

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 10x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf27j53-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Number			Buffor					
44- QFN	44- TQFP	Туре	Туре	Description				
				PORTC is a bidirectional I/O port.				
34	32	I/O O I I/O	STDIG Analog ST ST/DIG	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input. Remappable Peripheral Pin 11 input/output.				
35	35							
		I/O I/O I O I/O	ST/DIG ST/DIG Analog DIG ST/DIG	Digital I/O. Capture/Compare/PWM input/output. Timer1 oscillator input. External USB Transceiver NOE output. Remappable Peripheral Pin 12 input/output.				
36	36							
		I/O I I O I/O	ST/DIG Analog DIG ST/DIG	Digital I/O. Analog Input 11. Comparator 2 Input D. CTMU pulse generator output. Remappable Peripheral Pin 13 input/output.				
42	42							
		 /O 	ST — ST	Digital Input. USB bus minus line input/output. External USB Transceiver FM input.				
43	43							
		 /O 	ST — ST	Digital Input. USB bus plus line input/output. External USB Transceiver VP input.				
VPISTExternal USB Transceiver VP input.Legend:TTL = TTL compatible inputCMOS= CMOS compatible input or outputST = Schmitt Trigger input with CMOS levelsAnalog= Analog inputI= InputO= OutputP= PowerOD= Open-Drain (no P diode to VDD)DIG = Digital outputII2C								
	44- QFN 34 35 36 42 43	44- QFN 44- TQFP 34 32 35 35 36 36 42 42 43 43	44- QFN 44- TQFP Pin Type 34 32 I/O 35 35 I/O 35 35 I/O 36 36 I/O 42 42 I 1/O I O 1/O I O 1/O I O 1/O I I/O 1/O I I/O 1 I O 1 I I/O 1 I/O I 1 I I	44- QFN44- TQFPPin TypeBuffer Type3432I/O O O I I/OSTDIG Analog ST ST/DIG3535I/O I I/OST/DIG ST/DIG3636I/O I I/OST/DIG ST/DIG3636I/O I I/OST/DIG I I/O4242I I I/OST ST/DIG4343I I I/OST ST I/Oapput apputI I IST ST I/O				

TABLE 1-4: PIC18F4XJ53 PINOUT I/O DESCRIPTIONS (CONTINUED)

2: Available only on 44-pin devices (PIC18F46J53, PIC18F47J53, PIC18LF46J53 and PIC18LF47J53).

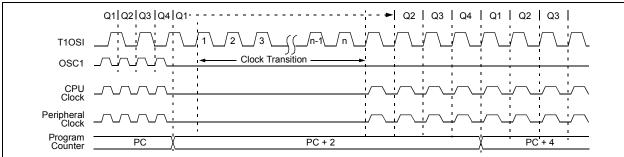
3: 5.5V tolerant.

4.2 Run Modes

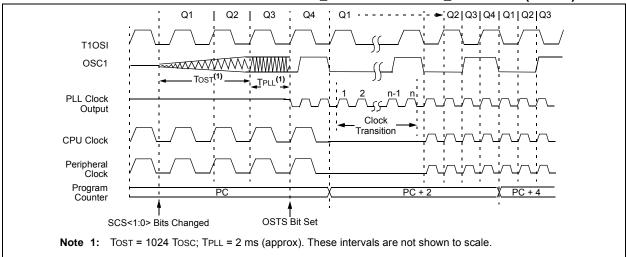
In the Run modes, clocks to both the core and peripherals are active. The difference between these modes is the clock source.

4.2.1 PRI_RUN MODE

The PRI_RUN mode is the normal, full-power execution mode of the microcontroller. This is also the default mode upon a device Reset unless Two-Speed Start-up is enabled (see **Section 28.4 "Two-Speed Start-up"** for details). In this mode, the OSTS bit is set (see **Section 3.5.1 "Oscillator Control Register"**).


4.2.2 SEC_RUN MODE

The SEC_RUN mode is the compatible mode to the "clock switching" feature offered in other PIC18 devices. In this mode, the CPU and peripherals are clocked from the Timer1 oscillator. This gives users the option of low-power consumption while still using a high-accuracy clock source.


SEC_RUN mode is entered by setting the SCS<1:0> bits to '01'. The device clock source is switched to the Timer1 oscillator (see Figure 4-1), the primary oscillator is shut down, the SOSCRUN bit (OSC-CON2<6>) is set and the OSTS bit is cleared. Note: The Timer1 oscillator should already be running prior to entering SEC_RUN mode. If the T1OSCEN bit is not set when the SCS<1:0> bits are set to '01', entry to SEC_RUN mode will not occur. If the Timer1 oscillator is enabled, but not yet running, device clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result.

On transitions from SEC_RUN mode to PRI_RUN mode, the peripherals and CPU continue to be clocked from the Timer1 oscillator while the primary clock is started. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see Figure 4-2). When the clock switch is complete, the SOSCRUN bit is cleared, the OSTS bit is set and the primary clock would be providing the clock. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run.

FIGURE 4-1: TRANSITION TIMING FOR ENTRY TO SEC_RUN MODE

© 2009-2016 Microchip Technology Inc.

6.1.3 PROGRAM COUNTER

The Program Counter (PC) specifies the address of the instruction to fetch for execution. The PC is 21 bits wide and is contained in three separate 8-bit registers. The low byte, known as the PCL register, is both readable and writable. The high byte, or PCH register, contains the PC<15:8> bits; it is not directly readable or writable. Updates to the PCH register are performed through the PCLATH register. The upper byte is called PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCH register. Updates to the PCU. This register contains the PC<20:16> bits; it is also not directly readable or writable. Updates to the PCU

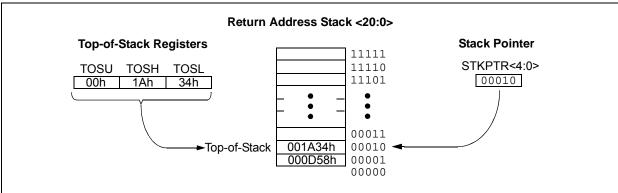
The contents of PCLATH and PCLATU are transferred to the program counter by any operation that writes to PCL. Similarly, the upper 2 bytes of the program counter are transferred to PCLATH and PCLATU by an operation that reads PCL. This is useful for computed offsets to the PC (see **Section 6.1.6.1 "Computed GOTO"**).

The PC addresses bytes in the program memory. To prevent the PC from becoming misaligned with word instructions, the Least Significant bit (LSb) of PCL is fixed to a value of '0'. The PC increments by two to address sequential instructions in the program memory.

The CALL, RCALL, GOTO and program branch instructions write to the program counter directly. For these instructions, the contents of PCLATH and PCLATU are not transferred to the program counter.

6.1.4 RETURN ADDRESS STACK

The return address stack allows any combination of up to 31 program calls and interrupts to occur. The PC is pushed onto the stack when a CALL or RCALL instruction is executed, or an interrupt is Acknowledged. The PC value is pulled off the stack on a RETURN, RETLW or a RETFIE instruction (and on ADDULNK and SUBULNK instructions if the extended instruction set is enabled). PCLATU and PCLATH are not affected by any of the RETURN or CALL instructions. The stack operates as a 31-word by 21-bit RAM and a 5-bit Stack Pointer (SP), STKPTR. The stack space is not part of either program or data space. The Stack Pointer is readable and writable and the address on the top of the stack is readable and writable through the Top-of-Stack Special Function Registers (SFRs). Data can also be pushed to, or popped from, the stack using these registers.


A CALL type instruction causes a push onto the stack. The Stack Pointer is first incremented and the location pointed to by the Stack Pointer is written with the contents of the PC (already pointing to the instruction following the CALL). A RETURN type instruction causes a pop from the stack. The contents of the location pointed to by the STKPTR are transferred to the PC and then the Stack Pointer is decremented.

The Stack Pointer is initialized to '00000' after all Resets. There is no RAM associated with the location corresponding to a Stack Pointer value of '00000'; this is only a Reset value. Status bits indicate if the stack is full, has overflowed or has underflowed.

6.1.4.1 Top-of-Stack Access

Only the top of the return address stack (TOS) is readable and writable. A set of three registers, TOSU:TOSH:TOSL, holds the contents of the stack location pointed to by the STKPTR register (Figure 6-3). This allows users to implement a software stack if necessary. After a CALL, RCALL or interrupt (and ADDULNK and SUBULNK instructions if the extended instruction set is enabled), the software can read the pushed value by reading the TOSU:TOSH:TOSL registers. These values can be placed on a user-defined software stack. At return time, the software can return these values to TOSU:TOSH:TOSL and do a return.

The user must disable the global interrupt enable bits while accessing the stack to prevent inadvertent stack corruption.

FIGURE 6-3: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS

6.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as 2 bytes or 4 bytes in program memory. The Least Significant Byte (LSB) of an instruction word is always stored in a program memory location with an even address (LSB = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSB will always read '0' (see Section 6.1.3 "Program Counter").

Figure 6-5 provides an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 6-5 displays how the instruction, GOTO 0006h, is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 29.0 "Instruction Set Summary" provides further details of the instruction set.

			LSB = 1	LSB = 0	Word Address \downarrow
	Program N				000000h
	Byte Locat	ions \rightarrow			000002h
					000004h
					000006h
Instruction 1:	MOVLW	055h	0Fh	55h	000008h
Instruction 2:	GOTO	0006h	EFh	03h	00000Ah
			F0h	00h	00000Ch
Instruction 3:	MOVFF	123h, 456	h C1h	23h	00000Eh
			F4h	56h	000010h
					000012h
					000014h

FIGURE 6-5: INSTRUCTIONS IN PROGRAM MEMORY

6.2.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instructions always has '1111' as its four Most Significant bits (MSbs); the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence immediately after the first word, the data in the second word is accessed and

EXAMPLE 6-4: TWO-WORD INSTRUCTIONS

used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 6-4 illustrates how this works.

Note: See Section 6.5 "Program Memory and the Extended Instruction Set" for information on two-word instructions in the extended instruction set.

CASE 1:				
Object Code		Source Code	9	
0110 0110 00	0000 000	TSTFSZ	REG1	; is RAM location 0?
1100 0001 00	010 0011	MOVFF	REG1, REG2	; No, skip this word
1111 0100 01	LO1 0110			; Execute this word as a NOP
0010 0100 00	0000 000	ADDWF	REG3	; continue code
CASE 2:				
Object Code		Source Code	9	
0110 0110 00	0000 000	TSTFSZ	REG1	; is RAM location 0?
1100 0001 00	010 0011	MOVFF	REG1, REG2	; Yes, execute this word
1111 0100 01	LO1 0110			; 2nd word of instruction
0010 0100 00	0000 000	ADDWF	REG3	; continue code

6.3.5 SPECIAL FUNCTION REGISTERS

The SFRs are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. SFRs start at the top of data memory (FFFh) and extend downward to occupy more than the top half of Bank 15 (F40h to FFFh). Table 6-2, Table 6-3 and Table 6-4 provide a list of these registers.

The SFRs can be classified into two sets: those associated with the "core" device functionality (ALU, Resets and interrupts) and those related to the peripheral functions. The Reset and Interrupt registers are described in their corresponding chapters, while the ALU's STATUS register is described later in this section. Registers related to the operation of the peripheral features are described in the chapter for that peripheral.

The SFRs are typically distributed among the peripherals whose functions they control. Unused SFR locations are unimplemented and read as '0's

Note: The SFRs located between EB0h and F5Fh are not part of the Access Bank. Either BANKED instructions (using BSR) or the MOVFF instruction should be used to access these locations. When programming in MPLAB[®] C18, the compiler will automatically use the appropriate addressing mode.

TABLE 6-2: ACCESS BANK SPECIAL FUNCTION REGISTER MAP

FFFhTOSUFDFhINDE2 ⁽¹⁾ FBFhPSTR1CONF9FhIPR1F7FhSPBRGH1FFChTOSLFDDhPOSTIDC2 ⁽¹⁾ FBEhECCP1ASF9DhPIR1F7EhBAUDCON1FFChSTSKPTRFDChPREINC2 ⁽¹⁾ FBChCCPR1HF9ChRCSTA2F7ChBAUDCON2FFBhPCLATUFDBhPLUSW2 ⁽¹⁾ FBBhCCPR1LF9BhOSCTUNEF7BhTMR3HFFAhPCLATHFDAhFSR2LFBAhCCP1CONF9AhF1GCONF7AhTMR3LFF9hPCLFDDhFSR2LFBAhCCP1CONF9AhF1GCONF7AhTMR4LFF7hTBLPTRUFDBhSTATUSF6BhECCP2ASF9AhF1GCONF7AhTMR4LFF7hTBLPTRLFDBhTMR0LF6BhCCP2CHF97hT3GCONF77hPR4FF7hTBLPTRLFDBhTMR0LF6BhCCP2CNF93hTRISEF7AhSSP2BUFFF4hPRODLFD4h ⁽⁵⁾ F64hCCP2CONF93hTRISEF7AhSSP22OT1FF3hPRODLFD2hCM1CONF62hCTMUCONLF93hTRISEF7AhSSP22ON1FF7hINTCONFD2hCM1CONF62hCTMUCONLF93hTRISEF7AhSSP22ON1FF7hINTCONFD2hCM1CONF62hCTMUCONLF93hTRISEF7AhSSP22ON1FF7hINTCONFD2hCM1CONF64h <t< th=""><th>Address</th><th>Name</th><th>Address</th><th>Name</th><th>Address</th><th>Name</th><th>Address</th><th>Name</th><th>Address</th><th>Name</th></t<>	Address	Name	Address	Name	Address	Name	Address	Name	Address	Name
FFDhTOSLFDDhPOSTDEC2 ⁽¹⁾ FBDhECCP1DELF9DhPIE1F7DhSPBRGH2FFChSTKPTRFDChPREINC2 ⁽¹⁾ FBChCCPR1HF9ChRCSTA2F7ChBAUDCON2FFBhPCLATUFDBhPLUSW2 ⁽¹⁾ FBBhCCPR1LF9BhOSCTUNEF7BhTMR3HFFAhPCLATHFDAhFSR2HFBBhCCP1CONF99hIPRSF78hTMR3LFF8hPCLFD9hFSR2LFB9hPSTR2CONF99hIPRSF78hTMR4FF7hTBLPTRUFD8hSTATUSFB8hECCP2ASF99hIPRSF78hTMR4FF7hTBLPTRLFD6hTMR0HF87hECCP2DELF97hT3GCONF77hPR4FF6hTBLPTRLFD6hTMR0LF86hCCPR2LF99hTRISEF76hT4CONFF8hTABLATFD6hTMR0LF86hCCPR2LF99hTRISEF76hSSP2B/FFF3hPRODLFD3hOSCCONF68hCCPR2LF99hTRISEF77hSSP2D/FFF7hINTCONFD2hCMICONF62hCTMUCONLF92hTRISAF77hSSP2CON1FF7hINTCONFD2hCMICONF62hCTMUCONLF92hTRISAF77hSSP2CON1FF7hINTCONFD2hCMICONF62hCTMUCONLF92hTRISAF77hSSP2CON1FF7hINTCONFD2hCMICONF62hTCMICON	FFFh	TOSU	FDFh	INDF2 ⁽¹⁾	FBFh	PSTR1CON	F9Fh	IPR1	F7Fh	SPBRGH1
FFCh STKPTR FDCh PREINC2 ⁽¹⁾ FBCh CCPR1H F9Ch RCSTA2 F7Ch BAUDCON2 FFBh PCLATU FDBh PLUSW2 ⁽¹⁾ FBBh CCPR1L F9Bh OSCTUNE F7Bh TMR3H FF5h PCL FDBh FSR2H FBBh CCPR1C F9Bh TIGCON F7Ah TMR3H FF5h FDL FDBh STATUS FBBh ECCP2AS F9Bh PR5 F7bh TMR4 FF7h TBLPTRH FD7h TMR0H FB6h CCPR2H F96h TRISE F76h SSP2BUF FF5h TABLAT FD6h TMR0L FB6h CCPR2H F96h TRISE F76h SSP2BUF FF5h TABLAT FD5h TOCON F85h CCPR2H F96h TRISE F76h SSP2BUF FF3h PRODL FD3h OSCCON F83h CTMUCONH F93h TRISE F73h SSP2CON1 FF7h INTCON </td <td>FFEh</td> <td>TOSH</td> <td>FDEh</td> <td>POSTINC2⁽¹⁾</td> <td>FBEh</td> <td>ECCP1AS</td> <td>F9Eh</td> <td>PIR1</td> <td>F7Eh</td> <td>BAUDCON1</td>	FFEh	TOSH	FDEh	POSTINC2 ⁽¹⁾	FBEh	ECCP1AS	F9Eh	PIR1	F7Eh	BAUDCON1
FFBhPCLATUFDBhPLUSW2 ⁽¹⁾ FBBhCCPR1LF9BhOSCTUNEF7BhTMR3HFFAhPCLATHFDAhFSR2HFBAhCCP1CONF9AhT1GCONF7AhTMR3LFF8hPCLFD9hFSR2LFB9hPSTR2CONF99hIPR5F78hTMR3LFF8hTBLPTRUFD8hSTATUSF88hECCP2ASF99hPIR5F78hTMR44FF7hTBLPTRHFD7hTMR0HFB7hECCP2DELF97hT3GCONF77hTMR44FF6hTBLPTRHFD6hTMR0LFB6hCCPR2HF96hTRISEF76hT4CONFF5hTABLATFD6hT0CONFB6hCCPR2LF96hTRISEF76hSSP2BUFFF7hPRODHFD4h6 ⁽⁰⁾ FB4hCCP2CONF94hTRISEF77hSSP2DU ³ FF3hPRODLFD2hCM1CONFB3hCTMUCONLF93hTRISBF73hSSP2CON2FF7hINTCONFD2hCM1CONFB1hCTMUCONLF93hTRISBF73hSSP2CON2FF7hINTCON2FD1hCM2CONFB1hCTMUCONLF93hTRISBF73hSSP2CON2FF7hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFE7hINTCON1FCChTMR1HFAFhRCREG1F87hPIR4F66hPMADDRI(2.4)FE6hPOSTDEC0 ⁽¹⁾ FCChTMR2FAChRCST11 <td>FFDh</td> <td>TOSL</td> <td>FDDh</td> <td>POSTDEC2⁽¹⁾</td> <td>FBDh</td> <td>ECCP1DEL</td> <td>F9Dh</td> <td>PIE1</td> <td>F7Dh</td> <td>SPBRGH2</td>	FFDh	TOSL	FDDh	POSTDEC2 ⁽¹⁾	FBDh	ECCP1DEL	F9Dh	PIE1	F7Dh	SPBRGH2
FFAh PCLATH FDAh FSR2H FBAh CCP1CON F9Ah T1GCON F7Ah TMR3L FF9h PCL FD9h FSR2L FB9h PSTR2CON F99h IPR5 F79h T3CON FF8h TBLPTRU FD8h STATUS FB8h ECCP2AS F98h PIR5 F78h TMR4 FF7h TBLPTRU FD8h STATUS FB8h ECCP2AS F98h PIR5 F78h TMR4 FF7h TBLPTRL FD6h TMR0L FB7h CCCP2AS F98h TRISE F76h T3GCON F77h PR4 FF6h TABLAT FD6h TMR0L F86h CCP2CON F94h TRISE F76h SSP2BUF FF4h PRODL FD3h OSCCON F83h CTMUCONL F92h TRISA F72h SSP2CON1 FF1h INTCON FD2h CM1CON F81h CTMUCONL F91h PIE5 F71h SSP2CON2	FFCh	STKPTR	FDCh	PREINC2 ⁽¹⁾	FBCh	CCPR1H	F9Ch	RCSTA2	F7Ch	BAUDCON2
FF9hPCLFD9hFSR2LFB9hPSTR2CONF99hIPR5F79hT3CONFF8hTBLPTRUFD8hSTATUSFB8hECCP2ASF98hPIR5F78hTMR4FF7hTBLPTRLFD7hTMR0HFB7hECCP2DELF97hT3GCONF77hPR4FF6hTBLPTRLFD8hTMR0LFB6hCCPR2HF96hTRISEF76hT4CONFF6hTABLATFD5hTOCONFB5hCCPR2LF96hTRISEF76hSSP2AD0 ³ FF7hPRODLFD3hOSCCONFB3hCTMUCONLF93hTRISBF77hSSP2AD0 ³ FF7hINTCONFD2hCM1CONFB2hCTMUCONLF99hIPR4F77hSSP2AD0 ³ FF7hINTCONFD2hCM1CONFB1hCTMUCONLF99hIPR4F77hSSP2AD0 ³ FF7hINTCONFD2hCM1CONFB1hCTMUCONLF99hIPR4F77hSSP2AD0 ⁴ FF7hINTCON2FD1hCM2CONFB1hCTMUCONLF99hIPR4F77hSSP2CON2FF7hINTCON3FD0hRCONFB0hSPBRG1F99hIPR4F6FhPMADDRH ^{2,4} FE6hPOSTINC0 ⁽¹⁾ FCChTMR1LFAEhTXREG1F8FhPIR4F6FhPMADDRH ^{2,4} FE6hPOSTINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F80hLATCF66hPMADDRH ^{2,4} FE6hPREINC0 ⁽¹⁾ FCChTMR2	FFBh	PCLATU	FDBh	PLUSW2 ⁽¹⁾	FBBh	CCPR1L	F9Bh	OSCTUNE	F7Bh	TMR3H
FF8h TBLPTRU FD8h STATUS FB8h ECCP2AS F98h PIR5 F78h TMR4 FF7h TBLPTRH FD7h TMR0H FB7h ECCP2DEL F97h T3GCON F77h PR4 FF6h TBLPTRL FD6h TMR0L FB6h CCPR2H F96h TRISD F77h SP22BUF FF6h TABLAT FD5h TOCON FB6h CCPR2L F98h TRISD F75h SSP2BUF FF7h PRODH FD4h 6'' FB4h CCP2CON F94h TRISD F77h SSP2CON2 FF3h PRODL FD3h OSCCON FB3h CTMUCONL F92h TRISA F72h SSP2CON2 FF7h INTCON2 FD1h CM2CON FB1h CTMUCONL F92h TRISA F72h SSP2CON2 FF6h INTCON3 FD0h RCON FB0h SPBRG1 F90h IPR4 F6h PMADDRH ^{(2,4}) FEEh IND	FFAh	PCLATH	FDAh	FSR2H	FBAh	CCP1CON	F9Ah	T1GCON	F7Ah	TMR3L
FF7hTBLPTRHFD7hTMR0HFB7hECCP2DELF97hT3GCONF77hPR4FF6hTBLPTRLFD6hTMR0LFB6hCCPR2HF96hTRISEF76hT4CONFF5hTABLATFD5hT0CONFB5hCCPR2LF95hTRISDF77hSSP2BUFFF4hPRODHFD4h6^0FB4hCCP2CONF94hTRISCF74hSSP2AD0 ³ FF3hPRODLFD3hOSCCONFB3hCTMUCONHF93hTRISBF73hSSP2CON1FF1hINTCONFD2hCM1CONFB2hCTMUCONLF93hTRISAF72hSSP2CON1FF1hINTCON2FD1hCM2CONFB1hCTMUCONLF93hTRISAF72hSSP2CON1FF6hINTCON3FD0hRCONFB1hCTMUCONF91hPIE5F71hSSP2CON2FF6hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F66hPMADDRH ^(2,4) FEEhINDF0 ⁽¹⁾ FCFhTMR1LFAEhTXREG1F86hPIE4F66hPMDIN14 ^(2,4) FEEhPOSTINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F80hLATCF60hPMDIN14 ^(2,4) FEEhPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F80hLATCF60hPMDIN14 ^(2,4) FEEhPOSTINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F80hLATCF60hPMDIN14 ^(2,4) FEEhPREINC0 ⁽¹⁾ FCCh </td <td>FF9h</td> <td>PCL</td> <td>FD9h</td> <td>FSR2L</td> <td>FB9h</td> <td>PSTR2CON</td> <td>F99h</td> <td>IPR5</td> <td>F79h</td> <td>T3CON</td>	FF9h	PCL	FD9h	FSR2L	FB9h	PSTR2CON	F99h	IPR5	F79h	T3CON
FF6hTBLPTRLFD6hTMR0LFB6hCCPR2HF96hTRISEF76hT4CONFF5hTABLATFD5hT0CONFB5hCCPR2LF95hTRISDF75hSSP2BUFFF4hPRODHFD4h(6)FB4hCCP2CONF94hTRISCF74hSSP2ADD(3)FF3hPRODLFD3hOSCCONFB3hCTMUCONHF93hTRISBF73hSSP2STATFF2hINTCONFD2hCM1CONFB2hCTMUCONLF92hTRISAF72hSSP2CON1FF1hINTCON2FD1hCM2CONFB1hCTMUCONLF91hPIE5F71hSSP2CON2FF0hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMTATFE6hINDF0f0FCFhTMR1HFAFhRCREG1F8FhPIR4F6fhPMADDRH ^(2,4) FE6hPOSTINC0f0FCChTMR1LFAChTXSTA1F80hLATE ⁽²⁾ F6DhPMDIN1H ⁽²⁾ FE6hPREINC0f0FCChTMR2FAChRCSTA1F80hLATCF68hPMDIN1H ⁽²⁾ FE6hPREINC0f0FCChTMR2FAChRCSTA1F80hLATCF68hTXADDRLFE6hPREINC0f0FCChTMR2FAChRCSTA1F80hLATCF68hTXADDRLFE6hPSR0LFCAhT2CONFAAhRCREG2F88hLATCF68hTXADDRLFE8hPLUSW0 ⁽¹⁾ FCAhT2CONFAAh<	FF8h	TBLPTRU	FD8h	STATUS	FB8h	ECCP2AS	F98h	PIR5	F78h	TMR4
FFshTABLATFDshTOCONFBshCCPR2LF9shTRISDF75hSSP2BUFFF4hPRODHFD4h(5)FB4hCCP2CONF94hTRISCF74hSSP2ADD(3)FF3hPRODLFD3hOSCCONFB3hCTMUCONHF93hTRISBF73hSSP2STATFF2hINTCONFD2hCM1CONFB2hCTMUCONLF92hTRISAF72hSSP2CON1FF1hINTCON2FD1hCM2CONFB1hCTMUICONF91hPIE5F71hSSP2CON2FF0hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFEFhINDF0(1)FCFhTMR1HFAFhRCREG1F8FhPIE4F66hPMADDRI(2.4)FEChPOSTINC0(1)FCEhTMR1LFAEhTXREG1F8EhPIE4F66hPMADDRI(2.4)FEChPREINC0(1)FCChTMR2FAChRCSTA1F8ChLATE(2)F60hPMDIN1L(2)FEBhPLISW0(1)FCChTMR2FAChRCREG2F88hLATCF68hTXADDRLFEAhFSR0LFCAhT2CONFAAhRCREG2F88hLATAF69hRXADDRLFE8hPLISW0(1)FCAhT2CONFAAhRCREG2F88hLATAF69hRXADDRLFE8hPSR0LFCAhT2CONFAAhTXSTA2F88hDMACON1F68hRXADDRLFE8hPSR0LFCAhSSP1ADD(3)FA8h<	FF7h	TBLPTRH	FD7h	TMR0H	FB7h	ECCP2DEL	F97h	T3GCON	F77h	PR4
FF4hPRODHFD4h(5)FB4hCCP2CONF94hTRISCF74hSSP2ADD(3)FF3hPRODLFD3hOSCCONFB3hCTMUCONHF93hTRISBF73hSSP2STATFF2hINTCONFD2hCM1CONFB2hCTMUCONLF92hTRISAF72hSSP2CON1FF1hINTCON2FD1hCM2CONFB1hCTMUCONLF92hTRISAF72hSSP2CON2FF0hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFEFhINDF0 ⁽¹⁾ FCFhTMR1HFAFhRCREG1F8FhPIR4F6FhPMADDRI ^(2,4) FEChPOSTIDC0 ⁽¹⁾ FCChTMR1LFAChTXREG1F8EhPIE4F66hPMADDRI ^(2,4) FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATE ⁽²⁾ F60hPMDIN14 ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8chLATCF68hTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F88hLATAF68hTXADDRLFEAhFSR0LFCAhSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE8hPOSTIDC1 ⁽¹⁾ FCAhSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE8hPOSTIDC1 ⁽¹⁾ FCAhSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE8hP	FF6h	TBLPTRL	FD6h	TMR0L	FB6h	CCPR2H	F96h	TRISE	F76h	T4CON
Fr3hPRODLFD3hOSCCONFB3hCTMUCONHF93hTRISBF73hSSP2STATFF3hNTCONFD2hCM1CONFB3hCTMUCONHF93hTRISBF73hSSP2STATFF1hINTCON2FD1hCM2CONFB1hCTMUCONLF92hTRISAF72hSSP2CON1FF1hINTCON3FD0hRCONFB1hCTMUCONF91hPIE5F71hSSP2CON1FF6hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFEFhINDF0 ⁽¹⁾ FCFhTMR1HFAFhRCREG1F8FhPIR4F6FhPMADDRH ^(2,4) FE6hPOSTDEC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F80hLATE ⁽²⁾ F60hPMDIN1H ⁽²⁾ FE6hPOSTDEC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8chLATE ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FE6hPEINC0 ⁽¹⁾ FCChTMR2FAAhRCREG2F88hLATCF68hTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F88hLATAF69hRXADDRLFE8hVREGFC8hSSP18UFFA9hTXREG2F88hLATAF69hRXADDRLFE8hWREGFC8hSSP13TTFA7hEECON2F87hOSCCON2 ⁽⁶⁾ F67hDMABCLFE8hWREGFC8hSSP1CON1FA8hTXSTA2F88hDMACON1F68hRXADDRLFE8hPOSTDEC1 ⁽¹⁾ FC7h <td< td=""><td>FF5h</td><td>TABLAT</td><td>FD5h</td><td>TOCON</td><td>FB5h</td><td>CCPR2L</td><td>F95h</td><td>TRISD</td><td>F75h</td><td>SSP2BUF</td></td<>	FF5h	TABLAT	FD5h	TOCON	FB5h	CCPR2L	F95h	TRISD	F75h	SSP2BUF
FF2hINTCONFD2hCM1CONFB2hCTMUCONLF92hTRISAF72hSSP2CON1FF1hINTCON2FD1hCM2CONFB1hCTMUICONF91hPIE5F71hSSP2CON2FF0hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFEFhINDF0 ⁽¹⁾ FCFhTMR1HFAFhRCREG1F8FhPIR4F6FhPMADDRH ^(2,4) FEbhPOSTDEC0 ⁽¹⁾ FCChTMR1LFAEhTXREG1F8EhPIE4F6EhPMADDRL ^(2,4) FEbhPOSTDEC0 ⁽¹⁾ FCChT1CONFADhTXSTA1F8DhLATE ⁽²⁾ F6ChPMDIN1H ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATD ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRLFE8hWREGFC8hSSP1AD0 ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE6hPOSTIDC1 ⁽¹⁾ FC7hSSP1CON2FA5hIPR3F86hDMACON2F66hDMABCLFE6hPOSTIDC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F86hDMACON2F66hDMABCLFE6hPOSTIDC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F86hDMACON2F66hDMABCLFE6h <t< td=""><td>FF4h</td><td>PRODH</td><td>FD4h</td><td>(5)</td><td>FB4h</td><td>CCP2CON</td><td>F94h</td><td>TRISC</td><td>F74h</td><td>SSP2ADD⁽³⁾</td></t<>	FF4h	PRODH	FD4h	(5)	FB4h	CCP2CON	F94h	TRISC	F74h	SSP2ADD ⁽³⁾
FF1hINTCON2FD1hCM2CONFB1hCTMUICONF91hPIE5F71hSSP2CON2FF0hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFEFhINDF0 ⁽¹⁾ FCFhTMR1HFAFhRCREG1F8FhPIR4F6FhPMADDRH ^(2,4) FEEhPOSTDEC0 ⁽¹⁾ FCChTMR1LFAFhRCREG1F8FhPIR4F6EhPMADDRL ^(2,4) FEChPOSTDEC0 ⁽¹⁾ FCChTMR1LFAChTXSTA1F8DhLATE ⁽²⁾ F6ChPMDIN1H ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATD ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATCF6BhPMDIN1L ⁽²⁾ FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0LFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRLFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE8hPOSTINC1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁶⁾ F67hDMABCLFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONF	FF3h	PRODL	FD3h	OSCCON	FB3h	CTMUCONH	F93h	TRISB	F73h	SSP2STAT
FF0hINTCON3FD0hRCONFB0hSPBRG1F90hIPR4F70hCMSTATFEFhINDF0 ⁽¹⁾ FCFhTMR1HFAFhRCREG1F8FhPIR4F6FhPMADDRH ^(2,4) FEEhPOSTINC0 ⁽¹⁾ FCChTMR1LFAEhTXREG1F8EhPIE4F6EhPMADDRL ^(2,4) FEDhPOSTDEC0 ⁽¹⁾ FCChT1CONFADhTXSTA1F8DhLATE ⁽²⁾ F6ChPMDIN1H ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATD ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRLFE8hWREGFC8hSSP18UFFA9hTXREG2F89hLATAF69hRXADDRHFE7hINDF1 ⁽¹⁾ FC7hSSP18TATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE6hPOSTDEC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F65hHLVDCONF65hUCONFE6hPOSTDEC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F65hHLVDCONF65hUCONFE6hPOSTDEC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F65hHLVDCONF65hUCONFE6h <t< td=""><td>FF2h</td><td>INTCON</td><td>FD2h</td><td>CM1CON</td><td>FB2h</td><td>CTMUCONL</td><td>F92h</td><td>TRISA</td><td>F72h</td><td>SSP2CON1</td></t<>	FF2h	INTCON	FD2h	CM1CON	FB2h	CTMUCONL	F92h	TRISA	F72h	SSP2CON1
FEFhINDF0 ⁽¹⁾ FCFhTMR1HFAFhRCREG1F8FhPIR4F6FhPMADDRH ^(2,4) FEEhPOSTINC0 ⁽¹⁾ FCEhTMR1LFAEhTXREG1F8EhPIE4F6EhPMADDRL ^(2,4) FEDhPOSTDEC0 ⁽¹⁾ FCDhT1CONFADhTXSTA1F8DhLATE ⁽²⁾ F6DhPMDIN1H ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATD ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRLFE9hFSR0LFC9hSSP18UFFA9hTXREG2F89hLATAF69hRXADDRHFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE4hPREINC1 ⁽¹⁾ FC6hSSP1CON2FA5hIPR3F85hHLVDCONF66hUCONFE4hPREINC1 ⁽¹⁾ FC6hADRESHFA4hPIR3F84hPORTE ⁽²⁾ F64hUSTATFE3hPLUSW1 ⁽¹⁾ FC3hADRESLFA3hPIE3F83hPORTCF63hUEIRFE3h <td>FF1h</td> <td>INTCON2</td> <td>FD1h</td> <td>CM2CON</td> <td>FB1h</td> <td>CTMUICON</td> <td>F91h</td> <td>PIE5</td> <td>F71h</td> <td>SSP2CON2</td>	FF1h	INTCON2	FD1h	CM2CON	FB1h	CTMUICON	F91h	PIE5	F71h	SSP2CON2
FEEhPOSTINCO ⁽¹⁾ FCEhTMR1LFAEhTXREG1F8EhPIE4F6EhPMADDRL ^(2,4) FEDhPOSTDECO ⁽¹⁾ FCDhT1CONFADhTXSTA1F8DhLATE ⁽²⁾ F6DhPMDIN1H ⁽²⁾ FEChPREINCO ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATD ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRLFE9hFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRLFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRLFE7hINDF1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTDEC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE3hPOSTDEC1 ⁽¹⁾ FC3hADRESLFA3hPIE3F83hPORTE ⁽²⁾ F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F81hPORTEF61hUFRMH	FF0h	INTCON3	FD0h	RCON	FB0h	SPBRG1	F90h	IPR4	F70h	CMSTAT
FEDhPOSTDEC0 ⁽¹⁾ FCDhT1CONFADhTXSTA1F8DhLATE ⁽²⁾ F6DhPMDIN1H ⁽²⁾ FEChPREINC0 ⁽¹⁾ FCChTMR2FAChRCSTA1F8ChLATD ⁽²⁾ F6ChPMDIN1L ⁽²⁾ FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRHFE9hFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRHFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTDEC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1 ⁽¹⁾ FC3hSSP1CON2FA3hIPR3F83hHLVDCONF65hUCONFE4hPREINC1 ⁽¹⁾ FC4hADRESHFA4hPIR3F83hPORTD ⁽²⁾ F64hUSTATFE2hFSR1HFC2hADCON0FA2hIPR2F81hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FEFh	INDF0 ⁽¹⁾	FCFh	TMR1H	FAFh	RCREG1	F8Fh	PIR4	F6Fh	PMADDRH ^(2,4)
FEChPREINCO(1)FCChTMR2FAChRCSTA1F8ChLATD(2)F6ChPMDIN1L(2)FEBhPLUSW0(1)FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRHFE9hFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRLFE8hWREGFC8hSSP1ADD(3)FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1(1)FC7hSSP1STATFA7hEECON2F87hOSCCON2(5)F67hDMABCLFE6hPOSTINC1(1)FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1(1)FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1(1)FC3hADRESLFA3hPIE3F83hPORTD(2)F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F81hPORTBF61hUFRMHFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FEEh	POSTINC0 ⁽¹⁾	FCEh	TMR1L	FAEh	TXREG1	F8Eh	PIE4	F6Eh	PMADDRL ^(2,4)
FEBhPLUSW0 ⁽¹⁾ FCBhPR2FABhSPBRG2F8BhLATCF6BhTXADDRLFEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRHFE9hFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRLFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1 ⁽¹⁾ FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1 ⁽¹⁾ FC3hADRESHFA3hPIE3F83hPORTD ⁽²⁾ F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F81hPORTBF61hUFRMHFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FEDh	POSTDEC0 ⁽¹⁾	FCDh	T1CON	FADh	TXSTA1	F8Dh	LATE ⁽²⁾	F6Dh	PMDIN1H ⁽²⁾
FEAhFSR0HFCAhT2CONFAAhRCREG2F8AhLATBF6AhTXADDRHFE9hFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRLFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1 ⁽¹⁾ FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1 ⁽¹⁾ FC4hADRESHFA4hPIR3F84hPORTE ⁽²⁾ F64hUSTATFE3hPLUSW1 ⁽¹⁾ FC3hADRESLFA3hPIE3F83hPORTD ⁽²⁾ F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FECh	PREINC0 ⁽¹⁾	FCCh	TMR2	FACh	RCSTA1	F8Ch	LATD ⁽²⁾	F6Ch	PMDIN1L ⁽²⁾
FE9hFSR0LFC9hSSP1BUFFA9hTXREG2F89hLATAF69hRXADDRLFE8hWREGFC8hSSP1ADD ⁽³⁾ FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1 ⁽¹⁾ FC7hSSP1STATFA7hEECON2F87hOSCCON2 ⁽⁵⁾ F67hDMABCLFE6hPOSTINC1 ⁽¹⁾ FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1 ⁽¹⁾ FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1 ⁽¹⁾ FC4hADRESHFA4hPIR3F84hPORTE ⁽²⁾ F64hUSTATFE3hPLUSW1 ⁽¹⁾ FC3hADRESLFA3hPIE3F83hPORTD ⁽²⁾ F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FEBh	PLUSW0 ⁽¹⁾	FCBh	PR2	FABh	SPBRG2	F8Bh	LATC	F6Bh	TXADDRL
FE8hWREGFC8hSSP1ADD(3)FA8hTXSTA2F88hDMACON1F68hRXADDRHFE7hINDF1(1)FC7hSSP1STATFA7hEECON2F87hOSCCON2(5)F67hDMABCLFE6hPOSTINC1(1)FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1(1)FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1(1)FC4hADRESHFA4hPIR3F84hPORTE(2)F64hUSTATFE3hPLUSW1(1)FC3hADRESLFA3hPIE3F83hPORTD(2)F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FEAh	FSR0H	FCAh	T2CON	FAAh	RCREG2	F8Ah	LATB	F6Ah	TXADDRH
FE7hINDF1(1)FC7hSSP1STATFA7hEECON2F87hOSCCON2(5)F67hDMABCLFE6hPOSTINC1(1)FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1(1)FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1(1)FC4hADRESHFA4hPIR3F84hPORTE(2)F64hUSTATFE3hPLUSW1(1)FC3hADRESLFA3hPIE3F83hPORTD(2)F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FE9h	FSR0L	FC9h	SSP1BUF	FA9h	TXREG2	F89h	LATA	F69h	RXADDRL
FE6hPOSTINC1(1)FC6hSSP1CON1FA6hEECON1F86hDMACON2F66hDMABCHFE5hPOSTDEC1(1)FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1(1)FC4hADRESHFA4hPIR3F84hPORTE(2)F64hUSTATFE3hPLUSW1(1)FC3hADRESLFA3hPIE3F83hPORTD(2)F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FE8h	WREG	FC8h	SSP1ADD ⁽³⁾	FA8h	TXSTA2	F88h	DMACON1	F68h	RXADDRH
FE5hPOSTDEC1 ⁽¹⁾ FC5hSSP1CON2FA5hIPR3F85hHLVDCONF65hUCONFE4hPREINC1 ⁽¹⁾ FC4hADRESHFA4hPIR3F84hPORTE ⁽²⁾ F64hUSTATFE3hPLUSW1 ⁽¹⁾ FC3hADRESLFA3hPIE3F83hPORTD ⁽²⁾ F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FE7h		FC7h	SSP1STAT	FA7h	EECON2	F87h	OSCCON2 ⁽⁵⁾	F67h	DMABCL
FE4hPREINC1(1)FC4hADRESHFA4hPIR3F84hPORTE(2)F64hUSTATFE3hPLUSW1(1)FC3hADRESLFA3hPIE3F83hPORTD(2)F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FE6h	POSTINC1 ⁽¹⁾	FC6h	SSP1CON1	FA6h	EECON1	F86h	DMACON2	F66h	DMABCH
FE3hPLUSW1(1)FC3hADRESLFA3hPIE3F83hPORTD(2)F63hUEIRFE2hFSR1HFC2hADCON0FA2hIPR2F82hPORTCF62hUIRFE1hFSR1LFC1hADCON1FA1hPIR2F81hPORTBF61hUFRMH	FE5h	POSTDEC1 ⁽¹⁾	FC5h	SSP1CON2	FA5h	IPR3	F85h	HLVDCON	F65h	UCON
FE2h FSR1H FC2h ADCON0 FA2h IPR2 F82h PORTC F62h UIR FE1h FSR1L FC1h ADCON1 FA1h PIR2 F81h PORTB F61h UFRMH	FE4h	PREINC1 ⁽¹⁾	FC4h	ADRESH	FA4h	PIR3	F84h	PORTE ⁽²⁾	F64h	USTAT
FE1h FSR1L FC1h ADCON1 FA1h PIR2 F81h PORTB F61h UFRMH	FE3h	PLUSW1 ⁽¹⁾	FC3h	ADRESL	FA3h	PIE3	F83h	PORTD ⁽²⁾	F63h	UEIR
	FE2h	FSR1H	FC2h	ADCON0	FA2h	IPR2	F82h	PORTC	F62h	UIR
FE0h BSR FC0h WDTCON FA0h PIE2 F80h PORTA F60h UFRML	FE1h	FSR1L	FC1h	ADCON1	FA1h	PIR2	F81h	PORTB	F61h	UFRMH
	FE0h	BSR	FC0h	WDTCON	FA0h	PIE2	F80h	PORTA	F60h	UFRML

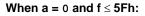
Note 1: This is not a physical register.

2: This register is not available on 28-pin devices.

3: SSPxADD and SSPxMSK share the same address.

4: PMADDRH and PMDOUTH share the same address and PMADDRL and PMDOUTL share the same address. PMADDRx is used in Master modes and PMDOUTx is used in Slave modes.

5: Reserved: Do not write to this location.

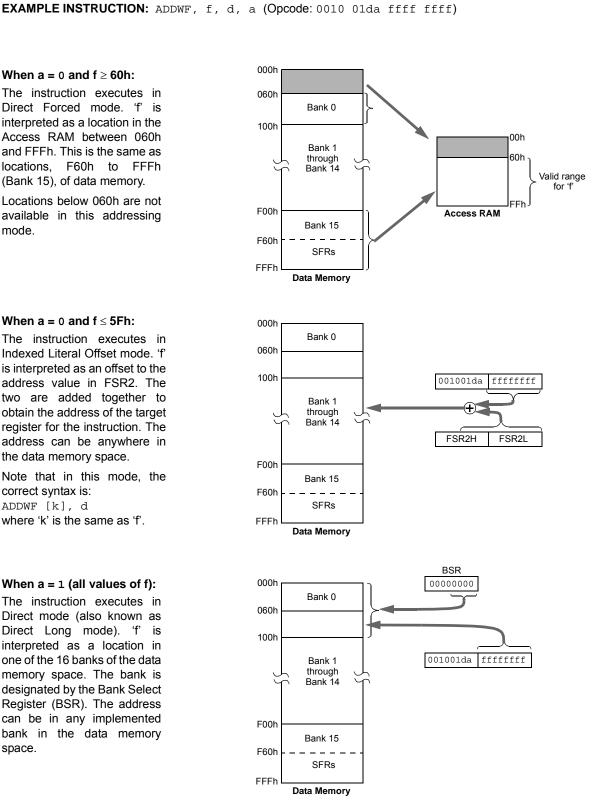

PIC18F47J53

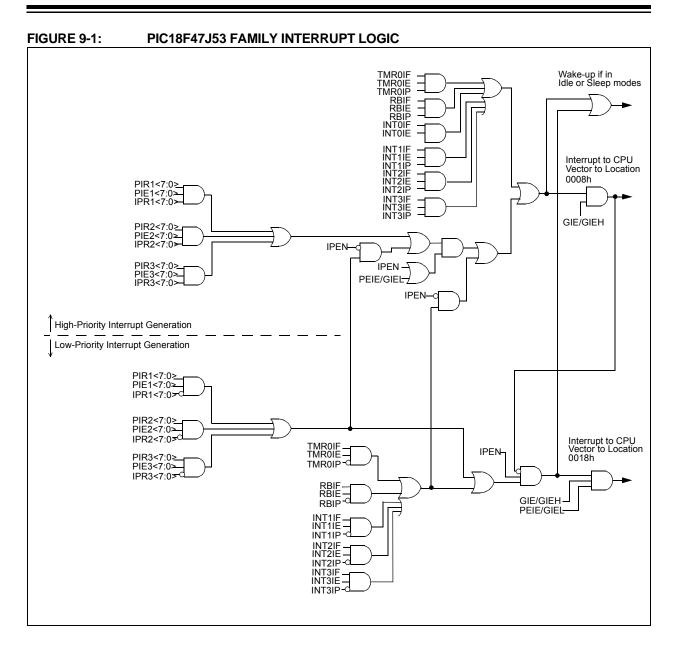
COMPARING ADDRESSING OPTIONS FOR BIT-ORIENTED AND BYTE-ORIENTED FIGURE 6-9: INSTRUCTIONS (EXTENDED INSTRUCTION SET ENABLED)

When a = 0 and $f \ge 60h$:


The instruction executes in Direct Forced mode. 'f' is interpreted as a location in the Access RAM between 060h and FFFh. This is the same as locations, F60h to FFFh (Bank 15), of data memory.

Locations below 060h are not available in this addressing mode.




The instruction executes in Indexed Literal Offset mode. 'f' is interpreted as an offset to the address value in FSR2. The two are added together to obtain the address of the target register for the instruction. The address can be anywhere in the data memory space.

Note that in this mode, the correct syntax is: ADDWF [k], d where 'k' is the same as 'f'.

The instruction executes in Direct mode (also known as Direct Long mode). 'f' is interpreted as a location in one of the 16 banks of the data memory space. The bank is designated by the Bank Select Register (BSR). The address can be in any implemented bank in the data memory space.

REGISTER 9-15: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2 (ACCESS FA2h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
OSCFIP	CM2IP	CM1IP	USBIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP
bit 7			·			•	bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 7		scillator Fail Inte	rrupt Priority b	it			
	1 = High pri 0 = Low pri						
bit 6	CM2IP: Cor	nparator 2 Interr	upt Priority bit				
	1 = High pr	iority					
	0 = Low pri	ority					
bit 5	C12IP: Com	parator 1 Interru	pt Priority bit				
	1 = High prices						
L:1 1	0 = Low prid	,					
bit 4	1 = High pri	B Interrupt Priori	ly bit				
	1 = High phi 0 = Low prie						
bit 3		is Collision Interi	upt Priority bit	(MSSP1 modul	e)		
	1 = High pri			(-)		
	0 = Low prie	•					
bit 2	HLVDIP: Hig	gh/Low-Voltage	Detect Interrup	ot Priority bit			
	1 = High pr						
	0 = Low pri	•					
bit 1		/IR3 Overflow In	terrupt Priority	bit			
	1 = High pri 0 = Low pri						
bit 0	·	CP2 Interrupt P	riority bit				
	1 = High prior	•	nonty bit				
	0 = Low prie	•					

11.1.2 DATA REGISTERS

The PMP module uses eight registers for transferring data into and out of the microcontroller. They are arranged as four pairs to allow the option of 16-bit data operations:

- PMDIN1H and PMDIN1L
- PMDIN2H and PMDIN2L
- PMADDRH/PMDOUT1H and PMADDRL/PMDOUT1L
- PMDOUT2H and PMDOUT2L

The PMDIN1 registers are used for incoming data in Slave modes, and both input and output data in Master modes. The PMDIN2 registers are used for buffering input data in select Slave modes.

The PMADDR/PMDOUT1 registers are actually a single register pair; the name and function are dictated by the module's operating mode. In Master modes, the registers function as the PMADDRH and PMADDRL registers, and contain the address of any incoming or outgoing data. In Slave modes, the registers function as PMDOUT1H and PMDOUT1L, and are used for outgoing data.

PMADDRH differs from PMADDRL in that it can also have limited PMP control functions. When the module is operating in select Master mode configurations, the upper two bits of the register can be used to determine the operation of chip select signals. If these are not used, PMADDR simply functions to hold the upper 8 bits of the address. Register 11-9 provides the function of the individual bits in PMADDRH.

The PMDOUT2H and PMDOUT2L registers are only used in Buffered Slave modes and serve as a buffer for outgoing data.

11.1.3 PAD CONFIGURATION CONTROL REGISTER

In addition to the module level configuration options, the PMP module can also be configured at the I/O pin for electrical operation. This option allows users to select either the normal Schmitt Trigger input buffer on digital I/O pins shared with the PMP, or use TTL level compatible buffers instead. Buffer configuration is controlled by the PMPTTL bit in the PADCFG1 register.

13.1 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), displayed in Register 13-2, is used to control the Timer1 gate.

REGISTER 13-2: T1GCON: TIMER1 GATE CONTROL REGISTER (ACCESS F9Ah)⁽¹⁾

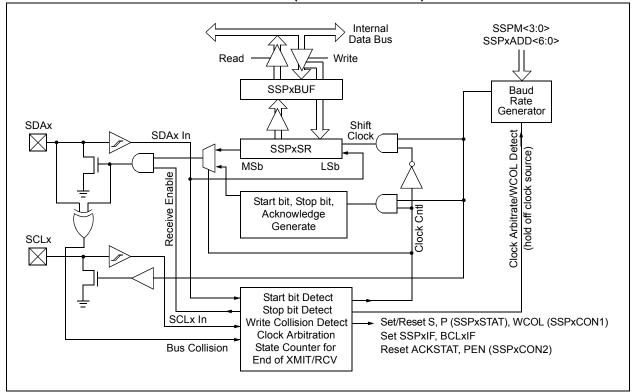
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-x	R/W-0	R/W-0
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/T1DONE	T1GVAL	T1GSS1	T1GSS0
bit 7				· · ·			bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented	d bit, read as	'0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	iown
bit 7	TMR1GE: Ti	mer1 Gate Ena	able bit				
	If TMR10N =						
	This bit is igr						
	If TMR10N =		II I	Time and make from ation			
				Timer1 gate function er1 gate function			
bit 6		ner1 Gate Pola		sin gute function			
Sit 0				ounts when gate is high	ah)		
				unts when gate is low			
bit 5	T1GTM: Tim	er1 Gate Toggl	e Mode bit				
	1 = Timer1 (Gate Toggle mo	ode is enable	d			
				d and toggle flip-flop	is cleared		
	-	flip-flop toggles	-				
bit 4		mer1 Gate Sin			—	<i>.</i> .	
		ate Single Pul Bate Single Pul		nabled and is controll	ing the Time	r1 gate	
bit 3				ulse Acquisition Statu	is hit		
DIL J			•	is ready, waiting for a			
				has completed or ha		tarted	
	This bit is au	tomatically clea	ared when T1	GSPM is cleared.			
bit 2	T1GVAL: Tin	ner1 Gate Curr	ent State bit				
		current state Enable (TMR1		gate that could be p	provided to T	MR1H:TMR1L;	unaffected by
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Sele	ct bits			
	00 = Timer1						
		o match PR2 c	output				
	•	rator 1 output rator 2 output					
	-	-					
Note 1: Pr	ogramming th	e T1GCON pri	or to T1CON	is recommended.			

19.0 ENHANCED CAPTURE/COMPARE/PWM (ECCP) MODULE

PIC18F47J53 family devices have three Enhanced Capture/Compare/PWM (ECCP) modules: ECCP1, ECCP2 and ECCP3. These modules contain a 16-bit register, which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. These ECCP modules are upwardly compatible with CCP.

Note: Throughout this section, generic references are used for register and bit names that are the same – except for an 'x' variable that indicates the item's association with the ECCP1, ECCP2 or ECCP3 module. For example, the control register is named CCPxCON and refers to CCP1CON, CCP2CON and CCP3CON. The ECCP modules are implemented as standard CCP modules with enhanced PWM capabilities. These include:

- · Provision for two or four output channels
- · Output Steering modes
- · Programmable polarity
- Programmable dead-band control
- Automatic shutdown and restart


The enhanced features are discussed in detail in Section 19.4 "PWM (Enhanced Mode)".

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPxBUF register to initiate transmission before the Start condition is complete. In this case, the SSPxBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPxBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPxIF, to be set (and MSSP interrupt, if enabled):

- · Start condition
- Stop condition
- · Data transfer byte transmitted/received
- · Acknowledge transmitted
- Repeated Start

FIGURE 20-18: MSSPx BLOCK DIAGRAM (I²C MASTER MODE)

The ANCON0 and ANCON1 registers are used to configure the operation of the I/O pin associated with each analog channel. Setting any one of the PCFG bits configures the corresponding pin to operate as a digital only I/O. Clearing a bit configures the pin to operate as an analog input for either the A/D Converter or the comparator module. All digital peripherals are disabled and digital inputs read as '0'. As a rule, I/O pins that are multiplexed with analog inputs default to analog operation on device Resets.

In order to correctly perform A/D conversions on the VBG band gap reference (ADCON0<5:2> = 1111), the reference circuit must be powered on first. The VBGEN bit in the ANCON1 register allows the firmware to manually

request that the band gap reference circuit should be enabled. For best accuracy, firmware should allow a settling time of at least 10 ms prior to performing the first acquisition on this channel after enabling the band gap reference.

The reference circuit may already have been turned on if some other hardware module (such as the on-chip voltage regulator, comparators or HLVD) has already requested it. In this case, the initial turn-on settling time may have already elapsed and firmware does not need to wait as long before measuring VBG. Once the acquisition is complete, firmware may clear the VBGEN bit, which will save a small amount of power if no other modules are still requesting the VBG reference.

REGISTER 22-4:	ANCON0: A/D PORT CONFIGURATION REGISTER 0 ((BANKED F48h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PCFG7 ⁽¹⁾	PCFG6 ⁽¹⁾	PCFG5 ⁽¹⁾	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 7-0
 PCFG<7:0>: Analog Port Configuration bits (AN7-AN0)

 1 = Pin configured as a digital port

0 = Pin configured as an analog channel – digital input disabled and reads '0'

Note 1: These bits are only available only on 44-pin devices.

REGISTER 22-5: ANCON1: A/D PORT CONFIGURATION REGISTER 1 (BANKED F49h)

R/W-0	R	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
VBGEN	r	—	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 7							bit 0

Legend:	r = Reserved bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

VBGEN: 1.2V Band Gap Reference Enable bit
 1 = 1.2V band gap reference is powered on 0 = 1.2V band gap reference is turned off to save power (if no other modules are requesting it)
Reserved: Always maintain as '0' for lowest power consumption
Unimplemented: Read as '0'
PCFG<12:8>: Analog Port Configuration bits (AN12-AN8)
 1 = Pin configured as a digital port 0 = Pin configured as an analog channel – digital input disabled and reads '0'

The USB Specification limits the power taken from the bus. Each device is ensured 100 mA at approximately 5V (one unit load). Additional power may be requested, up to a maximum of 500 mA.

Note that power above one unit load is a request and the host or hub is not obligated to provide the extra current. Thus, a device capable of consuming more than one unit load must be able to maintain a low-power configuration of a one unit load or less, if necessary.

The USB Specification also defines a Suspend mode. In this situation, current must be limited to $500 \ \mu$ A, averaged over one second. A device must enter a suspend state after 3 ms of inactivity (i.e., no SOF tokens for 3 ms). A device entering Suspend mode must drop current consumption within 10 ms after suspend. Likewise, when signaling a wake-up, the device must signal a wake-up within 10 ms of drawing current above the suspend limit.

23.9.5 ENUMERATION

When the device is initially attached to the bus, the host enters an enumeration process in an attempt to identify the device. Essentially, the host interrogates the device, gathering information, such as power consumption, data rates and sizes, protocol and other descriptive information; descriptors contain this information. A typical enumeration process would be as follows:

- USB Reset Reset the device. Thus, the device is not configured and does not have an address (address 0).
- 2. Get Device Descriptor The host requests a small portion of the device descriptor.
- 3. USB Reset Reset the device again.
- 4. Set Address The host assigns an address to the device.
- 5. Get Device Descriptor The host retrieves the device descriptor, gathering info, such as manufacturer, type of device, maximum control packet size.
- 6. Get configuration descriptors.
- 7. Get any other descriptors.
- 8. Set a configuration.

The exact enumeration process depends on the host.

23.9.6 DESCRIPTORS

There are eight different standard descriptor types, of which, five are most important for this device.

23.9.6.1 Device Descriptor

The device descriptor provides general information, such as manufacturer, product number, serial number, the class of the device and the number of configurations. There is only one device descriptor.

23.9.6.2 Configuration Descriptor

The configuration descriptor provides information on the power requirements of the device and how many different interfaces are supported when in this configuration. There may be more than one configuration for a device (i.e., low-power and high-power configurations).

23.9.6.3 Interface Descriptor

The interface descriptor details the number of endpoints used in this interface, as well as the class of the interface. There may be more than one interface for a configuration.

23.9.6.4 Endpoint Descriptor

The endpoint descriptor identifies the transfer type (**Section 23.9.3 "Transfers"**) and direction, and some other specifics for the endpoint. There may be many endpoints in a device and endpoints may be shared in different configurations.

23.9.6.5 String Descriptor

Many of the previous descriptors reference one or more string descriptors. String descriptors provide human readable information about the layer (Section 23.9.1 "Layered Framework") they describe. Often these strings show up in the host to help the user identify the device. String descriptors are generally optional to save memory and are encoded in a unicode format.

23.9.7 BUS SPEED

Each USB device must indicate its bus presence and speed to the host. This is accomplished through a $1.5 \text{ k}\Omega$ resistor, which is connected to the bus at the time of the attachment event.

Depending on the speed of the device, the resistor either pulls up the D+ or D- line to 3.3V. For a low-speed device, the pull-up resistor is connected to the D- line. For a full-speed device, the pull-up resistor is connected to the D+ line.

23.9.8 CLASS SPECIFICATIONS AND DRIVERS

USB specifications include class specifications, which operating system vendors optionally support. Examples of classes include Audio, Mass Storage, Communications and Human Interface (HID). In most cases, a driver is required at the host side to 'talk' to the USB device. In custom applications, a driver may need to be developed. Fortunately, drivers are available for most common host systems for the most common classes of devices. Thus, these drivers can be reused.

25.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 25-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution. The equations used to calculate the output of the comparator voltage reference are as follows:

EQUATION 25-1: CALCULATING OUTPUT OF THE COMPARATOR VOLTAGE REFERENCE

<u>When CVRR = 1 and CVRSS = 0:</u> CVREF = ((CVR<3:0>)/24) x (CVRSRC) <u>When CVRR = 0 and CVRSS = 0:</u> CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) x (CVRSRC) <u>When CVRR = 1 and CVRSS = 1:</u> CVREF = ((CVR<3:0>)/24) x (CVRSRC) + VREF-<u>When CVRR = 0 and CVRSS = 1:</u> CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) x (CVRSRC) + VREF-) The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF- that are multiplexed with RA2 and RA3. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 31-2 in **Section 31.0** "**Electrical Characteristics**").

REGISTER 25-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER (F53h)

							. ,		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CVREN	CVROE ⁽¹⁾	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 7 CVREN: Comparator Voltage Reference Enable bit 1 = CVREF circuit is powered on 0 = CVREF circuit is powered down bit 6 CVROE: Comparator VREF Output Enable bit ⁽¹⁾ 1 = CVREF voltage level is also output on the RA2/AN2//C2INB/C1IND/C3INB/VREF-/CVREF pin 0 = CVREF voltage is disconnected from the RA2/AN2//C2INB/C1IND/C3INB/VREF-/CVREF pin bit 5 CVRR: Comparator VREF Range Selection bit 1 = 0 to 0.667 CVRsRc with CVRsRc/24 step size (low range) 0 = 0.25 CVRsRc to 0.75 CVRsRc with CVRsRc/32 step size (high range)									
bit 4	CVRSS: Comparator VREF Source Selection bit 1 = Comparator reference source, CVRSRC = (VREF+) – (VREF-) 0 = Comparator reference source, CVRSRC = AVDD – AVSS								
bit 3-0	CVR<3:0>: Comparator VREF Value Selection bits $(0 \le (CVR<3:0>) \le 15)$ <u>When CVRR = 1:</u> CVREF = ((CVR<3:0>)/24) • (CVRSRC) <u>When CVRR = 0:</u> CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) • (CVRSRC)								

Note 1: CVROE overrides the TRIS bit setting.

PIC18F47J53

COMF	Complement f			CPFS	EQ	Compare f with W, Skip if f = W					
Syntax:	COMF f	COMF f {,d {,a}}		Synta	X:	CPFSEQ	CPFSEQ f {,a}				
Operands:	0 ≤ f ≤ 255	$0 \leq f \leq 255$		Opera	ands:	$0 \leq f \leq 255$					
	$d \in [0,1]$			_	Oneretter		a ∈ [0,1]				
	a ∈ [0,1]			Opera	ation:	(f) – (W), skip if (f) =	(\\)				
Operation:	$\overline{f} \rightarrow dest$					• • • •	comparison)				
Status Affected:	Affected: N, Z		Status	Affected:	None	, p ,					
Encoding:	0001	11da ff:	ff ffff	Enco	ding:	0110 001a ffff fff					
Description:	complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is		Descr	iption:	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction.						
	lf 'a' is '0', t lf 'a' is '1', t	stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See				 If 'f' = W, then the fetched instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). 					
	set is enabl in Indexed										
	Section 29 Bit-Oriente	2.3 "Byte-Or ed Instruction set Mode" for	iented and s in Indexed			set is enab in Indexed	and the extend led, this instru Literal Offset i never f \leq 95 (5	ction operates Addressing			
Words:	1						.2.3 "Byte-Or	,			
Cycles:	1						ed Instruction				
Q Cycle Activity:							set Mode" for	details.			
Q1	Q2	Q3	Q4	Word		1					
Decode	Read register 'f'	Process Data	Write to destination	Cycle	S:		cles if skip an 2-word instru				
Evennley	CONT	550 0 0		Q Cy	cle Activity:	-					
Example:	COMF	REG, 0, 0		-	Q1	Q2	Q3	Q4			
Before Instruc REG	= 13h				Decode	Read	Process	No			
After Instruction				lf ski	n.	register 'f'	Data	operation			
REG W	= 13h = ECh			ii olu	Q1	Q2	Q3	Q4			
vv	- LON			ſ	No	No	No	No			
					operation	operation	operation	operation			
				lf ski	p and followe Q1	d by 2-word in Q2	Struction: Q3	Q4			
				Г	No	No	No	No			
					operation	operation	operation	operation			
					No	No operation	No operation	No operation			
				<u>Exam</u>	operation ple:	HERE	CPFSEQ REG				
						NEQUAL EQUAL	:				
					Before Instruction PC Addr W REG	etion ess = HE = ? = ?	RE				

W; Address (EQUAL) W; Address (NEQUAL)

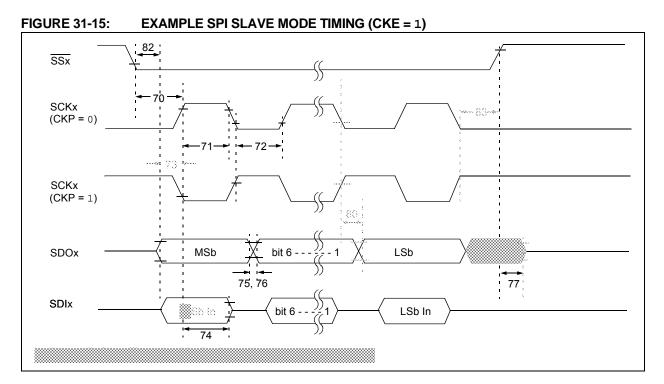
After Instruction If REG PC If REG PC

= = ≠

SUBLW Subtract W from Literal									
Syntax: SUBLW k									
Operands:	5								
Operation:	k	x – (W)	\rightarrow	W					
Status Affected:	١	N, OV, C	C, I	DC, Z					
Encoding:		0000		1000	kkł	ĸk	kkkk		
Description:				acted from					
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1		Q2		Q3			Q4		
Decode		Read eral 'k'		Proces Data		٧	Vrite to W		
Example 1:	S	SUBLW	C)2h					
Before Instruc	tion								
W C	=	01h ?							
After Instructio	- n	ś							
W	=	01h			: 4 :.				
C Z	=	1 0	- ,						
Ν	=	0							
Example 2:	S	SUBLW	С)2h					
Before Instruc W C	tion = =	02h ?							
After Instructio									
W C	=	00h 1	;	result is z	zero				
Z	=	1 0							
Example 3:		SUBLW	C)2h					
Before Instruc	tion								
W	=	03h ?							
C After Instructio	_	ſ							
W	=	FFh							
C Z	=	0 0	;	result is r	negati	ve			
Ν	=	1							

SUBWF	Subtract W	from f							
Syntax:	SUBWF f{	,d {,a}}							
Operands:	$0 \leq f \leq 255$								
	$d \in [0,1]$								
Onenetien	$a \in [0,1]$								
Operation:	$(f) - (W) \rightarrow dest$								
Status Affected:	N, OV, C, DC, Z								
Encoding:	0101	11da fff							
Description:	Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).								
	,	e Access Bank e BSR is used lefault).							
	set is enable in Indexed Li	d the extended d, this instructi iteral Offset Ad ever f \leq 95 (5Ft	on operates dressing						
	Bit-Oriented	2.3 "Byte-Orie I Instructions et Mode" for de	in Indexed						
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	Read	Process	Write to						
	register 'f'	Data	destination						
Example 1:	SUBWF	REG, 1, 0							
Before Instruc REG									
W	= 3 = 2 = ?								
C After Instructio	•								
REG	= 1								
W C	= 2 = 1 :r	esult is positiv	e						
Z	= 0 = 0								
Example 2:	- U SUBWF	REG, 0, 0							
Before Instruc									
REG	= 2 = 2								
W C	= 2 = ?								
After Instruction									
REG W	= 2 = 0								
С	= 1 ; r	esult is zero							
Z N	= 1 = 0								
Example 3:	SUBWF	REG, 1, 0							
Before Instruc	tion								
REG W C	= 1 = 2 = ?								
After Instruction	•								
REG W	= FFh ;(= 2	2's complemer	nt)						
С	= 0 ; r	esult is negativ	/e						
Z N	= 0 = 1								

PIC18F47J53


XORWF	Exclusive OR W with f								
Syntax:	XORWF	f {,d {,a}}							
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$	d ∈ [0,1]							
Operation:	(W) .XOR. ((f) \rightarrow dest							
Status Affected:	N, Z								
Encoding:	0001	10da ff:	ff ffff						
Description:	register 'f'. I in W. If 'd' is	Exclusive OR the contents of W with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register 'f' (default).							
	lf 'a' is '1', tl	If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default).							
	If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.								
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	Read register 'f'	Process Data	Write to destination						
Example:	XORWF F	REG, 1, 0							
Before Instruct									
REG W	= AFh = B5h								
After Instructio REG W	n = 1Ah = B5h								

31.2 DC Characteristics: Power-Down and Supply Current PIC18F47J53 Family (Industrial) (Continued)

PIC18LF	47J53 Family			rating (s (unless otherwise $^{\circ}C \le TA \le +85^{\circ}C$ for				
PIC18F47J53 FamilyStandard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial										
Param. No.	Device	Тур.	Max.	Units	Conditions					
	Supply Current (IDD) ⁽²⁾									
	PIC18LFXXJ53	0.61	1.25	mA	-40°C					
		0.62	1.25	mA	+25°C	VDD = 2.0V, VDDCORE = 2.0V				
		0.64	1.35	mA	+85°C	VDDCORE - 2.0V				
	PIC18LFXXJ53	0.99	1.70	mA	-40°C	VDD = 2.5V, VDDCORE = 2.5V				
		0.96	1.70	mA	+25°C					
		0.94	1.82	mA	+85°C		Fosc = 4 MHz, PRI_RUN mode,			
	PIC18FXXJ53	0.78	1.60	mA	-40°C		EC Oscillator			
		0.78	1.60	mA	+25°C	VDD = $2.15V$, VDDCORE = $10 \mu F$				
		0.78	1.70	mA	+85°C	· · · · · · · · · · · · · · · · · · ·				
	PIC18FXXJ53	1.10	1.95	mA	-40°C					
		1.02	1.90	mA	+25°C	VDD = $3.3V$, VDDCORE = $10 \mu F$				
		1.00	2.00	mA	+85°C	1000000 10 p.				
	PIC18LFXXJ53	9.8	14.8	mA	-40°C	$\lambda = 2 E \lambda$				
		9.5	14.8	mA	+25°C	VDD = 2.5V, VDDCORE = 2.5V				
		9.4	15.1	mA	+85°C		Fosc = 48 MHz, PRI_RUN mode,			
	PIC18FXXJ53	10.9	19.5	mA	-40°C		EC Oscillator			
		10.2	19.5	mA	+25°C	VDD = $3.3V$, VDDCORE = $10 \mu F$				
		9.9	19.5	mA	+85°C	10000000000000000000000000000000000000				

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

- 2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (USB module, WDT, etc.). The test conditions for all IDD measurements in active operation mode are:
 - OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/VSS;
 - MCLR = VDD; WDT disabled unless otherwise specified.
- **3:** Low-power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: This is the module differential current when the USB module is enabled and clocked at 48 MHz, but with no USB cable attached. When the USB cable is attached or data is being transmitted, the current consumption may be much higher (see Section 23.6.4 "USB Transceiver Current Consumption"). During USB Suspend mode (USBEN = 1, SUSPND = 1, bus in Idle state), the USB module current will be dominated by the D+ or D- pull-up resistor. The integrated pull-up resistor use "resistor switching" according to the resistor_ecn supplement to the USB 2.0 Specifications, and therefore, may be as low as 900Ω during Idle conditions.

TABLE 31-23: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	3 Тсү		ns		
70A	TssL2WB	$\overline{SSx} \downarrow$ to Write to SSPxBUF	3 TCY		ns		
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single byte	40	_	ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCK	25	_	ns		
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clo	1.5 Tcy + 40	_	ns	(Note 2)	
74	TscH2dlL, TscL2dlL	Hold Time of SDIx Data Input to SCKx	35		ns	VDD = 3.3V, VDDCORE = 2.5V	
			100		ns	VDD = 2.15V	
75	TDOR	SDOx Data Output Rise Time		—	25	ns	
76	TDOF	SDOx Data Output Fall Time		—	25	ns	
77	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	e	10	70	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Ed	ge	—	50	ns	VDD = 3.3V, VDDCORE = 2.5V
				—	100	ns	VDD = 2.15V
81	TDOV2scH, TDOV2scL	SDOx Data Output Setup to SCKx Edg	Тсү		ns		
82	TssL2DoV	SDOx Data Output Valid after $\overline{SSx} \downarrow Ec$	lge	_	50	ns	
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge		1.5 Tcy + 40		ns	

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.