 Vdd	V	
D031A		SCLx/SDAx	—	0.3 Vdd	V	I ² C enabled
D031B		SCLx/SDAx	_	0.8	V	SMBus enabled
D032		MCLR	Vss	0.2 Vdd	V	
D033		OSC1	Vss	0.3 Vdd	V	HS, HSPLL modes
D033A		OSC1	Vss	0.2 Vdd	V	EC, ECPLL modes
D034		T1OSI	Vss	0.3	V	T1OSCEN = 1
	VIH	Input High Voltage				
		I/O Ports without 5.5V Tolerance:				
D040		with TTL Buffer ⁽⁴⁾	0.25 VDD + 0.8V	Vdd	V	VDD < 3.3V
D040A		with TTL Buffer ⁽⁴⁾	2.0	Vdd	V	3.3V < VDD < 3.6V
D041		with Schmitt Trigger Buffer	0.8 Vdd	Vdd	V	
		I/O Ports with 5.5V Tolerance:(5)				
Dxxx		with TTL Buffer	0.25 VDD + 0.8V	5.5	V	VDD < 3.3V
DxxxA			2.0	5.5	V	$3.3V \le V\text{DD} \le 3.6V$
Dxxx		with Schmitt Trigger Buffer	0.8 VDD	5.5	V	
D041A		SCLx/SDAx	0.7 Vdd	_	V	I ² C enabled
D041B		SCLx/SDAx	2.1	_	V	SMBus enabled; VDD <u>&gt;</u> 3V
D042		MCLR	0.8 VDD	5.5	V	
D043		OSC1	0.7 Vdd	Vdd	V	HS, HSPLL modes
D043A		OSC1	0.8 VDD	Vdd	V	EC, ECPLL modes
D044		T1OSI	1.6	Vdd	v	T1OSCEN = 1
	lı∟	Input Leakage Current ^(1,2)				
D060		I/O Ports	±5	±200	nA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
D061		MCLR	±5	±200	nA	$Vss \le VPIN \le VDD$
D062		D+/D-	±75 typical	±500	nA	$Vss \leq V PIN \leq V DD$
D063		OSC1	±5	±200	nA	$Vss \leq V PIN \leq V DD$
	IPU	Weak Pull-up Current				
D070	IPURB	PORTB, PORTD ⁽³⁾ and PORTE ⁽³⁾ Weak Pull-up Current	80	400	μA	VDD = 3.3V, VPIN = VSS

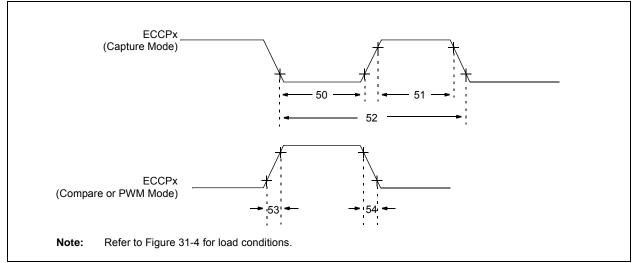
## 31.3 DC Characteristics:PIC18F47J53 Family (Industrial)

**Note 1:** The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

**2:** Negative current is defined as current sourced by the pin.

**3:** Only available in 44-pin devices.

4: When used as general purpose inputs, the RC4 and RC5 thresholds are referenced to VUSB instead of VDD.


5: Refer to Table 10-2 for pin tolerance levels.

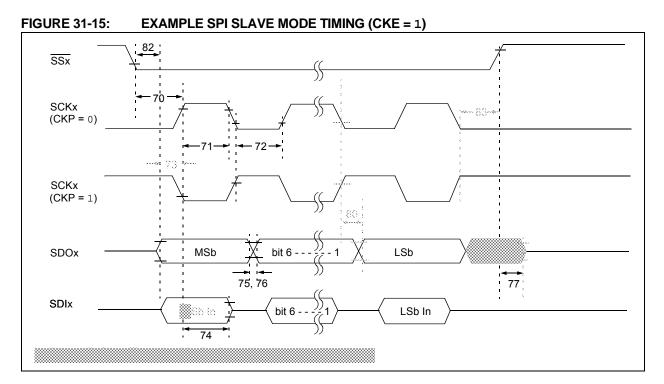

Param. No.	Symbol		Characteristic		Min.	Max.	Units	Conditions	
40	TT0H T0CKI High Pulse Width		No prescaler	0.5 Tcy + 20	—	ns			
				With prescaler	10	—	ns		
41	T⊤0L			No prescaler	0.5 Tcy + 20	—	ns		
				With prescaler	10	—	ns		
42 TTOP	T⊤0P	T0CKI Period		No prescaler	Tcy + 10		ns		
				With prescaler	Greater of: 20 ns or (TcY + 40)/N	_	ns	N = prescale value (1, 2, 4,, 256)	
45	T⊤1H	T1CKI/T3CKI High Time	Synchronous, no prescaler		0.5 Tcy + 20	—	ns		
			Synchronous, with prescaler		10		ns		
			Asynchronous		30		ns		
46	T⊤1L	L T1CKI/T3CKI Low Time	Synchronous, no prescaler		0.5 Tcy + 5		ns		
			Synchronous, with prescaler		10	_	ns		
			Asynchronous		30	—	ns		
47	TT1P		T⊤1P T1CKI/T3CKI Input Period	Synchronous		Greater of: 20 ns or (Tcy + 40)/N	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		83	_	ns		
	F⊤1	T1CKI Input F	requency Range ⁽¹⁾		DC	12	MHz		
48	TCKE2TMRI	Delay from External T1CKI Clock Edge to Timer Increment			2 Tosc	7 Tosc	_		

TABLE 31-16:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--------------	-----------------------------------------------

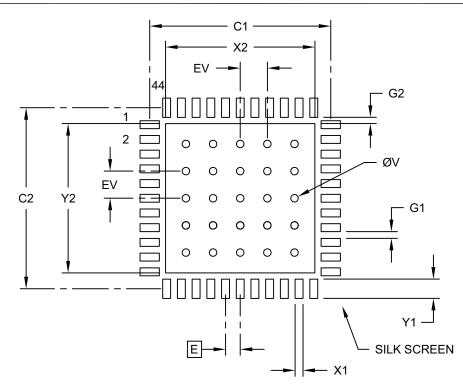
**Note 1:** The Timer1 oscillator is designed to drive 32.768 kHz crystals. When T1CKI is used as a digital input, frequencies up to 12 MHz are supported.

#### FIGURE 31-9: ENHANCED CAPTURE/COMPARE/PWM TIMINGS





## TABLE 31-23: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)


Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx $\downarrow$ or SCKx $\uparrow$ Input		3 Тсү		ns	
70A	TssL2WB	$\overline{\text{SSx}} \downarrow$ to Write to SSPxBUF		3 TCY		ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single byte	40	_	ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge		25	_	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clo	1.5 Tcy + 40	_	ns	(Note 2)	
74	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx Edge		35		ns	VDD = 3.3V, VDDCORE = 2.5V
				100		ns	VDD = 2.15V
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	e	10	70	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		—	50	ns	VDD = 3.3V, VDDCORE = 2.5V
			—	100	ns	VDD = 2.15V	
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edge		Тсү		ns	
82	TssL2DoV	SDOx Data Output Valid after $\overline{SSx} \downarrow Edge$		_	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge		1.5 Tcy + 40		ns	

**Note 1:** Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

## 44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



## **RECOMMENDED LAND PATTERN**

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	X2			6.60
Optional Center Pad Length	Y2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Contact Pad to Contact Pad (X40)	G1	0.30		
Contact Pad to Center Pad (X44)	G2	0.28		
Thermal Via Diameter	V		0.33	
Thermal Via Pitch	EV		1.20	

#### Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing No. C04-2103C