

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf46j53t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.3 EXTERNAL CLOCK INPUT

The EC and ECPLL Oscillator modes require an external clock source to be connected to the OSC1 pin. There is no oscillator start-up time required after a Power-on Reset (POR) or after an exit from Sleep mode.

In the EC Oscillator mode, the oscillator frequency divided by 4, is available on the OSC2 pin. In the ECPLL Oscillator mode, the PLL output, divided by 4, is available on the OSC2 pin. This signal may be used for test purposes or to synchronize other logic. Figure 3-3 displays the pin connections for the EC Oscillator mode.

FIGURE 3-3: EXTERNAL CLOCK INPUT OPERATION (EC AND ECPLL CONFIGURATION)

3.2.4 PLL FREQUENCY MULTIPLIER

PIC18F47J53 family devices include a PLL circuit. This is provided specifically for USB applications with lower speed oscillators and can also be used as a microcontroller clock source.

The PLL can be enabled in HSPLL, ECPLL, INTOSCPLL and INTOSCPLLO Oscillator modes by setting the PLLEN bit (OSCTUNE<6>). It is designed to produce a fixed 96 MHz reference clock from a fixed 4 MHz input. The output can then be divided and used for both the USB and the microcontroller core clock. Because the PLL has a fixed frequency input and output, there are eight prescaling options to match the oscillator input frequency to the PLL. This prescaler allows the PLL to be used with crystals, resonators and external clocks, which are integer multiple frequencies of 4 MHz. For example, a 12 MHz crystal could be used in a prescaler Divide-by-Three mode to drive the PLL.

There is also a CPU divider, which can be used to derive the microcontroller clock from the PLL. This allows the USB peripheral and microcontroller to use the same oscillator input and still operate at different clock speeds. The CPU divider can reduce the incoming frequency by a factor of 1, 2, 3 or 6.

3.2.5 INTERNAL OSCILLATOR BLOCK

The PIC18F47J53 family devices include an internal oscillator block which generates two different clock signals; either can be used as the microcontroller's clock source. The internal oscillator may eliminate the need for external oscillator circuits on the OSC1 and/or OSC2 pins.

The main output (INTOSC) is an 8 MHz clock source which can be used to directly drive the device clock. It also drives the INTOSC postscaler which can provide a range of clock frequencies from 31 kHz to 8 MHz. Additionally, the INTOSC may be used in conjunction with the PLL to generate clock frequencies up to 48 MHz.

The other clock source is the internal RC oscillator (INTRC) which provides a nominal 31 kHz output. INTRC is enabled if it is selected as the device clock source. It is also enabled automatically when any of the following are enabled:

- · Power-up Timer
- Fail-Safe Clock Monitor
- · Watchdog Timer
- · Two-Speed Start-up

These features are discussed in larger detail in **Section 28.0 "Special Features of the CPU"**.

The clock source frequency (INTOSC direct, INTRC direct or INTOSC postscaler) is selected by configuring the IRCF bits of the OSCCON register (page 39).

REGISTER 3-1:	OSCTUNE: OSCILLATOR TUNING REGISTER (ACCESS F9Bh)
---------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	PLLEN ⁽¹⁾	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
·							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	INTSRC: Inte	rnal Oscillator	Low-Frequen	cy Source Sele	ect bit		
	1 = 31.25 kHz	z device clock	derived from a	B MHz INTOSC	source (divide-	by-256 enable	d)
	0 = 31 kHz de	evice clock der	ived directly f	rom INTRC inte	ernal oscillator		
bit 6	PLLEN: Freq	uency Multiplie	r Enable bit ⁽¹)			
	1 = 96 MHz P	LL is enabled					
	0 = 96 MHz P	'LL is disabled					
bit 5-0	TUN<5:0>: Fi	requency Tunir	ng bits				
	011111 = Ma	iximum frequei	су				
	011110						
	•						
	•						
	000001						
	000000 = Ce	nter frequency	; oscillator mo	odule is running	at the calibrate	d frequency	
	111111	. ,	,			. ,	
	•						
	•						
	•						
	100000 = Mir	nimum freguen	CV				

Note 1: When the CFGPLLEN Configuration bit is used to enable the PLL, clearing OSCTUNE<6> will not disable the PLL.

3.3 Oscillator Settings for USB

When the PIC18F47J53 family devices are used for USB connectivity, a 6 MHz or 48 MHz clock must be provided to the USB module for operation in either Low-Speed or Full-Speed modes, respectively. This may require some forethought in selecting an oscillator frequency and programming the device.

The full range of possible oscillator configurations compatible with USB operation is shown in Table 3-5.

3.3.1 LOW-SPEED OPERATION

The USB clock for Low-Speed mode is derived from the primary oscillator or from the 96 MHz PLL. In order to operate the USB module in Low-Speed mode, a 6 MHz clock must be provided to the USB module.

See Table 3-4 and Table 3-5 for possible combinations which can be used for low-speed USB operation.

System Clock	CPDIV<1:0>	Microcontroller Clock	LS48MHZ	USB Clock
48	11	48 MHz	1	48/8 = 6 MHz
48	10	48/2 = 24 MHz	1	48/8 = 6 MHz
48	01	48/3 = 16 MHz	1	48/8 = 6 MHz
48	00	48/6 = 8 MHz	1	48/8 = 6 MHz
24	11	24 MHz	0	24/4 = 6 MHz
24	10	24/2 = 12 MHz	0	24/4 = 6 MHz
24	01	24/3 = 8 MHz	0	24/4 = 6 MHz
24	00	24/6 = 4 MHz	0	24/4 = 6 MHz

TABLE 3-4:	CLOCK FOR LOW-SPEED USB
TABLE 3-4:	CLOCK FOR LOW-SPEED USE

5.7 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register (CM, RI,

TO, PD, POR and BOR) are set or cleared differently in different Reset situations, as indicated in Table 5-1. These bits are used in software to determine the nature of the Reset.

Table 5-2 describes the Reset states for all of the Special Function Registers. These are categorized by POR and BOR, MCLR and WDT Resets and WDT wake-ups.

TABLE 5-1:	STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR
	RCON REGISTER

Condition	Program	RCON Register						STKPTR Register	
Condition	Counter ⁽¹⁾	CM	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	1	0	0	0	0
RESET instruction	0000h	u	0	u	u	u	u	u	u
Brown-out Reset	0000h	1	1	1	1	u	0	u	u
Configuration Mismatch Reset	0000h	0	u	u	u	u	u	u	u
MCLR Reset during power-managed Run modes	0000h	u	u	1	u	u	u	u	u
MCLR Reset during power-managed Idle modes and Sleep mode	0000h	u	u	1	0	u	u	u	u
MCLR Reset during full-power execution	0000h	u	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u	u	u	u	u	u	u	1
WDT time-out during full-power or power-managed Run modes	0000h	u	u	0	u	u	u	u	u
WDT time-out during power-managed Idle or Sleep modes	PC + 2	u	u	0	0	u	u	u	u
Interrupt exit from power-managed modes	PC + 2	u	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG0	INTEDG1	INTEDG2	INTEDG3	TMR0IP	INT3IP	RBIP
bit 7							bit
- 1.							
Legena:	- L:4	\^/ - \^/ritable	L:4	U – Unimpler			
-n = Value at /		⁽¹⁾ = Rit is set	DIL F	0 = 01111pic '0' = Bit is cle	nenteu pir, roa Pared	v = Rit is unk	າດໜາ
						Λ - Βι ις τ	
bit 7	RBPU: PORT	TB Pull-up Ena!	ble bit				
	1 = All PORT	ſB pull-ups are	disabled	· · ·			
	0 = PORTB p	pull-ups are ena	abled by individ	dual port latch v	/alues		
bit 6	INTEDG0: Ex	ternal Interrupt	t 0 Edge Select	t bit			
	1 = Interrupt	on rising edge	`				
hit 5		vtornal Interrup	+ 1 Edge Selec	∿t hit			
DILU	1 = Interrupt	on rising edge	, I Lugo coloc.				
	0 = Interrupt	on falling edge	÷				
bit 4	INTEDG2: Ex	xternal Interrup	t 2 Edge Selec	t bit			
	1 = Interrupt	on rising edge					
	0 = Interrupt	on falling edge	;				
bit 3	INTEDG3: Ex	ternal Interrupt	t 3 Edge Select	t bit			
	1 = Interrupt	on rising edge	-				
5.it 0			torrupt Priority	L.:+			
Dit∠		KU UVEI IIUW III. Srity	errupt Enonity	DI			
	0 = Low prior	∕rit∨					
bit 1	INT3IP: INT3	External Interr	upt Priority bit				
	1 = High prio	ority					
	0 = Low prior	rity					
bit 0	RBIP: RB Por	rt Change Inter	rupt Priority bit	t			
	1 = High prio	rity					
	0 = LOW PHO	rity					

are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-2: INTCON2: INTERRUPT CONTROL REGISTER 2 (ACCESS FF1h)

REGISTER	9-6: PIR3:	PERIPHERA	L INTERRUP	PT REQUEST	(FLAG) REG	ISTER 3 (AC	CESS FA4h)
R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF
bit 7		•	•		•		bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7	SSP2IF: Mas 1 = The trans 0 = Waiting to	ter Synchronou smission/recep o transmit/rece	is Serial Port 2 tion is complet ive	2 Interrupt Flag e (must be clea	bit red in software	e)	
bit 6	BCL2IF: Bus 1 = A bus col 0 = No bus c	Collision Interr lision occurred ollision occurre	upt Flag bit (M (must be clea d	SSP2 module) red in software))		
bit 5	RC2IF: EUSA 1 = The EUS 0 = The EUS	ART2 Receive I ART2 receive ART2 receive	nterrupt Flag b buffer, RCREG buffer is empty	bit 62, is full (cleare ,	ed when RCRE	G2 is read)	
bit 4	TX2IF: EUSA 1 = The EUS 0 = The EUS	RT2 Transmit ART2 transmit ART2 transmit	nterrupt Flag b buffer, TXREC buffer is full	bit G2, is empty (cle	eared when TX	REG2 is writter	ר)
bit 3	TMR4IF: TMF 1 = A TMR4	R4 to PR4 Mate to PR4 match o	ch Interrupt Fla	ig bit t be cleared in s	oftware)		
bit 2	CTMUIF: Cha	arge Time Meas	surement Unit urred (must be	Interrupt Flag b cleared in soft	it vare)		
bit 1	0 = A CTMU TMR3GIF: Tir 1 = A Timer3 0 = No Timer	event nas not ner3 Gate Eve gate event cor 3 gate event co	nt Interrupt Fla npleted (must propleted	ag bit be cleared in se	oftware)		
bit 0	RTCCIF: RTC 1 = An RTCC 0 = No RTCC	CC Interrupt Fla interrupt occur interrupt occur	ng bit rred (must be c rred	cleared in softw	are)		

11.1 Module Registers

The PMP module has a total of 14 Special Function Registers (SFRs) for its operation, plus one additional register to set configuration options. Of these, eight registers are used for control and six are used for PMP data transfer.

11.1.1 CONTROL REGISTERS

The eight PMP Control registers are:

- PMCONH and PMCONL
- PMMODEH and PMMODEL
- PMSTATL and PMSTATH
- PMEH and PMEL

The PMCON registers (Register 11-1 and Register 11-2) control basic module operations, including turning the module on or off. They also configure address multiplexing and control strobe configuration.

The PMMODE registers (Register 11-3 and Register 11-4) configure the various Master and Slave modes, the data width and interrupt generation.

The PMEH and PMEL registers (Register 11-5 and Register 11-6) configure the module's operation at the hardware (I/O pin) level.

The PMSTAT registers (Register 11-5 and Register 11-6) provide status flags for the module's input and output buffers, depending on the operating mode.

REGISTER 11-1: PMCONH: PARALLEL PORT CONTROL REGISTER HIGH BYTE (BANKED F5Fh)⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPEN	—	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN
bit 7 bit 0							

Legend:				
R = Readable bit	W = Writable bit	= Writable bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 7 PM	PEN: Parallel Master Port Enable	bit		
1 =	1 = PMP enabled			
0 =	PMP disabled, no off-chip access	performed		
bit 6 Un	mplemented: Read as '0'			

- bit 5 **PSIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode
- bit 4-3 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = Reserved
 - 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins (only eight bits of address are available in this mode)
 - 00 = Address and data appear on separate pins (only eight bits of address are available in this mode)
- bit 2 **PTBEEN:** Byte Enable Port Enable bit (16-Bit Master mode)
 - 1 = PMBE port enabled
 - 0 = PMBE port disabled
- bit 1 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port enabled
 - 0 = PMWR/PMENB port disabled
- bit 0 PTRDEN: Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port enabled
 - 0 = PMRD/PMWR port disabled

Note 1: This register is only available on 44-pin devices.

TABLE 13-5:	REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COU	JNTER
-------------	--	-------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP
TMR1L	Timer1 Regi	ster Low Byte						
TMR1H	Timer1 Regi	ster High Byte	9					
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	RD16	TMR10N
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ T1DONE	T1GVAL	T1GSS1	T1GSS0
OSCCON2	—	SOSCRUN	—	SOSCDRV	SOSCGO	PRISD	—	—

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: These bits are only available in 44-pin devices.

14.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP modules

The module is controlled through the T2CON register (Register 14-1) which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 14-1.

14.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (Fosc/4). A 4-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options. These are selected by the prescaler control bits, T2CKPS<1:0> (T2CON<1:0>). The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 14.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset (Power-on Reset (POR), MCLR Reset, Watchdog Timer Reset (WDTR) or Brown-out Reset (BOR))

TMR2 is not cleared when T2CON is written.

REGISTER 14-1: T2CON: TIMER2 CONTROL REGISTER (ACCESS FCAh)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

= Writable bit	U = Unimplemented bit, read	as '0'
= Bit is set	'0' = Bit is cleared	x = Bit is unknown
-	= Writable bit = Bit is set	Writable bitU = Unimplemented bit, read= Bit is set'0' = Bit is cleared

Dit 7	Unimplemented: Read as 10
bit 6-3	T2OUTPS<3:0>: Timer2 Output Postscale Select bits
	0000 = 1:1 Postscale
	0001 = 1:2 Postscale
	•
	•
	•
	1111 = 1:16 Postscale
bit 2	TMR2ON: Timer2 On bit
	1 = Timer2 is on
	0 = Timer2 is off
bit 1-0	T2CKPS<1:0>: Timer2 Clock Prescale Select bits
	00 = Prescaler is 1
	01 = Prescaler is 4
	10 = Prescaler is 16

. .. -

20.5.7.2 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, deasserts the SCLx pin (SCLx allowed to float high). When the SCLx pin is allowed to float high, the BRG is suspended from counting until the SCLx pin is actually

sampled high. When the SCLx pin is sampled high, the BRG is reloaded with the contents of SSPxADD<6:0> and begins counting. This ensures that the SCLx high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 20-20).

FIGURE 20-20: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

20.5.8 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition, the user sets the Start Enable bit, SEN (SSPxCON2<0>). If the SDAx and SCLx pins are sampled high, the BRG is reloaded with the contents of SSPxADD<6:0> and starts its count. If SCLx and SDAx are both sampled high when the Baud Rate Generator times out (TBRG), the SDAx pin is driven low. The action of the SDAx being driven low while SCLx is high is the Start condition and causes the Start bit (SSPxSTAT<3>) to be set. Following this, the BRG is reloaded with the contents of SSPxADD<6:0> and resumes its count. When the BRG times out (TBRG), the SEN bit (SSPxCON2<0>) will be automatically cleared by hardware. The BRG is suspended, leaving the SDAx line held low and the Start condition is complete.

Note: If, at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low, or if during the Start condition, the SCLx line is sampled low before the SDAx line is driven low, a bus collision occurs. The Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

20.5.8.1 WCOL Status Flag

If the user writes the SSPxBUF when a Start sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

Note: Because queueing of events is not allowed, writing to the lower five bits of SSPxCON2 is disabled until the Start condition is complete.

FIGURE 20-21: FIRST START BIT TIMING

FIGURE 21-7: ASYNCHRONOUS RECEPTION

TABLE 21-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PMPIF ⁽¹⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
PIE1	PMPIE ⁽¹⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
IPR1	PMPIP ⁽¹⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP
RCSTAx	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
RCREGx	EUSARTx R	Receive Regist	er					
TXSTAx	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D
BAUDCONx	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16		WUE	ABDEN
SPBRGHx	EUSARTx Baud Rate Generator High Byte							
SPBRGx	EUSARTx B	Baud Rate Ger	erator Low I	Byte				

Legend: — = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Note 1: These bits are only available on 44-pin devices.

21.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the BRG is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RXx/DTx line while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCONx<1>). Once set, the typical receive sequence on RXx/DTx is disabled and the EUSART remains in an Idle state, monitoring for a

wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RXx/DTx line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN/J2602 protocol.)

Following a wake-up event, the module generates an RCxIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 21-8) and asynchronously if the device is in Sleep mode (Figure 21-9). The interrupt condition is cleared by reading the RCREGx register.

22.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is illustrated in Figure 22-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω for 10-bit conversions and 1 k Ω for 12-bit conversions. After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:	When	the	conversion	is	started,	the	
	holding capacitor is disconnected from the						
	input p	in.					

EQUATION 22-1: ACQUISITION TIME

TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient = TAMP + TC + TCOFF

EQUATION 22-2: A/D MINIMUM CHARGING TIME

 $VHOLD = (VREF - (VREF/2048)) \cdot (1 - e^{(-TC/CHOLD(RIC + RSS + RS))})$ or $TC = -(CHOLD)(RIC + RSS + RS) \ln(1/2048)$

EQUATION 22-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

TACQ	=	TAMP + TC + TCOFF
TAMP	=	0.2 μs
TCOFF	=	(Temp – 25°C)(0.02 μs/°C) (85°C – 25°C)(0.02 μs/°C) 1.2 μs
Tempera	ture co	befficient is only required for temperatures > 25°C. Below 25°C, TCOFF = $0 \mu s$.
ТС	=	-(ChOLD)(Ric + Rss + Rs) $\ln(1/2048) \ \mu s$ -(25 pF) (1 k Ω + 2 k Ω + 2.5 k Ω) ln(0.0004883) μs 1.05 μs
TACQ	=	0.2 μs + 1.05 μs + 1.2 μs 2.45 μs

To calculate the minimum acquisition time, Equation 22-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the 10-bit A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Equation 22-3 provides the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD	=	25 pF
Rs	=	2.5 kΩ
Conversion Error	\leq	1/2 LSb
Vdd	=	$3V \rightarrow Rss = 2 \ k\Omega$
Temperature	=	85°C (system max.)

22.2 Selecting and Configuring Automatic Acquisition Time

The ADCON1 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set.

When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This occurs when the ACQT<2:0> bits (ADCON1<5:3>) remain in their Reset state ('000') and is compatible with devices that do not offer programmable acquisition times.

If desired, the ACQT bits can be set to select a programmable acquisition time for the A/D module. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

22.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 11 TAD per 10-bit conversion and 13 TAD per 12-bit conversion. The source of the A/D conversion clock is software selectable.

There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible but greater than the minimum TAD (see parameter 130 in Table 31-30 for more information).

Table 22-1 provides the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 22-1: TAD vs. DEVICE OPERATING FREQUENCIES

AD Cloc	c k Source Tad)	Maximum Device Frequency (MHz) ⁽³⁾		
Operation ADCS<2:0>		10-Bit Mode	12-Bit Mode	
2 Tosc	000	2.86	2.5	
4 Tosc	100	5.71	5	
8 Tosc	001	11.43	10	
16 Tosc	101	22.86	20	
32 Tosc	010	45.71	40	
64 Tosc	110	48	48	
RC ⁽²⁾	011	1(1)	1 ⁽¹⁾	

Note 1: The RC source has a typical TAD time of $4 \ \mu s$.

- 2: For device frequencies above 1 MHz, the device must be in Sleep mode for the entire conversion or the A/D accuracy may be out of specification.
- **3:** Maximum conversion speeds are achieved at the bolded device frequencies.

22.4 Configuring Analog Port Pins

The ANCON0, ANCON1 and TRISA registers control the operation of the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will be accurately converted.
 - Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1
IESO	FCMEN	CLKOEC	SOSCSEL1	SOSCSEL0	FOSC2	FOSC1	FOSC0
bit 7							bit 0
Legend:	1. 1.4		0				
R = Readabl	le bit	vvO = vvrite-	Once bit		hented bit, rea		
-n = Value at	t POR	'1' = Bit is se	t	0' = Bit is clear	ared	x = Bit is unki	nown
bit 7	IESO: Two-S	speed Start-up	(Internal/Exter	nal Oscillator S	witchover) Co	ntrol bit	
	1 = Two-Spe 0 = Two-Spe	ed Start-up is e ed Start-up is o	enabled disabled				
bit 6	FCMEN: Fail	-Safe Clock M	onitor Enable I	oit			
	1 = Fail-Safe	Clock Monitor	is enabled				
	0 = Fail-Safe	Clock Monitor	is disabled				
oit 5	CLKOEC: C	LKO Enable C	onfiguration bit	:			
	(Applicable o	only when the F	OSC<2:1> bit	s are configure	d for EC or EC	PLL mode.)	
		itput signal act	ive on the RA6	5 pin			
hit 1-3		1.05. T1050/S	a SASC Power S	election Config	uration bite		
Dit 4 -5	$11 = \text{High}_n$	ower T10SC/S	SOSC r ower o	selected			
	10 = Digital	(SCLKI) mode	is enabled	<i>deletted</i>			
	01 = Low-po	ower T1OSC/S	SOSC circuit is	selected			
	00 = Reserv	ved					
bit 2-0	FOSC<2:0>:	Oscillator Sele	ection bits				
	111 = ECPL	L oscillator wit	h PLL software	e controlled, CL	KO on RA6		
	110 = EC 0	Scillator with Ci	LKU ON RA6 b PLL software	controlled			
	100 = HS os	scillator		controlled			
	011 = INTO RA7	SCPLLO, inter	nal oscillator w	ith PLL softwar	e controlled, C	LKO on RA6, p	ort function or
	010 = INTO	SCPLL, interna	al oscillator with	h PLL software	controlled, po	rt function on R	A6 and RA7
	001 = INTO	SCO internal o	scillator block	(INTRC/INTOS	C) with CLKO	on RA6, port fu	nction on RA7
	000 = INTO	SC internal oso	cillator block (II	NTRC/INTOSC), port functior	n on RA6 and R	A7

REGISTER 28-4: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)

U-1	U-1	U-1	U-1	R/WO-1	R/WO-1	R/WO-1	R/WO-1
	_		_	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7	-						bit 0
l egend:							

Legenu.			
R = Readable bit	WO = Write-Once bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Program the corresponding Flash Configuration bit to '1'

	g
bit 3-0	WDTPS<3:0>: Watchdog Timer Postscale Select bits
	1111 = 1:32,768
	1110 = 1:16,384
	1101 = 1:8,192
	1100 = 1:4,096
	1011 = 1:2,048
	1010 = 1:1,024
	1001 = 1:512
	1000 = 1:256
	0111 = 1:128
	0110 = 1:64
	0101 = 1:32
	0100 = 1:16
	0011 = 1 :8
	0010 = 1:4
	0001 = 1:2
	0000 = 1:1

28.3 On-Chip Voltage Regulator

Note 1:	The on-chip voltage regulator is o	nly
	available in parts designated with an "	F",
	such as PIC18F26J53. The on-c	hip
	regulator is disabled on devices with "L	_F"
	in their part number.	

2: The VDDCORE/VCAP pin must never be left floating. On "F" devices, it must be connected to a capacitor, of size CEFC, to ground. On "LF" devices, VDDCORE/VCAP must be connected to a power supply source between 2.0V and 2.7V.

The digital core logic of the PIC18F47J53 family devices is designed on an advanced manufacturing process, which requires 2.0V to 2.7V. The digital core logic obtains power from the VDDCORE/VCAP power supply pin.

However, in many applications it may be inconvenient to run the I/O pins at the same core logic voltage, as it would restrict the ability of the device to interface with other, higher voltage devices, such as those run at a nominal 3.3V. Therefore, all PIC18F47J53 family devices implement a dual power supply rail topology. The core logic obtains power from the VDDCORE/VCAP pin, while the general purpose I/O pins obtain power from the VDD pin of the microcontroller, which may be supplied with a voltage between 2.15V to 3.6V ("F" device) or 2.0V to 3.6V ("LF" device).

This dual supply topology allows the microcontroller to interface with standard 3.3V logic devices, while running the core logic at a lower voltage of nominally 2.5V.

In order to make the microcontroller more convenient to use, an integrated 2.5V low dropout, low quiescent current linear regulator has been integrated on the die inside PIC18F47J53 family devices. This regulator is designed specifically to supply the core logic of the device. It allows PIC18F47J53 family devices to effectively run from a single power supply rail, without the need for external regulators.

The on-chip voltage regulator is always enabled on "F" devices. The VDDCORE/VCAP pin simultaneously serves as the regulator output pin and the core logic supply power input pin. A capacitor should be connected to the VDDCORE/VCAP pin to ground and is necessary for regulator stability. For example connections for PIC18F and PIC18LF devices, see Figure 28-2.

On "LF" devices, the on-chip regulator is always disabled. This allows the device to save a small amount of quiescent current consumption, which may be advantageous in some types of applications, such as those which will entirely be running at a nominal 2.5V. On "LF" devices, the VDDCORE/VCAP pin still serves as the core logic power supply input pin, and therefore, must be connected to a 2.0V to 2.7V supply rail at the application circuit board level. On these devices, the

I/O pins may still optionally be supplied with a voltage between 2.0V to 3.6V, provided that VDD is always greater than, or equal to, VDDCORE/VCAP. For example connections for PIC18F and PIC18LF devices, see Figure 28-2.

Note:	In parts designat	ted with an	"LF", s	uch as
	PIC18LF47J53,	VDDCORE	must	never
	exceed VDD.			

The specifications for core voltage and capacitance are listed in Section 31.3 "DC Characteristics: PIC18F47J53 Family (Industrial)".

28.3.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION

On "F" devices, the on-chip regulator provides a constant voltage of 2.5V nominal to the digital core logic. The regulator can provide this level from a VDD of about 2.5V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 2.5V. When the VDD supply input voltage drops too low to regulate 2.5V, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD, with a typical voltage drop of 100 mV or less.

The on-chip regulator includes a simple Low-Voltage Detect (LVD) circuit. This circuit is separate and independent of the High/Low-Voltage Detect (HLVD) module described in Section 26.0 "High/Low Voltage Detect (HLVD)". The on-chip regulator LVD circuit continuously monitors the VDDCORE voltage level and updates the LVDSTAT bit in the WDTCON register. The LVD detect threshold is set slightly below the normal regulation set point of the on-chip regulator.

Application firmware may optionally poll the LVDSTAT bit to determine when it is safe to run at maximum rated frequency, so as not to inadvertently violate the voltage versus frequency requirements provided by Figure 31-1.

The VDDCORE monitoring LVD circuit is only active when the on-chip regulator is enabled. On "LF" devices, the Analog-to-Digital Converter and the HLVD module can still be used to provide firmware with VDD and VDDCORE voltage level information.

TABLE 23-2. FIG 10F47333 FAMILET INSTRUCTION SET (CONTINUED)									
Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status	Neteo
		Description	Cycles	MSb			LSb	Affected	Notes
LITERAL OPERATIONS									
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	MORY ↔	PROGRAM MEMORY OPERATI	ONS					· · · · · · · · · · · · · · · · · · ·	
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None	

TABLE 29-2: PIC18F47J53 FAMILY INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

XORWF Exclusive OR W with f								
Synta	ax:	XORWF	f {,d {,a}}					
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$						
Oper	ration:	(W) .XOR.	$(f) \rightarrow des$	t				
Statu	us Affected: N, Z							
Enco	oding:	0001	10da	fff	f ffff			
Desc	cription:	Exclusive (register 'f'. in W. If 'd' i in the regis	OR the co If 'd' is '0' s '1', the r ster 'f' (de	ntents , the re esult is fault).	of W with sult is stored s stored back			
		If 'a' is '0', f If 'a' is '1', f GPR bank	the Acces the BSR i (default).	s Banł s used	to selected.			
If 'a' is '0' and the extended instruction set is enabled, this instruction operat in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 29.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexe								
Word	ds:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
Decode Read Process Write t register 'f' Data destination								
<u>Exan</u>	<u>nple:</u>	XORWF	REG, 1,	0				
	Before Instruc	tion						
	W	= AFn = B5h						
	After Instruction REG W	on = 1Ah = B5h						

29.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set for the PIC18F47J53 family. This includes the MPLAB C18 C Compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option or dialog box within the environment that allows the user to configure the language tool and its settings for the project
- · A command line option
- · A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

31.2 DC Characteristics: Power-Down and Supply Current PIC18F47J53 Family (Industrial) (Continued)

PIC18LF47J53 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC18F47J53 Family		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
Param. No.	Device	Тур.	Max.	Units	Conditions						
D000	Module Differential Currents	Module Differential Currents (AlwDT, AlHLVD, AlOSCB, AlAD, AlUSB)									
DUZZ (ΔIWDT)	Watchdog Timer	0.38	4.0	μA	-40°C						
()		0.41	4.0	μA	+25°C	VDD = 2.5V, VDDCORF = 2.5V	PIC18LFXXJ53				
		0.44	5.2	μA	+85°C						
		0.33	4.0	μA	-40°C	VDD = 2.15V,					
		0.33	4.0	μA	+25°C	VDDCORE = 10 μF Capacitor	PIC18FXXJ53				
		0.39	6.0	μA	+85°C						
		0.49	8.0	μA	-40°C	VDD = 3.3V,					
		0.48	8.0	μA	+25°C	VDDCORE = 10 μ F					
		0.45	9.0	μA	+85°C	Capacitor					
D022B	High/Low-Voltage Detect	4.1	8.0	μA	-40°C						
(∆IHLVD)		4.9	8.0	μA	+25°C	VDD = 2.5V, VDDCORE = 2.5V	PIC18LFXXJ53				
		5.8	9.0	μA	+85°C						
		2.6	6.0	μA	-40°C	VDD = 2.15V,					
		3.0	6.0	μA	+25°C	VDDCORE = 10 μ F					
		3.5	8.0	μA	+85°C	Capacitor	PIC18FXXJ53				
		3.4	9.0	μA	-40°C	VDD = 3.3V,					
		3.9	9.0	μA	+25°C	VDDCORE = 10 µF					
		4.2	12.0	μA	+85°C	Capacitor					

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption. All features that add delta current are disabled (USB module, WDT, etc.). The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD/Vss;

- \overline{MCLR} = VDD; WDT disabled unless otherwise specified.
- **3:** Low-power Timer1 with standard, low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: This is the module differential current when the USB module is enabled and clocked at 48 MHz, but with no USB cable attached. When the USB cable is attached or data is being transmitted, the current consumption may be much higher (see Section 23.6.4 "USB Transceiver Current Consumption"). During USB Suspend mode (USBEN = 1, SUSPND = 1, bus in Idle state), the USB module current will be dominated by the D+ or D- pull-up resistor. The integrated pull-up resistor use "resistor switching" according to the resistor_ecn supplement to the USB 2.0 Specifications, and therefore, may be as low as 900Ω during Idle conditions.

TABLE 31-8: HIGH/LOW-VOLTAGE DETECT CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
Param. No.	Symbol	Charac	Min.	Тур.	Max.	Units	Conditions		
D420		HLVD Voltage on VDD	HLVDL<3:0> = 1000	2.33	2.45	2.57	V		
		Transition High-to-Low	HLVDL<3:0> = 1001	2.47	2.60	2.73	V		
			HLVDL<3:0> = 1010	2.66	2.80	2.94	V		
			HLVDL<3:0> = 1011	2.76	2.90	3.05	V		
			HLVDL<3:0> = 1100	2.85	3.00	3.15	V		
			HLVDL<3:0> = 1101	2.97	3.13	3.29	V		
			HLVDL<3:0> = 1110	3.23	3.40	3.57	V		
D421	TIRVST	Time for Internal Reference become Stable	_	50	_	μS			
D422	TLVD	High/Low-Voltage Dete	200	—	—	μS			

DS30009964C-page 520