

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3.8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 2.75V
Data Converters	A/D 13x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf47j53t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

28-SPDIP/ SSOP/ SOIC	28-QFN	Pin Type	Buffer Type	Description				
1 ⁽²⁾								
	26 ⁽²⁾	I	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.				
9	6	I	ST	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; CMOS otherwise. Main oscillator input connection.				
		I	CMOS	External clock source input; always associated with pin function OSC1 (see related OSC1/CLKI pins).				
		I/O	TTL/DIG	Digital I/O.				
10	7	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.				
		0	DIG	Main oscillator feedback output connection. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.				
		I/O	TTL/DIG					
Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input I = Input O = Output P = Power OD = Open-Drain (no P diode to VDD)								
t	10 Datible input rigger input w	10 7 batible input rigger input with CMOS	I I I/O 10 7 O 0 1/O 1/O 1/O 1/O 1/O 1/O	I ST I CMOS I II/O I TTL/DIG I I/O I/O TTL/DIG I/O I/O I/O TTL/DIG I/O TTL/DIG I/O TTL/DIG I/O TTL/DIG I/O Ar O O O O I O				

 TABLE 1-3:
 PIC18F2XJ53 PINOUT I/O DESCRIPTIONS

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

2: 5.5V tolerant.

	Pin Nu	mber						
Pin Name	28-SPDIP/ SSOP/ 28-QFN SOIC		Pin Buffer Type Type		Description			
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.			
RB0/AN12/C3IND/INT0/RP3 RB0 AN12 C3IND INT0 RP3	21	18	I/O I I I/O	TTL/DIG Analog Analog ST ST/DIG	Digital I/O. Analog Input 12. Comparator 3 Input D. External Interrupt 0. Remappable Peripheral Pin 3 input/output.			
RB1/AN10/C3INC/RTCC/RP4 RB1 AN10 C3INC RTCC RP4	22	19	I/O I I O I/O	TTL/DIG Analog Analog DIG ST/DIG	Digital I/O. Analog Input 10. Comparator 3 input. Asynchronous serial transmit data output. Remappable Peripheral Pin 4 input/output.			
RB2/AN8/C2INC/CTED1/ VMO/REFO/RP5 RB2 AN8 C2INC CTED1 VMO REFO RP5	23	20	I/O 0 0 /O	TTL/DIG Analog Analog ST DIG DIG ST/DIG	Digital I/O. Analog Input 8. Comparator 2 Input C. CTMU Edge 1 input. External USB Transceiver D- data output. Reference output clock. Remappable Peripheral Pin 5 input/output.			
RB3/AN9/C3INA/CTED2/ VPO/RP6 RB3 AN9 C3INA CTED2 VPO RP6	24	21	I/O 0 	TTL/DIG Analog Analog ST DIG ST/DIG	Digital I/O. Analog Input 9. Comparator 3 Input A. CTMU edge 2 Input. External USB Transceiver D+ data output. Remappable Peripheral Pin 6 input/output.			
Legend: TTL = TTL compati ST = Schmitt Trigg I = Input P = Power DIG = Digital outpu Note 1: RA7 and RA6 will b	ger input wi t			Ar O OI I ² (MOS = CMOS compatible input or output nalog = Analog input = Output D = Open-Drain (no P diode to VDD)			

TABLE 1-3: PIC18F2XJ53 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: RA7 and RA6 will be disabled if OSC1 and OSC2 are used for the clock function.

2: 5.5V tolerant.

TABLE 1-3:	PIC18F2XJ53 PINOUT I/O DESCRIPTIONS (CONTINUED)
IADLL I-J.	

	Pin Number 28-SPDIP/ SSOP/ SOIC				
Pin Name			Pin Type	Buffer Type	Description
					PORTC is a bidirectional I/O port.
RC0/T1OSO/T1CKI/RP11 RC0 T1OSO T1CKI RP11	11	8	I/O O I I/O	ST/DIG Analog ST ST/DIG	Digital I/O. Timer1 oscillator output. Timer1 external digital clock input. Remappable Peripheral Pin 11 input/output.
RC1/CCP8/T1OSI/UOE/RP12 RC1 CCP8 T1OSI UOE RP12	12	9	I/O I/O I I/O	ST/DIG ST/DIG Analog DIG ST/DIG	Digital I/O. Capture/Compare/PWM input/output. Timer1 oscillator input. External USB transceiver NOE output. Remappable Peripheral Pin 12 input/output.
RC2/AN11/C2IND/CTPLS/ RP13 RC2 AN11 C2IND CTPLS RP13	13	10	I/O I I 0 I/O	ST/DIG Analog Analog DIG ST/DIG	Digital I/O. Analog Input 11. Comparator 2 Input D. CTMU pulse generator output. Remappable Peripheral Pin 13 input/output.
RC4/D-/VM RC4 D- VM	15	12	l I/O I	ST — ST	Digital Input. USB bus minus line input/output. External USB transceiver FM input.
RC5/D+/VP RC5 D+ VP	16	13	 /O 	ST — ST	Digital Input. USB bus plus line input/output. External USB transceiver VP input.
RC6/CCP9/TX1/CK1/RP17 RC6 CCP9 TX1 CK1 RP17	17 ⁽²⁾	14 ⁽²⁾	I/O I/O I/O I/O	ST/DIG ST/DIG DIG ST/DIG ST/DIG	Digital I/O. Capture/Compare/PWM input/output. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1). Remappable Peripheral Pin 17 input/output.
RC7/CCP10/RX1/DT1/SDO1/ RP18 RC7 CCP10 RX1 DT1 SDO1 RP18	18 ⁽²⁾	15 ⁽²⁾	I/O I/O I/O I/O	ST/DIG ST/DIG ST ST/DIG DIG ST/DIG	Digital I/O. Asynchronous serial receive data input. Capture/Compare/PWM input/output. Synchronous serial data output/input. SPI data output. Remappable Peripheral Pin 18 input/output.
Legend: TTL = TTL compati ST = Schmitt Trigg I = Input P = Power DIG = Digital outpu Note 1: RA7 and RA6 will be 2: 5.5V tolerant.	ger input wi			Ar O OI I ² (D = Open-Drain (no P diode to VDD)

Input Oscillator Frequency	PLL Division (PLLDIV<2:0>)	Clock Mode (FOSC<2:0>)	MCU Clock Division (CPDIV<1:0>)	Microcontroller Clock Frequency
			None (11)	48 MHz
	N1/A	50	÷2(10)	24 MHz
48 MHz	N/A	EC	÷3(01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
	10 (000)	FORM	÷2(10)	24 MHz
48 MHz	÷12 (000)	ECPLL	÷3(01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
	10 (001)	FORM	÷2(10)	24 MHz
40 MHz	÷10(001)	ECPLL	÷3(01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
	0 (00.0)	FORM	÷2 (10)	24 MHz
24 MHz	÷6 (010)	ECPLL	÷3(01)	16 MHz
			÷6 (00)	8 MHz
		EC ⁽¹⁾	None (11)	24 MHz
24 MHz	N//A		÷2 (10)	12 MHz
24 MHZ	N/A		÷3 (01)	8 MHz
			÷6 (00)	4 MHz
			None (11)	48 MHz
	- ()	50011	÷2 (10)	24 MHz
20 MHz	÷5 (011)	ECPLL	÷3(01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
			÷2 (10)	24 MHz
16 MHz	÷4 (100)	HSPLL, ECPLL	÷3 (01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
	0 (2.22.)		÷2 (10)	24 MHz
12 MHz	÷3(101)	HSPLL, ECPLL	÷3(01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
0.0411-	0 (5 5 5)	HSPLL, ECPLL,	÷2 (10)	24 MHz
8 MHz	÷2 (110)	INTOSCPLL/ INTOSCPLLO	÷3(01)	16 MHz
			÷6 (00)	8 MHz
			None (11)	48 MHz
4.8411	4 ()		÷2 (10)	24 MHz
4 MHz	÷ 1 (111)	HSPLL, ECPLL	÷3(01)	16 MHz
			÷6 (00)	8 MHz

TABLE 3-5:	OSCILLATOR CONFIGURATION OPTIONS FOR USB OPERATION

Note 1: The 24 MHz EC mode (without PLL) is only compatible with low-speed USB. Full-speed USB requires a 48 MHz system clock.

REGISTER 5-1: RCON: RESET CONTROL REGISTER (ACCESS FD0h)

R/W-0	U-0	R/W-1	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	—	CM	RI	TO	PD	POR	BOR
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	IPEN: Int	errupt Priority Enable bit		
		ble priority levels on interrup ble priority levels on interru	its ots (PIC16CXXX Compatibility	mode)
bit 6	Unimple	mented: Read as '0'		
bit 5	CM: Con	figuration Mismatch Flag bit		
	0 = A C c	onfiguration Mismatch Rese onfiguration Mismatch Rese natch Reset occurs)		in software after a Configuratio
bit 4	RI: RESE	${\mathbb T}$ Instruction Flag bit		
	0 = The		executed (set by firmware only cuted causing a device Rese) t (must be set in software after
bit 3	TO: Wate	chdog Time-out Flag bit		
		by power-up, CLRWDT instru DT time-out occurred	ction or SLEEP instruction	
bit 2	PD: Pow	er-Down Detection Flag bit		
		by power-up or by the CLRW by execution of the SLEEP in		
bit 1	POR: Po	wer-on Reset Status bit		
		ower-on Reset has not occu ower-on Reset occurred (mu	rred (set by firmware only) Ist be set in software after a Po	ower-on Reset occurs)
bit 0	BOR: Br	own-out Reset Status bit		
		rown-out Reset has not occ	urred (set by firmware only) uust be set in software after a E	Brown-out Reset occurs)

^{2:} If the on-chip voltage regulator is disabled, BOR remains '0' at all times. See Section 5.4.1 "Detecting BOR" for more information.

^{3:} Brown-out Reset is said to have occurred when BOR is '0' and POR is '1' (assuming that POR was set to '1' by software immediately after a Power-on Reset).

5.5 Configuration Mismatch (CM)

The Configuration Mismatch (CM) Reset is designed to detect, and attempt to recover from, random memory corrupting events. These include Electrostatic Discharge (ESD) events, which can cause widespread single bit changes throughout the device and result in catastrophic failure.

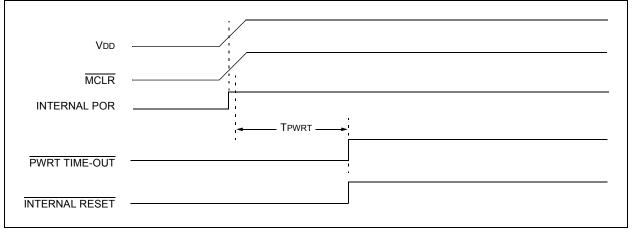
In PIC18FXXJ Flash devices, the device Configuration registers (located in the configuration memory space) are continuously monitored during operation by comparing their values to complimentary shadow registers. If a mismatch is detected between the two sets of registers, a CM Reset automatically occurs. These events are captured by the CM bit (RCON<5>). The state of the bit is set to '0' whenever a CM event occurs; it does not change for any other Reset event.

A CM Reset behaves similarly to a MCLR, RESET instruction, WDT time-out or Stack Event Resets. As with all hard and power Reset events, the device Configuration Words are reloaded from the Flash Configuration Words in program memory as the device restarts.

5.6 Power-up Timer (PWRT)

PIC18F47J53 family devices incorporate an on-chip PWRT to help regulate the POR process. The PWRT is always enabled. The main function is to ensure that the device voltage is stable before code is executed.

The Power-up Timer (PWRT) of the PIC18F47J53 family devices is a 5-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of $32 \times 32 \ \mu s = 1 \ ms$. While the PWRT is counting, the device is held in Reset.


The power-up time delay depends on the INTRC clock and will vary from chip-to-chip due to temperature and process variation. See DC parameter 33 (TPWRT) for details.

5.6.1 TIME-OUT SEQUENCE

The PWRT time-out is invoked after the POR pulse has cleared. The total time-out will vary based on the status of the PWRT. Figure 5-2, Figure 5-3, Figure 5-4 and Figure 5-5 all depict time-out sequences on power-up with the PWRT.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the PWRT will expire. Bringing $\overline{\text{MCLR}}$ high will begin execution immediately if a clock source is available (Figure 5-4). This is useful for testing purposes or to synchronize more than one PIC18F device operating in parallel.

FIGURE 5-2: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD, VDD RISE < TPWRT)

Addr.	File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR
EF4h	RPINR14	_	_	_	Timer5 Gate I	nput (T5G) to	Input Pin Map	ping bits		1 1111
EF3h	RPINR13	_	_	_	Timer3 Gate I	nput (T3G) to	Input Pin Map	ping bits		1 1111
EF2h	RPINR12	_	_	_	Timer1 Gate I	nput (T1G) to	Input Pin Map	ping bits		1 1111
EF1h	—	_	_	_	_	_	_	_	_	
EF0h	_	_	_	_	_	_	_	_	_	
EEFh	—	_	_	_	_	_	_	_	_	
EEEh	_	_	_	_	_	_	_	_	_	
EEDh	—	_	_	_	_	_	_	_	_	
EECh	—	_	_	_	_	_	_	_	_	
EEBh	—	_	_	_	_	_	_	_	_	
EEAh	RPINR9	_	_	_	ECCP3 Input	Capture (IC3)) to Input Pin N	lapping bits		1 1111
EE9h	RPINR8	_	_	_	ECCP2 Input	Capture (IC2)) to Input Pin N	lapping bits		1 1111
EE8h	RPINR7	_	_	_	ECCP1 Input	Capture (IC1)) to Input Pin N	lapping bits		1 1111
EE7h	RPINR15	_	_	_	Timer5 Extern	al Clock Inpu	t (T5CKI) to In	put Pin Mappi	ng bits	1 1111
EE6h	RPINR6	_	_	_	Timer3 Extern	al Clock Inpu	t (T3CKI) to In	put Pin Mappi	ng bits	1 1111
EE5h	—	_	_	_	_	_	_	_	_	
EE4h	RPINR4	_	_	_	Timer0 Extern	al Clock Inpu	t (T0CKI) to In	put Pin Mappi	ng bits	1 1111
EE3h	RPINR3	_	_	_			Input Pin Map		0	1 1111
EE2h	RPINR2	_	_	_	External Inter	rupt (INT2) to	Input Pin Map	ping bits		1 1111
EE1h	RPINR1	_	_	_		· · ·	Input Pin Map			1 1111
EE0h	_	_	_	_	_	_	_	_	_	
EDFh		_	_	<u> </u>		_	_	_	_	
EDEh		_	_	<u> </u>		_	_	_	_	
EDDh		_	_	<u> </u>		_	_	_	_	
EDCh	_	_	_	_	_	_	_	_	_	
EDBh		_	_	<u> </u>		_	_	_	_	
EDAh	_	_	_	_	_	_	_	_	_	
ED9h		_	_	<u> </u>		_	_	_	_	
ED8h ⁽¹⁾	RPOR24	_	_	_	Remappable	Pin RP24 Out	put Signal Sele	ect bits		0 0000
ED7h ⁽¹⁾	RPOR23	_	_	<u> </u>			put Signal Sele			0 0000
ED6h ⁽¹⁾	RPOR22		_	_	Remappable	Pin RP22 Out	put Signal Sele	ect bits		0 0000
ED5h ⁽¹⁾	RPOR21	_	_	<u> </u>			put Signal Sele			0 0000
ED4h ⁽¹⁾	RPOR20	_	_	<u> </u>			put Signal Sele			0 0000
ED3h ⁽¹⁾	RPOR19	_	_	_	Remappable	Pin RP19 Out	put Signal Sele	ect bits		0 0000
ED2h	RPOR18	_	_	<u> </u>			put Signal Sele			0 0000
ED1h	RPOR17	_	_	_			put Signal Sele			0 0000
ED0h ⁾	_	_	_	_	_	_	_	—	_	0 0000
ECFh	_	_	_		_	_	_	_	_	0 0000
ECEh	_	_	_	_	_	_	_	_	_	0 0000
ECDh	RPOR13	_	_	_	Remappable	Pin RP13 Out	put Signal Sele	ect bits		0 0000
ECCh	RPOR12	_	_	_			put Signal Sele			0 0000
ECBh	RPOR11	_	_	_			put Signal Sele			0 0000
ECAh	RPOR10	_	_	_			put Signal Sele			0 0000
EC9h	RPOR9	_	_				ut Signal Selec			0 0000
EC8h	RPOR8	_	_				ut Signal Selec			0 0000
EC7h	RPOR7	_	_	_			ut Signal Selec			0 0000
EC6h	RPOR6	_	_	_		· · · · · · · · · · · · · · · · · · ·	ut Signal Selec			0 0000
EC5h	RPOR5						ut Signal Selec			0 0000

Legend:x = unknown, u = unchanged, - = unimplemented, q = value depends on condition, r = reserved, do not modifyNote1:Implemented only for 44-pin devices (PIC18F46J53, PIC18F47J53, PIC18F46J53 and PIC18LF47J53).

2: Implemented only for 28-pin devices (PIC18F26J53, PIC18F27J53, PIC18LF26J53 and PIC18LF27J53).

3: Implemented only for devices with 128 Kbyte of program memory (PIC18F27J53, PIC18F47J53, PIC18LF27J53 and PIC18LF47J53).

10.5 PORTD, TRISD and LATD Registers

Note:	PORTD	is	available	only	in	44-pin
	devices.			-		

PORTD is an 8-bit wide, bidirectional port. The corresponding Data Direction register is TRISD. Setting a TRISD bit (= 1) will make the corresponding PORTD pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISD bit (= 0) will make the corresponding PORTD pin an output (i.e., put the contents of the output latch on the selected pin).

The Data Latch register (LATD) is also memory mapped. Read-modify-write operations on the LATD register read and write the latched output value for PORTD.

All pins on PORTD are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

Note:	On a POR, these pins are configured as
	digital inputs.

EXAMPLE 10-5: INITIALIZING PORTD

CLRF	PORTD	; Initialize PORTD by
		; clearing output
		; data latches
CLRF	LATD	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISD	; Set RD<3:0> as inputs
		; RD<5:4> as outputs
		; RD<7:6> as inputs

Each of the PORTD pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by setting bit, RDPU (TRISE<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a POR. The integrated weak pull-ups consist of a semiconductor structure similar to, but somewhat different, from, a discrete resistor. On an unloaded I/O pin the weak pull-ups are intended to provide logic high indication, but will not necessarily pull the pin all the way to VDD levels.

Note that the pull-ups can be used for any set of features, similar to the pull-ups found on PORTB.

R-0	R/W-0	U-0	U-0	R-0	R-0	R-0	R-0
IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 7 IBF: Input Buffer Full Status bit 1 = All writable input buffer registers are full 0 = Some or all of the writable input buffer registers are empty bit 6 IBOV: Input Buffer Overflow Status bit 1 = A write attempt to a full input byte register occurred (must be cleared in software) 0 = No overflow occurred							
bit 5-4 bit 3-0	Unimplemented: Read as '0' IB<3:0>F: Input Buffer x Status Full bits 1 = Input buffer contains data that has not been read (reading buffer will clear this bit) 0 = Input buffer does not contain any unread data						

REGISTER 11-7: PMSTATH: PARALLEL PORT STATUS REGISTER HIGH BYTE (BANKED F55h)⁽¹⁾

Note 1: This register is only available on 44-pin devices.

REGISTER 11-8: PMSTATL: PARALLEL PORT STATUS REGISTER LOW BYTE (BANKED F54h)⁽¹⁾

R-1	R/W-0	U-0	U-0	R-1	R-1	R-1	R-1
OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	 OBE: Output Buffer Empty Status bit 1 = All readable output buffer registers are empty 0 = Some or all of the readable output buffer registers are full
bit 6	 OBUF: Output Buffer Underflow Status bit 1 = A read occurred from an empty output byte register (must be cleared in software) 0 = No underflow occurred
bit 5-4	Unimplemented: Read as '0'
bit 3-0	OB<3:0>E: Output Buffer x Status Empty bits 1 = Output buffer is empty (writing data to the buffer will clear this bit) 0 = Output buffer contains data that has not been transmitted

Note 1: This register is only available on 44-pin devices.

18.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR4L register and to the CCP4CON<5:4> bits. Up to 10-bit resolution is available. The CCPR4L contains the eight MSbs and the CCP4CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR4L:CCP4CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

EQUATION 18-2:

PWM Duty Cycle = (CCPR4L:CCP4CON<5:4>) • Tosc • (TMR2 Prescale Value)

CCPR4L and CCP4CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR4H until after a match between PR2 and TMR2 occurs (that is, the period is complete). In PWM mode, CCPR4H is a read-only register.

The CCPR4H register and a two-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation.

When the CCPR4H and two-bit latch match TMR2, concatenated with an internal two-bit Q clock or two bits of the TMR2 prescaler, the CCP4 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the equation:

EQUATION 18-3:

PWM Resolution (max) =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP4 pin will not be cleared.

TABLE 18-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz

PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h
Maximum Resolution (bits)	14	12	10	8	7	6.58

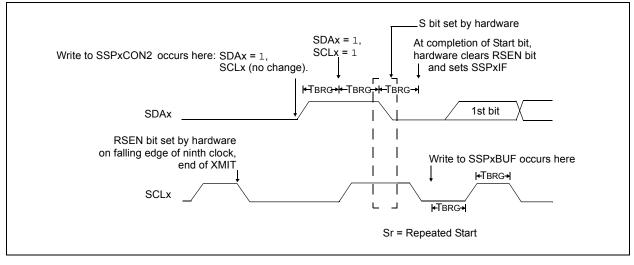
18.4.3 SETUP FOR PWM OPERATION

To configure the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR4L register and CCP4CON<5:4> bits.
- 3. Make the CCP4 pin an output by clearing the appropriate TRIS bit.
- 4. Set the TMR2 prescale value, then enable Timer2 by writing to T2CON.
- 5. Configure the CCP4 module for PWM operation.

20.5.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit (SSPxCON2<1>) is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the BRG is loaded with the contents of SSPxADD<5:0> and begins counting. The SDAx pin is released (brought high) for one BRG count (TBRG). When the BRG times out, and if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the BRG is reloaded with the contents of SSPxADD<6:0> and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. Following this, the RSEN bit (SSPxCON2<1>) will be automatically cleared and the BRG will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the Start bit (SSPxSTAT<3>) will be set. The SSPxIF bit will not be set until the BRG has timed out.


- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPxIF bit getting set, the user may write the SSPxBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional 8 bits of address (10-bit mode) or 8 bits of data (7-bit mode).

20.5.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 20-22: REPEATED START CONDITION WAVEFORM

Note: Because queueing of events is not allowed, writing of the lower five bits of SSPxCON2 is disabled until the Repeated Start condition is complete.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF
PIR1	PMPIF ⁽³⁾	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
PIE1	PMPIE ⁽³⁾	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE
IPR1	PMPIP ⁽³⁾	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP
PIR2	OSCFIF	CM2IF	CM1IF	USBIF	BCL1IF	HLVDIF	TMR3IF	CCP2IF
PIE2	OSCFIE	CM2IE	CM1IE	USBIE	BCL1IE	HLVDIE	TMR3IE	CCP2IE
IPR2	OSCFIP	CM2IP	CM1IP	USBIP	BCL1IP	HLVDIP	TMR3IP	CCP2IP
PIR3	SSP2IF	BCL2IF	RC2IF	TX2IF	TMR4IF	CTMUIF	TMR3GIF	RTCCIF
PIE3	SSP2IE	BCL2IE	RC2IE	TX2IE	TMR4IE	CTMUIE	TMR3GIE	RTCCIE
IPR3	SSP2IP	BCL2IP	RC2IP	TX2IP	TMR4IP	CTMUIP	TMR3GIP	RTCCIP
TRISC	TRISC7	TRISC6	_	_	_	TRISC2	TRISC1	TRISC0
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
SSP1BUF	MSSP1 Rece	eive Buffer/Tra	nsmit Registe	r				
SSP1ADD	MSSP1 Addr	ess Register (I	² C Slave mod	e), MSSP1 Ba	ud Rate Reloa	ad Register (I ²	C Master mod	e)
SSPxMSK ⁽¹⁾	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0
SSPxCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
SSPxCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
	GCEN	ACKSTAT	ADMSK5 ⁽²⁾	ADMSK4 ⁽²⁾	ADMSK3 ⁽²⁾	ADMSK2 ⁽²⁾	ADMSK1(2)	SEN
SSPxSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF
SSP2BUF	MSSP2 Rece	eive Buffer/Tra	nsmit Registe	r				
SSP2ADD	MSSP2 Addr	ess Register (I ² C Slave mo	de), MSSP2 E	Baud Rate Rel	oad Register	(I ² C Master m	iode)

TABLE 20-4: REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the MSSPx module in I²C mode.

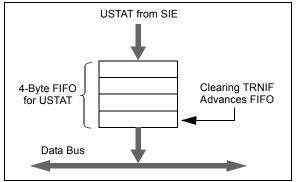
Note 1: SSPxMSK shares the same address in SFR space as SSPxADD, but is only accessible in certain I²C Slave mode operations in 7-Bit Masking mode. See Section 20.5.3.4 "7-Bit Address Masking Mode" for more details.

2: Alternate bit definitions for use in I²C Slave mode operations only.

3: These bits are only available on 44-pin devices.

23.2.3 USB STATUS REGISTER (USTAT)

The USB Status register reports the transaction status within the SIE. When the SIE issues a USB transfer complete interrupt, USTAT should be read to determine the status of the transfer. USTAT contains the transfer endpoint number, direction and Ping-Pong Buffer Pointer value (if used).


Note:	The data in the USB Status register is
	valid only when the TRNIF interrupt flag is
	asserted.

The USTAT register is actually a read window into a 4-byte status FIFO, maintained by the SIE. It allows the microcontroller to process one transfer while the SIE processes additional endpoints (Figure 23-3). When the SIE completes using a buffer for reading or writing data, it updates the USTAT register. If another USB transfer is performed before a transaction complete interrupt is serviced, the SIE will store the status of the next transfer into the status FIFO.

Clearing the transfer complete flag bit, TRNIF, causes the SIE to advance the FIFO. If the next data in the FIFO holding register is valid, the SIE will reassert the interrupt within 5 TCY of clearing TRNIF. If no additional data is present, TRNIF will remain clear; USTAT data will no longer be reliable.

Note:	If an endpoint request is received while the							
	USTAT	FIFO	is	full,	the	SIE	will	
	automat	ically iss	sue a	a NAK	back	to the I	nost.	

FIGURE 23-3: USTAT FIFO

REGISTER 23-3: USTAT: USB STATUS REGISTER (ACCESS F64h)

				•	-					
U-0	R-x	R-x	R-x	R-x	R-x	R-x	U-0			
—	ENDP3	ENDP2	ENDP1	ENDP0	DIR	PPBI ⁽¹⁾				
oit 7						i	bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkno	own			
bit 7	Unimplemer	nted: Read as '	0'							
bit 6-3	ENDP<3:0>:	Encoded Num	ber of Last Er	dpoint Activity	bits					
	(represents t	(represents the number of the BDT updated by the last USB transfer)								
	1111 = End	1111 = Endpoint 15								
	1110 = End	1110 = Endpoint 14								
	•									
	•									
	0001 = End	noint 1								
	0000 = End	•								
bit 2		Direction India	ator bit							
		 The last transaction was an IN token The last transaction was an OUT or SETUP token 								
L:1 1										
bit 1	•	PPBI: Ping-Pong BD Pointer Indicator bit ⁽¹⁾ 1 = The last transaction was to the Odd BD bank								
		transaction was								
L:1 0										
bit 0	Unimplemen	nted: Read as '	0							
Note 1: T	his bit is only val	id for endpoints	s with available	e Even and Od	d BD registers					

© 2009-2016 Microchip Technology Inc.

24.6 Comparator Interrupts

The comparator interrupt flag is set whenever any of the following occurs:

- · Low-to-high transition of the comparator output
- High-to-low transition of the comparator output
- Any change in the comparator output

The comparator interrupt selection is done by the EVPOL<1:0> bits in the CMxCON register (CMxCON<4:3>).

In order to provide maximum flexibility, the output of the comparator may be inverted using the CPOL bit in the CMxCON register (CMxCON<5>). This is functionally identical to reversing the inverting and non-inverting inputs of the comparator for a particular mode.

An interrupt is generated on the low-to-high or high-tolow transition of the comparator output. This mode of interrupt generation is dependent on EVPOL<1:0> in the CMxCON register. When EVPOL<1:0> = 01 or 10, the interrupt is generated on a low-to-high or high-tolow transition of the comparator output. Once the interrupt is generated, it is required to clear the interrupt flag by software. When EVPOL<1:0> = 11, the comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMSTAT<1:0>, to determine the actual change that occurred. The CMxIF bits (PIR2<6:5>) are the Comparator x Interrupt Flags. The CMxIF bits must be reset by clearing them. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Table 24-2 provides the interrupt generation corresponding to comparator input voltages and EVPOL bit settings.

Both the CMxIE bits (PIE2<6:5>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMxIF bits will still be set if an interrupt condition occurs.

Figure 24-3 provides a simplified diagram of the interrupt section.

TABLE 24-2: COMPARATOR INTERRUPT GENERATION									
CPOL	EVPOL<1:0>	Comparator Input Change	COUTx Transition	Interrupt Generated					
		VIN+ > VIN-	Low-to-High	No					
	00	VIN+ < VIN-	High-to-Low	No					
	0.1	VIN+ > VIN-	Low-to-High	Yes					
0	01	VIN+ < VIN-	High-to-Low	No					
0	1.0	VIN+ > VIN-	Low-to-High	No					
	10	VIN+ < VIN-	High-to-Low	Yes					
	11	VIN+ > VIN-	Low-to-High	Yes					
		VIN+ < VIN-	High-to-Low	Yes					
		VIN+ > VIN-	High-to-Low	No					
	00	VIN+ < VIN-	Low-to-High	No					
	0.1	VIN+ > VIN-	High-to-Low	No					
1	01	VIN+ < VIN-	Low-to-High	Yes					
1	1.0	VIN+ > VIN-	High-to-Low	Yes					
	10	VIN+ < VIN-	Low-to-High	No					
	11	VIN+ > VIN-	High-to-Low	Yes					
	11	VIN+ < VIN-	Low-to-High	Yes					

TABLE 24-2: COMPARATOR INTERRUPT GENERATION

25.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 25-1). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR<3:0>), with one range offering finer resolution. The equations used to calculate the output of the comparator voltage reference are as follows:

EQUATION 25-1: CALCULATING OUTPUT OF THE COMPARATOR VOLTAGE REFERENCE

<u>When CVRR = 1 and CVRSS = 0:</u> CVREF = ((CVR<3:0>)/24) x (CVRSRC) <u>When CVRR = 0 and CVRSS = 0:</u> CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) x (CVRSRC) <u>When CVRR = 1 and CVRSS = 1:</u> CVREF = ((CVR<3:0>)/24) x (CVRSRC) + VREF-<u>When CVRR = 0 and CVRSS = 1:</u> CVREF = (CVRSRC/4) + ((CVR<3:0>)/32) x (CVRSRC) + VREF-) The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF- that are multiplexed with RA2 and RA3. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output (see Table 31-2 in **Section 31.0** "**Electrical Characteristics**").

REGISTER 25-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER (F53h)

							. ,	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CVREN	CVROE ⁽¹⁾	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	
bit 7							bit 0	
Legend:								
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'								
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 7 bit 6 bit 5	1 = CVREF cii 0 = CVREF cii CVROE: Com 1 = CVREF vc 0 = CVREF vc CVRR: Comp 1 = 0 to 0.66 0 = 0.25 CVR	bltage is discon arator VREF Ra 7 CVRSRC with SRC to 0.75 CV	d on d down Dutput Enable Iso output on t nected from th ange Selection CVRSRC/24 ste /RSRC with CVI	bit ⁽¹⁾ he RA2/AN2//C e RA2/AN2//C2 bit bit ep size (low ran RSRC/32 step si	2INB/C1IND/C3	BINB/Vref-/CVf		
bit 4	1 = Compara		ource, CVRSR	c = (Vref+) – (\	,			
bit 3-0	0 = Comparator reference source, CVRsRc = AVDD - AVss it 3-0 CVR<3:0>: Comparator VREF Value Selection bits ($0 \le (\text{CVR}<3:0>) \le 15$) <u>When CVRR = 1:</u> CVREF = ((CVR<3:0>)/24) • (CVRsRc) <u>When CVRR = 0:</u> CVREF = (CVRsRc/4) + ((CVR<3:0>)/32) • (CVRsRc)							

Note 1: CVROE overrides the TRIS bit setting.

PIC18F47J53

REGISTER 28-6: CONFIG3H: CONFIGURATION REGISTER 3 HIGH (BYTE ADDRESS 300005h)

					•		,		
U-1	U-1	U-1	U-1	R/WO-1	U-0	R/WO-1	R/WO-1		
_	—	—		MSSPMSK	_	ADCSEL	IOL1WAY		
bit 7					bit (
Legend:									
R = Readabl	e bit	WO = Write-O	nce bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 7-4	Unimplemen	ted: Program t	he correspo	nding Flash Con	figuration bit to	oʻ1'			
bit 3	MSSPMSK: MSSP 7-Bit Address Masking Mode Enable bit								
	1 = 7-Bit Add	lress Masking r	node is enal	oled					
	0 = 5-Bit Address Masking mode is enabled								

1.11.0	
bit 2	Unimplemented: Read as '0'

bit 0

bit 6-0

bit 1 ADCSEL: A/D Converter Mode

- 1 = 10-bit conversion mode is enabled
- 0 = 12-bit conversion mode is enabled

IOL1WAY: IOLOCK One-Way Set Enable bit

- 1 = IOLOCK bit (PPSCON<0>) can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.
- 0 = IOLOCK bit (PPSCON<0>) can be set and cleared as needed, provided the unlock sequence has been completed

REGISTER 28-7: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)

| R/WO-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| WPCFG | WPFP6 | WPFP5 | WPFP4 | WPFP3 | WPFP2 | WPFP1 | WPFP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	WO = Write-Once bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7 WPCFG: Write/Erase Protect Configuration Region Select bit (valid when WPDIS = 0)

- 1 = Configuration Words page is not erase/write-protected unless WPEND and WPFP<5:0> settings include the Configuration Words page⁽¹⁾
- 0 = Configuration Words page is erase/write-protected, regardless of WPEND and WPFP<5:0>⁽¹⁾
- WPFP<6:0>: Write/Erase Protect Page Start/End Location bits

Used with WPEND bit to define which pages in Flash will be write/erase protected.

Note 1: The "Configuration Words page" contains the FCWs and is the last page of implemented Flash memory on a given device. Each page consists of 1,024 bytes. For example, on a device with 64 Kbytes of Flash, the first page is 0 and the last page (Configuration Words page) is 63 (3Fh).

PIC18F47J53

TBLWT	Table Wri	te					
Syntax:	TBLWT ('	*; *+; *-; +*	*)				
Operands:	None						
Operation:	if TBLWT*, (TABLAT) \rightarrow Holding Register; TBLPTR – No Change if TBLWT*+, (TABLAT) \rightarrow Holding Register; (TBLPTR) + 1 \rightarrow TBLPTR if TBLWT*-, (TABLAT) \rightarrow Holding Register; (TBLPTR) – 1 \rightarrow TBLPTR if TBLWT+*, (TBLPTR) + 1 \rightarrow TBLPTR; (TABLAT) \rightarrow Holding Register						
Status Affected:	None						
Encoding:	0000	0000	0000	11nn nn=0 * =1 *+ =2 *- =3 +*			
Description:	This instruction uses the 3 LSBs of TBLPTR to determine which of the 8 holding registers the TABLAT is written to. The holding registers are used to program the contents of Program Memory (P.M.). (Refer to Section 6.0 "Memory Organization" for additional details on programming Flash memory.) The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. The LSb of the TBLPTR selects which byte of the program memory location to						
	TBLPT			nificant Byte m Memory			
	TBLPT			ificant Byte n Memory			
Words: Cycles:	•	BLPTR as nge crement crement		odify the			
Q Cycle Activity:							
	Q1	Q2	Q3	Q4			
	Decode	No operation	No operation	No operation			
	No	No	No	No			
			operation	operation (Write to Holding Register)			

Register)

TBLWT Table Write (Continued)

Example 1:	TBLWT *+;		
Before Instru	uction		
TABLA		=	55h
TBLPT		=	00A356h
(00A35	NG REGISTER	=	FFh
· ·	tions (table write	comp	pletion)
TABLA		=	55h
TBLPT		=	00A357h
HOLDII (00A35		=	55h
(UUA35	011)	-	5511
Example 2:	TBLWT +*;		
Before Instru	uction		
TABLA	Г	=	34h
TBLPT	••	=	01389Ah
(01389)	NG REGISTER	=	FFh
	NG REGISTER		
(01389	Bh)	=	FFh
After Instruc	tion (table write o	comple	etion)
TABLA		=	34h
	R NG REGISTER	=	01389Bh
(01389)		=	FFh
HOLDI	NG REGISTER		
(01389)	Bh)	=	34h

30.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

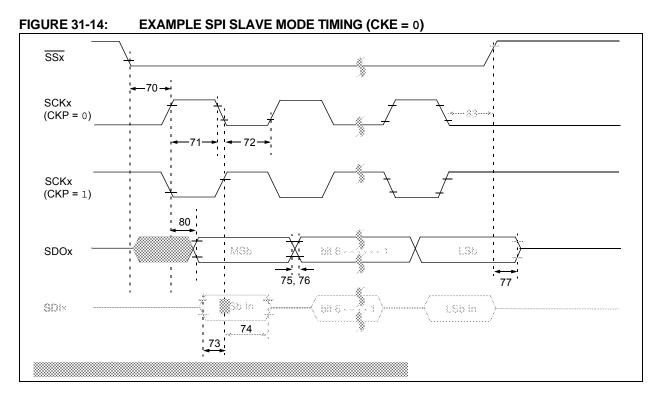
30.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing


User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

PIC18F47J53

TABLE 31-22:	EXAMPLE SPI MODE REQUIREME	NTS (SLAVE MODE TI	MING, CKE = 0)

Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input		3 Тсү	—	ns	
70A	TssL2WB	$\overline{SSx} \downarrow$ to Write to SSPxBUF		3 Tcy	_	ns	
71	TscH	SCKx Input High Time	Continuous	1.25 Tcy + 30	_	ns	
71A		(Slave mode)	Single byte	40	_	ns	(Note 1)
72	TscL	SCKx Input Low Time	Continuous	1.25 Tcy + 30		ns	
72A		(Slave mode)	Single byte	40	_	ns	(Note 1)
73	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge		25	—	ns	
73A	Тв2в	Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2		1.5 Tcy + 40	—	ns	(Note 2)
74	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge		35		ns	VDD = 3.3V, VDDCORE = 2.5V
				100		ns	VDD = 2.15V
75	TDOR	SDOx Data Output Rise Time		—	25	ns	PORTB or PORTC
76	TDOF	SDOx Data Output Fall Time		—	25	ns	PORTB or PORTC
77	TssH2doZ	SSx ↑ to SDOx Output High-Imped	ance	10	70	ns	
80	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		—	50	ns	VDD = 3.3V, VDDCORE = 2.5V
				—	100	ns	VDD = 2.15V
83	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge		1.5 TCY + 40	—	ns	

Note 1: Requires the use of Parameter #73A.

2: Only if Parameter #71A and #72A are used.

Param. No.	Symbol	Characteris	tic	Min.	Max.	Units	Conditions	
100	Тнідн	Clock High Time	100 kHz mode	4.0	_	μS		
			400 kHz mode	0.6	_	μS		
			MSSP modules	1.5 TCY	—			
101	TLOW	Clock Low Time	100 kHz mode	4.7	_	μS		
			400 kHz mode	1.3	_	μS		
			MSSP modules	1.5 TCY	_			
102	TR	SDAx and SCLx Rise Time	100 kHz mode	_	1000	ns		
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF	
103	TF	SDAx and SCLx Fall Time	100 kHz mode	_	300	ns		
			400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF	
90	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7	—	μS	Only relevant for Repeated	
			400 kHz mode	0.6	—	μS	Start condition	
91	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μS	After this period, the first cloc	
			400 kHz mode	0.6	—	μS	pulse is generated	
106	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	ns		
			400 kHz mode	0	0.9	μS		
107	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)	
			400 kHz mode	100	—	ns		
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	_	μS		
			400 kHz mode	0.6	—	μS		
109	ΤΑΑ	Output Valid from Clock	100 kHz mode	—	3500	ns	(Note 1)	
			400 kHz mode	—	—	ns		
110	TBUF	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmission can start	
D102	Св	Bus Capacitive Loading		_	400	pF		

TABLE 31-25: I²C BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C bus device can be used in a Standard mode I²C bus system, but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLx signal. If such a device does stretch the LOW period of the SCLx signal, it must output the next data bit to the SDAx line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.