

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CSIO, I ² C, LINbus, SmartCard, UART/USART, USB
Peripherals	I ² S, LCD, LVD, POR, PWM, WDT
Number of I/O	65
Program Memory Size	304KB (304K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e1b84e0agf20000

Watch Counter

The Watch Counter wakes up the microcontroller from the low power consumption mode. The clock source can be selected from the main clock, the sub clock, the built-in high-speed CR clock or the built-in low-speed CR clock.

Interval timer: up to 64 s (sub clock: 32.768 kHz)

External Interrupt Controller Unit

- ■Up to 24 external interrupt input pins
- ■Non-maskable interrupt (NMI) input pin: 1

Watchdog Timer (2 Channels)

The watchdog timer generates an interrupt or a reset when the counter reaches a time-out value.

This series consists of two different watchdogs, hardware watchdog and software watchdog.

The hardware watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, the hardware watchdog is active in any low-power consumption modes except RTC, Stop, Deep standby RTC and Deep standby Stop mode.

CRC (Cyclic Redundancy Check) Accelerator

The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a reduction of the integrity check processing load for reception data and storage.

■CCITT CRC16 and IEEE-802.3 CRC32 are supported.

□ CCITT CRC16 Generator Polynomial: 0x1021

□ IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7

HDMI-CEC/Remote Control Receiver (Up to 2 Channels)

- ■HDMI-CEC transmitter
 - □ Header block automatic transmission by judging Signal free
 - □ Generating status interrupt by detecting Arbitration lost
 - □ Generating START, EOM, ACK automatically to output CEC transmission by setting 1 byte data
 - ☐ Generating transmission status interrupt when transmitting 1 block (1 byte data and EOM/ACK)
- ■HDMI-CEC receiver
 - □ Automatic ACK reply function available
 - ☐ Line error detection function available
- ■Remote control receiver
 - ☐ 4 bytes reception buffer
 - □ Repeat code detection function available

Smart Card Interface (Max 2 Channels)

- ■Compliant with ISO7816-3 specification
- ■Card Reader only/B class card only
- ■Available protocols
 - ☐ Transmitter: 8E2, 8O2, 8N2
 - ☐ Receiver: 8E1, 8O1, 8N2, 8N1, 9N1
 - □ Inverse mode
- ■TX/RX FIFO integrated (RX: 16-bytes, TX:16-bytes)

AES Calculator

- AES (Advanced Encryption Standard) calculator is an AES common key crypto accelerator that is compliant with FIPS (Federal Information Processing Standard Publication) 197.
- Available key length: 128/192/256-bit
- ■CBC mode and ECB mode support

Clock and Reset

■Clocks

A clock can be selected from five clock sources (two external oscillators, two built-in CR oscillator, and main PLL).

- ☐ Main clock: 4 MHz to 40 MHz
- □ Sub clock: 32.768 kHz
- □ Built-in high-speed CR clock: 4 MHz
- □ Built-in low-speed CR clock: 100 kHz
- □ Main PLL clock
- ■Resets
 - ☐ Reset request from the INITX pin
 - □ Power on reset
 - □ Software reset
 - □ Watchdog timer reset
 - □ Low-voltage detection reset
 - □ Clock supervisor reset

Clock Supervisor (CSV)

The Clock Supervisor monitors the failure of external clocks with a clock generated by a built-in CR oscillator.

- If an external clock failure (clock stop) is detected, a reset is asserted.
- If an external frequency anomaly is detected, an interrupt or a reset is asserted.

Low-Voltage Detector (LVD)

This series monitors the voltage on the VCC pin with a 2-stage mechanism. When the voltage falls below a designated voltage, the Low-voltage Detector generates an interrupt or a reset.

- ■LVDR: monitor Vcc and auto-reset operation
- ■LVD1: monitor Vcc and error reporting via an interrupt
- LVD2: selectable to monitor Vcc or LVDI and error reporting via an interrupt

Low Power Consumption Mode

This series has six low power consumption modes.

- ■Sleep
- ■Timer
- ■RTC
- ■Stop
- ■Deep standby RTC (selectable between keeping the value of RAM and not)
- ■Deep standby Stop (selectable between keeping the value of RAM and not)

4. List of Pin Functions

List of Pin Numbers

The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.

	Pin No.		Din Nome	I/O Cinquit Tuno	Pin State Type	
LQFP-120	LQFP-100	LQFP-80	Pin Name	I/O Circuit Type	Pin State Type	
1	1	1	VCC	-		
			P50			
			SIN3_1			
2	2	2	INT00_0	Q	X	
			VV4			
			P51			
3	3	3	SOT3_1	Q	X	
3	3	3	INT01_0		^	
			VV3			
			P52			
4	4	4	SCK3_1		V	
4	4	4	INT02_0	Q	X	
			VV2			
			P53			
	5 5		SIN6_0			
5		5 5	TIOA1_2	Q	X	
-			INT07_2			
			VV1			
				P54		
			SOT6_0	Q	X	
6	6	6	TIOB1_2			
			INT18_1			
			VV0			
			P55			
			SCK6_0			
7	7	7	ADTG_1	L	S	
			INT19_1			
			SEG39			
			P56			
			MI2SMCK6_1			
	8	8	CEC1_1			
8	Ö	Ü	INT08_2	L	U	
			WKUP9			
			SEG38			
	-	-	SIN1_0			
9	-	-	P57	F	1	
			SOT1_0		<u> </u>	
10	-	-	P58	F F	1	
			SCK1_0 P59			
11	-	-	SIN7_0	7_0 F		
11	•	- - 	INT16_1	╡ '	J	

Pin Function	Pin Name	Function Description		Pin No.	
Fill Fullction	Fill Name	Function Description	LQFP-120	LQFP-100	LQFP-80
	SIN3_0		110	-	-
	SIN3_1	Multi-function serial interface ch.3 input pin	2	2	2
	SIN3_2		94	79	63
	SOT3_0 (SDA3_0)	Multi-function serial interface ch.3 output pin.	109	-	-
Multi-function	SOT3_1 (SDA3_1)	This pin operates as SOT3 when used as a UART/CSIO/LIN pin (operation mode 0 to 3)	3	3	3
Serial 3	SOT3_2 (SDA3_2)	and as SDA3 when used as an I ² C pin (operation mode 4).	92	77	61
	SCK3_0 (SCL3_0)	Multi-function serial interface ch.3 clock I/O pin.	108	-	-
	SCK3_1 (SCL3_1)	This pin operates as SCK3 when used as a CSIO (operation mode 2) and as SCL3	4	4	4
	SCK3_2 (SCL3_2)	when used as an I ² C pin (operation mode 4).	96	81	65
	SIN4_0		102	87	67
	SIN4_1	Multi-function serial interface ch.4 input pin	76	66	56
	SIN4_2	7	97	82	-
	SOT4_0 (SDA4_0)	Multi-function serial interface ch.4 output pin.	99	84	66
	SOT4_1 (SDA4_1)	This pin operates as SOT4 when used as a UART/CSIO/LIN pin (operation mode 0 to 3)	77	67	57
	SOT4_2 (SDA4_2)	and as SDA4 when used as an I ² C pin (operation mode 4).	98	83	-
Multi-function Serial 4	SCK4_0 (SCL4_0)	Multi-function serial interface ch.4 clock I/O pin.	107	92	72
Ochai 4	SCK4_1 (SCL4_1)	This pin operates as SCK4 when used as a CSIO (operation mode 2) and as SCL4	78	68	-
	SCK4_2 (SCL4_2)	when used as an I ² C pin (operation mode 4).	99	84	66
	CTS4_0	Multi function period interface ob 4 CTC input	106	91	71
	CTS4_1	Multi-function serial interface ch4 CTS input	79	69	-
	CTS4_2	Ρ"1	100	85	-
	RTS4_0	Multi-function serial interface ch4 RTS input	105	90	70
<u> </u>	RTS4_1	pin	80	70	-
	RTS4_2	F	101	86	-

Pin Function	Pin Name	Function Description	LQFP-120	Pin No. LQFP-100	LQFP-80
	DTTI0X_0	Input signal of waveform generator	23	18	13
	DTTI0X_1	controlling RTO00 to RTO05 outputs of	79	69	-
	DTTI0X_2	Multi-function Timer 0.	115	95	75
	FRCK0_0		18	13	-
	FRCK0_1	16-bit free-run timer ch.0 external clock input pin.	80	70	-
	FRCK0_2		63	53	43
_	IC00_0		22	17	-
	IC00_1		75	65	55
	IC00_2		64	54	44
	IC01_0		21	16	-
	IC01_1		76	66	56
	IC01_2	16-bit input capture input pin of Multi-function	65	55	45
	IC02_0	timer 0.	20	15	-
	IC02_1	ICxx describes channel number.	77	67	57
	IC02_2	-	66	56	46
	IC03_0	7	19	14	-
	IC03_1		78	68	-
	IC03_2	7	67	57	47
Multi-function	RTO00_0 (PPG00_0)	Waveform generator output pin of Multi-function timer 0.	24	19	14
Timer 0	RTO00_1 (PPG00_1)	This pin operates as PPG00 when it is used in PPG0 output mode.	86	71	58
	RTO01_0 (PPG00_0)	Waveform generator output pin of Multi-function timer 0.	25	20	15
	RTO01_1 (PPG00_1)	This pin operates as PPG00 when it is used in PPG0 output mode.	85	-	-
	RTO02_0 (PPG02_0)	Waveform generator output pin of Multi-function timer 0.	26	21	16
	RTO02_1 (PPG02_1)	This pin operates as PPG02 when it is used in PPG0 output mode.	84	-	-
	RTO03_0 (PPG02_0)	Waveform generator output pin of Multi-function timer 0.	27	22	17
	RTO03_1 (PPG02_1)	This pin operates as PPG02 when it is used in PPG0 output mode.	83	-	-
	RTO04_0 (PPG04_0)	Waveform generator output pin of Multi-function timer 0.	28	23	18
	RTO04_1 (PPG04_1)	This pin operates as PPG04 when it is used in PPG0 output mode.	82	-	-
	RTO05_0 (PPG04_0)	Waveform generator output pin of Multi-function timer 0.	29	24	19
	RTO05_1 (PPG04_1)	This pin operates as PPG04 when it is used in PPG0 output mode.	81	-	-
	IGTRG0_0	PPG IGBT mode external trigger input pin	48	43	33
	IGTRG0_1		116	96	76

Pin Function	Pin Name	Function Description	LQFP-120	Pin No. LQFP-100	LQFP-80
	LVDI	Input pin to monitor the external voltage.	37	32	22
VBAT	VWAKEUP	The return signal input pin from a hibernation state	45	40	30
	REGCTL	On-board regulator control pin	44	39	29
Reset	INITX	External Reset Input pin. A reset is valid when INITX="L".	41	36	26
	MD0	Mode 0 pin. During normal operation, input MD0="L". During serial programming to Flash memory, input MD0="H".	57	47	37
Mode	MD1	Mode 1 pin. During normal operation, input is not needed. During serial programming to Flash memory, MD1 = "L" must be input.	56	46	36
			1	1	1
			31	26	-
Power	VCC	Power supply pin	40	35	25
			61	51	41
			91	76	-
VBAT power	VBAT	VBAT power supply pin Backup power supply (battery etc.) and system power supply	46	41	31
			30	25	20
			39	34	24
GND	VSS	GND pin	60	50	40
			90	75	-
			120	100	80
	X0	Main clock (oscillation) input pin	58	48	38
	X0A	Sub clock (oscillation) input pin	42	37	27
	X1	Main clock (oscillation) I/O pin	59	49	39
Clock	X1A	Sub clock (oscillation) I/O pin	43	38	28
	CROUT_0	Built-in high-speed CR oscillation clock output port	89	74	-
	CROUT_1	Built-in high-speed CR oscillation clock output port	107	92	72
Analog	AVCC	A/D converter analog power supply pin	70	60	50
Power	AVRH	A/D converter analog reference voltage input pin	73	63	53
Analog GND	AVSS	A/D converter analog reference voltage input pin	71	61	51
C pin	С	Power supply stabilization capacitance pin	38	33	23

^{*:} PE0 is an open drain pin, cannot output high.

6. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices.

6.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

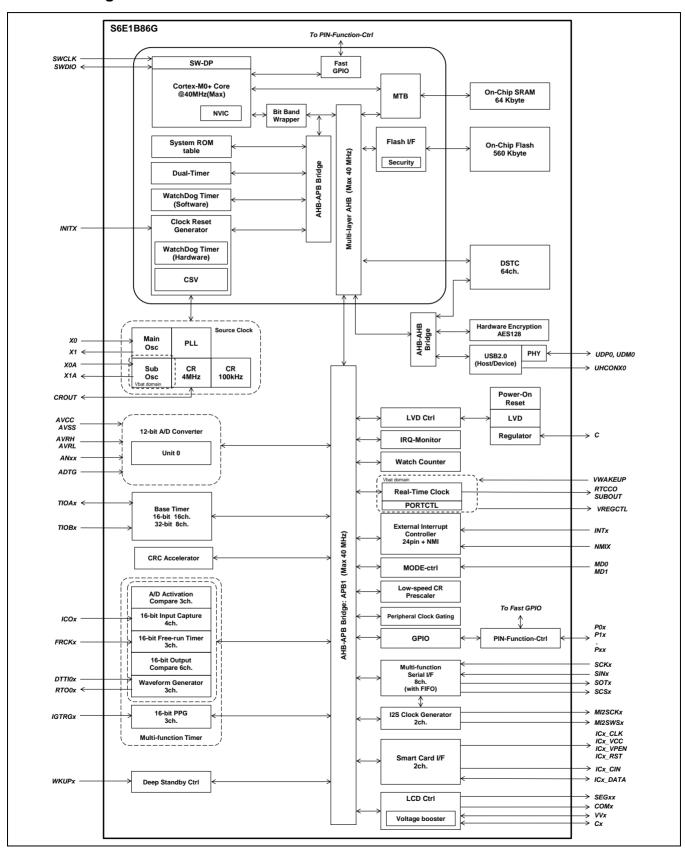
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.


Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

- (1) Preventing Over-Voltage and Over-Current Conditions
 - Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.
- (2) Protection of Output Pins
 - Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.
 - Therefore, avoid this type of connection.
- (3) Handling of Unused Input Pins
 - Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

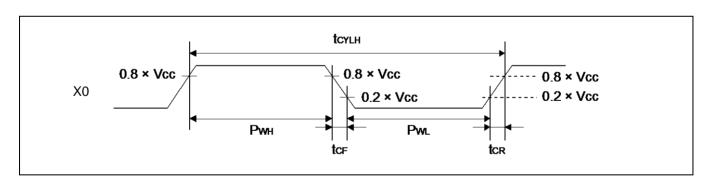
8. Block Diagram

Pin Status Type	Function Group	State Upon Power-on Reset or Low-Voltag e Detection	State at INITX Input	State Upon Device Internal Reset	State in Run Mode or Sleep Mode	State in Timer Mode, RTC Mode, or Stop Mode		RTC Mode, or Standby Stan Mode			
Pin		Power Supply Unstable	Power Supply Stable	Power Supply Stable	Power Supply Stable	Power Sup		Power Sup	Power Supply Stable		
		-	INITX=0	INITX=1	INITX=1	INIT SPL=0	X=1 SPL=1	INIT SPL=0	X=1 SPL=1	INITX=1	
						0. 1-0	Maintain	Maintain	Maintain	Maintain	
	CEC enabled						previous	previous	previous	previous	
	Chabled						state	state	state	state	
	WKUP enabled	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	d		Hi-Z / Internal input fixed at 0	WKUP input enabled	Hi-Z / WKUP input enabled	GPIO
	External interrupt enabled selected						Maintain	Maintain	Maintain previous state	GPIO selected /	
U	Resourc e other than above selected		Hi-Z /	Hi-Z /		previous state	Hi-Z /	Internal input fixed at 0	Hi-Z / Internal	at 0	
	GPIO selected	Hi-Z	Internal	Internal input fixed at 0			Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	input fixed at 0	Output maintains previous state / Internal input fixed at 0	
	Analog input selected	Hi-Z	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled						
V	External interrupt enabled selected Resourc e other than above selected GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state Hi-Z / Internal input fixed at 0	GPIO selected / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	GPIO selected / Internal input fixed at 0	

Parameter	Symbol (Pin Name)	Co	onditions		alue Max	Unit	Remarks
	(Pin Name)			Тур	IVIAX		
			T _A =25°C V _{CC} =3.3 V	10	TBD	μA	*1
	I _{CCH} (VCC)	Stop mode	T _A =25°C V _{CC} =1.65 V	9	TBD	μA	*1
			T _A =105°C V _{CC} =3.6 V	-	TBD	μA	*1
Power		Sub timer mode	T _A =25°C V _{CC} =3.3 V 32 kHz Crystal oscillation	13	TBD	μA	*1
	I _{CCT} (VCC)		T _A =25°C V _{CC} =1.65 V 32 kHz Crystal oscillation	12	TBD	μA	*1
supply current			T_A =105°C V_{CC} =3.6 V 32 kHz Crystal oscillation		TBD	μA	*1
		RTC mode	T _A =25°C V _{CC} =3.3 V 32 kHz Crystal oscillation	10.5	TBD	μA	*1
	I _{CCR} (VCC)		T _A =25°C V _{CC} =1.65 V 32 kHz Crystal oscillation	9.5	TBD	μA	*1
			T _A =105°C V _{CC} =3.6 V 32 kHz Crystal oscillation	-	TBD	μA	*1

^{*1:} All ports are fixed. LVD off. Flash off.

11.4 AC Characteristics

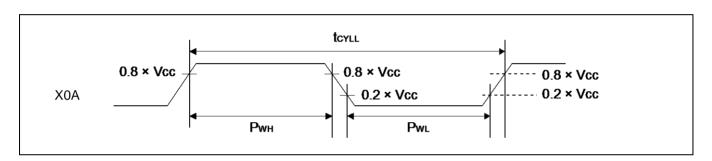

11.4.1 Main Clock Input Characteristics

 $(V_{CC}=AV_{CC}=1.65 \text{ V to } 3.6 \text{ V}, V_{SS}=AV_{SS}=0 \text{ V}, T_{A}=-40 ^{\circ}\text{C to } +105 ^{\circ}\text{C})$

Darameter	Cumbal	Pin Name	Conditions	Va	lue	Unit	Remarks
Parameter	Symbol	Pin Name	Conditions	Min	Max	Unit	Remarks
			V _{CC} ≥ 2.7 V	4	48	MHz	When the crystal oscillator
Input frequency	f		V _{CC} < 2.7 V	4	20	IVITIZ	is connected
Input frequency	f _{CH}		-	4	48	MHz	When the external clock is used
Input clock cycle	t _{CYLH}	X0, X1	-	20.83	250	ns	When the external clock is used
Input clock pulse width	ck pulse width -		Pwh/tcylh, Pwl/tcylh	45	55	%	When the external clock is used
Input clock rising time and falling time	t _{CF,} t _{CR}		-	-	5	ns	When the external clock is used
	f_{CM}	-	-	-	40.8	MHz	Master clock
Internal operating	f _{CC}	-	-	-	40.8	MHz	Base clock (HCLK/FCLK)
clock ^{*1} frequency	f _{CP0}	-	-	-	40.8	MHz	APB0 bus clock*2
	f _{CP1}	-	-	-	40.8	MHz	APB1 bus clock*2
Internal operating	t _{CYCC}	-	-	24.5	-	ns	Base clock (HCLK/FCLK)
Internal operating clock 1 cycle time	t _{CYCP0}	-	-	24.5	-	ns	APB0 bus clock*2
ologic of clothing	t _{CYCP1}	-	-	24.5	-	ns	APB1 bus clock*2

^{*1:} For details of each internal operating clock, refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual".

^{*2:} For details of the APB bus to which a peripheral is connected, see "8. Block Diagram".



11.4.2 Sub Clock Input Characteristics

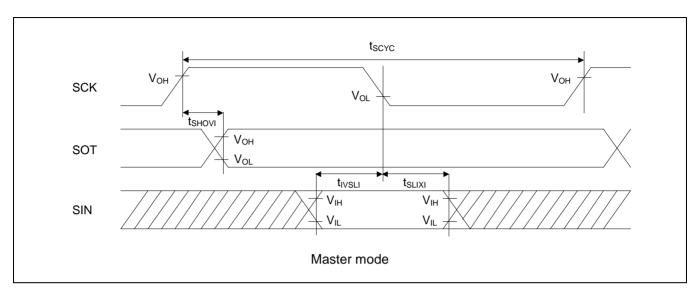
 $(V_{CC}=AV_{CC}=1.65 \text{ V to } 3.6 \text{ V}, V_{SS}=AV_{SS}=0 \text{ V}, T_{A}=-40 ^{\circ}\text{C to } +105 ^{\circ}\text{C})$

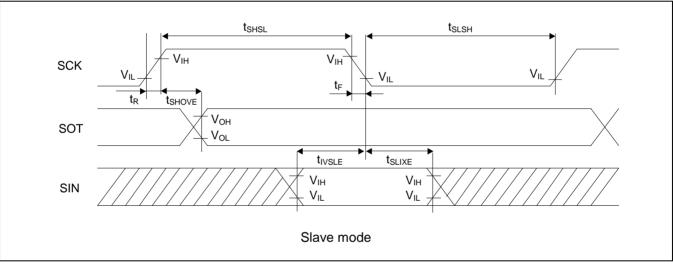
Parameter	Symbol	Pin Name	Conditions		Value		Unit	Remarks	
Parameter	Symbol	riii Naiile	Conditions	Min	Тур	Max	Offic	Remarks	
Input frequency	f _{CL}		-	-	32.768	-	kHz	When the crystal oscillator is connected*	
		X0A, X1A	-	32	-	100	kHz	When the external clock is used	
Input clock cycle	t _{CYLL}	\ \IA	-	10	-	31.25	μs	When the external clock is used	
Input clock pulse width	-		Pwh/tcyll, Pwl/tcyll	45	-	55	%	When the external clock is used	

^{*:} See "Sub crystal oscillator" in "7. Handling Devices" for the crystal oscillator used.

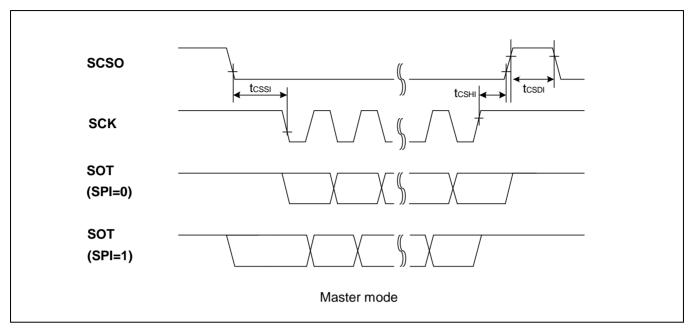
11.4.9 CSIO/SPI/UART Timing

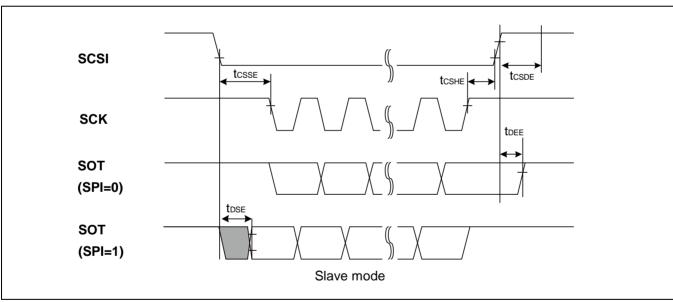
CSIO (SPI=0, SCINV=0)

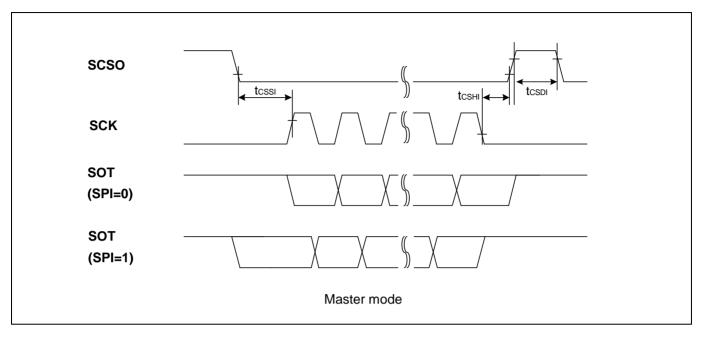

 $(V_{CC}=AV_{CC}=1.65 \text{ V to } 3.6 \text{ V}, V_{SS}=AV_{SS}=0 \text{ V}, T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C})$

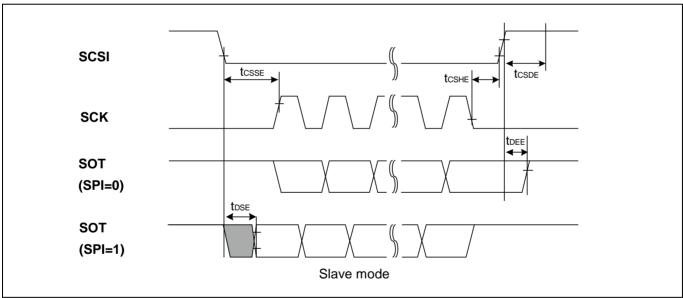

Parameter	Symbol	Pin	Conditions	V _{CC} < 2	2.7 V	V _{cc} ≥ 2	2.7 V	Unit
Farameter	Syllibol	Name	Conditions	Min	Max	Min	Max	Ollic
Serial clock cycle time	t _{SCYC}	SCKx		4 t _{CYCP}	-	4 t _{CYCP}	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	t _{SLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \rightarrow SCK \uparrow setup time$	t _{IVSHI}	SCKx, SINx	Master mode	60	-	50	-	ns
$SCK \uparrow \rightarrow SIN \text{ hold time}$	t _{SHIXI}	SCKx, SINx		0	-	0	-	ns
Serial clock L pulse width	t _{SLSH}	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock H pulse width	t _{SHSL}	SCKx		t _{CYCP} +10	-	t _{CYCP} +10	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	t _{SLOVE}	SCKx, SOTx		-	65	-	52	ns
SIN → SCK ↑ setup time	t _{IVSHE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$SCK \uparrow \rightarrow SIN$ hold time	t _{SHIXE}	SCKx, SINx		20	-	20	-	ns
SCK falling time	t _F	SCKx	1	-	5	-	5	ns
SCK rising time	t _R	SCKx		-	5	-	5	ns

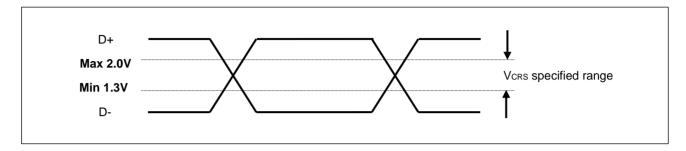
Notes:

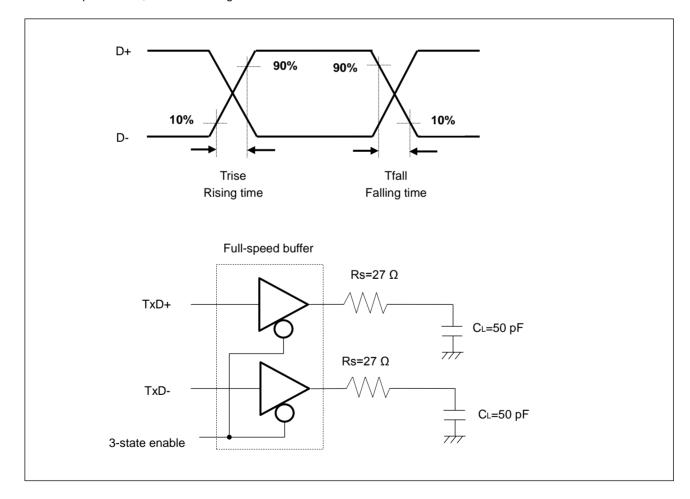

- The above AC characteristics are for clock synchronous mode.
- t_{CYCP} represents the APB bus clock cycle time.
 For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ".
- The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.
- External load capacitance C_L=30 pF





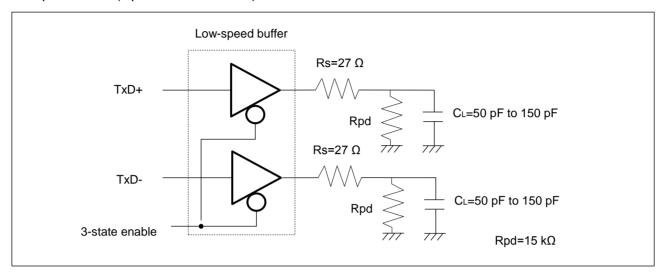




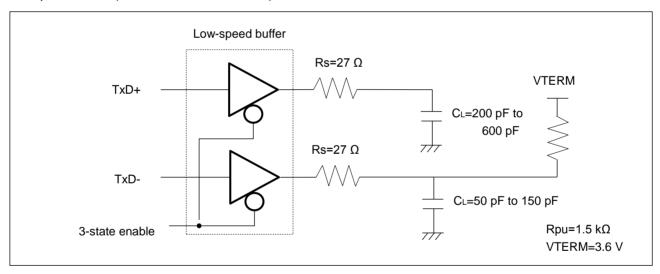


- *3 : The output drive capability of the driver is below 0.3 V at Low-state (VoL) (to 3.6 V and 1.5 k Ω load), and 2.8 V or above (to the VSS and 1.5 k Ω load) at high-state (VoH)
- *4: The cross voltage of the external differential output signal (D+ / D-) of USB I/O buffer is within 1.3 V to 2.0 V.

*5: The indicate rising time (Trise) and falling time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within ±10% to minimize RFI emission.


*6 : USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential Mode).

USB standard defines that output impedance of USB driver must be in range from 28Ω to 44Ω . So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance.


When using this USB I/O, use it with 25 Ω to 33 Ω (recommendation value : 27 Ω) series resistor Rs.

· Low-Speed Load (Upstream Port Load) - Reference 1

· Low-Speed Load (Downstream Port Load) - Reference 2

11.7.2 Low-Voltage Detection Interrupt

 $(T_A = -40^{\circ}C \text{ to } +105^{\circ}C)$

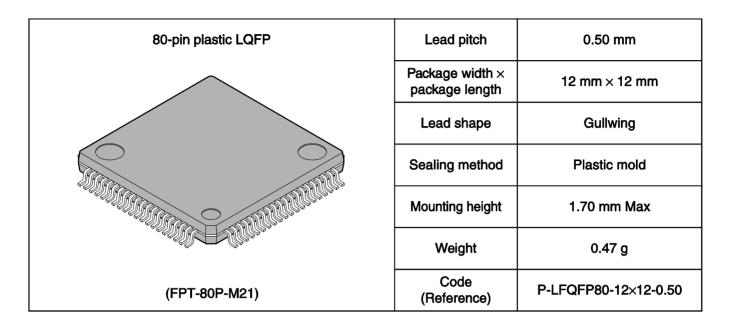
Parameter	Symbol	Conditions		Value		Unit	Remarks
Farailletei	Syllibol	Conditions	Min	Тур	Max	Oilit	Keiliaiks
Detected voltage	VDL	SVHI=00100	1.56	1.70	1.84	V	When voltage drops
Released voltage	VDH	SVHRLI=00100	1.61	1.75	1.89	V	When voltage rises
Detected voltage	VDL	SVHI=00101	1.61	1.75	1.89	V	When voltage drops
Released voltage	VDH	SVHRLI=00101	1.66	1.80	1.94	V	When voltage rises
Detected voltage	VDL	SVHI=00110	1.66	1.80	1.94	V	When voltage drops
Released voltage	VDH	SVHRLI=00110	1.70	1.85	2.00	V	When voltage rises
Detected voltage	VDL	SVHI=00111	1.70	1.85	2.00	V	When voltage drops
Released voltage	VDH	SVHRLI=00111	1.75	1.90	2.05	V	When voltage rises
Detected voltage	VDL	SVHI=01000	1.75	1.90	2.05	V	When voltage drops
Released voltage	VDH	SVHRLI=01000	1.79	1.95	2.11	V	When voltage rises
Detected voltage	VDL	SVHI=01001	1.79	1.95	2.11	V	When voltage drops
Released voltage	VDH	SVHRLI=01001	1.84	2.00	2.16	V	When voltage rises
Detected voltage	VDL	SVHI=01010	1.84	2.00	2.16	V	When voltage drops
Released voltage	VDH	SVHRLI=01010	1.89	2.05	2.21	V	When voltage rises
Detected voltage	VDL	SVHI=01011	1.89	2.05	2.21	V	When voltage drops
Released voltage	VDH	SVHRLI=01011	1.93	2.10	2.27	V	When voltage rises
Detected voltage	VDL	SVHI=01100	2.30	2.50	2.70	V	When voltage drops
Released voltage	VDH	SVHRLI=01100	2.39	2.60	2.81	V	When voltage rises
Detected voltage	VDL	SVHI=01101	2.39	2.60	2.81	V	When voltage drops
Released voltage	VDH	SVHRLI=01101	2.48	2.70	2.92	V	When voltage rises
Detected voltage	VDL	SVHI=01110	2.48	2.70	2.92	V	When voltage drops
Released voltage	VDH	SVHRLI=01110	2.58	2.80	3.02	V	When voltage rises
Detected voltage	VDL	SVHI=01111	2.58	2.80	3.02	V	When voltage drops
Released voltage	VDH	SVHRLI=01111	2.67	2.90	3.13	V	When voltage rises
Detected voltage	VDL	SVHI=10000	2.67	2.90	3.13	V	When voltage drops
Released voltage	VDH	SVHRLI=10000	2.76	3.00	3.24	V	When voltage rises
Detected voltage	VDL	SVHI=10001	2.76	3.00	3.24	V	When voltage drops
Released voltage	VDH	SVHRLI=10001	2.85	3.10	3.35	V	When voltage rises
Detected voltage	VDL	SVHI=10010	2.85	3.10	3.35	V	When voltage drops
Released voltage	VDH	SVHRLI=10010	2.94	3.20	3.46	V	When voltage rises
Detected voltage	VDL	SVHI=10011	2.94	3.20	3.46	V	When voltage drops
Released voltage	VDH	SVHRLI=10011	3.04	3.30	3.56	V	When voltage rises
LVD stabilization wait time	t_{LVDW}	-	-	-	8160 x t _{CYCP} *	μs	
LVD detection delay time	t _{LVDDL}	-	-	-	200	μs	

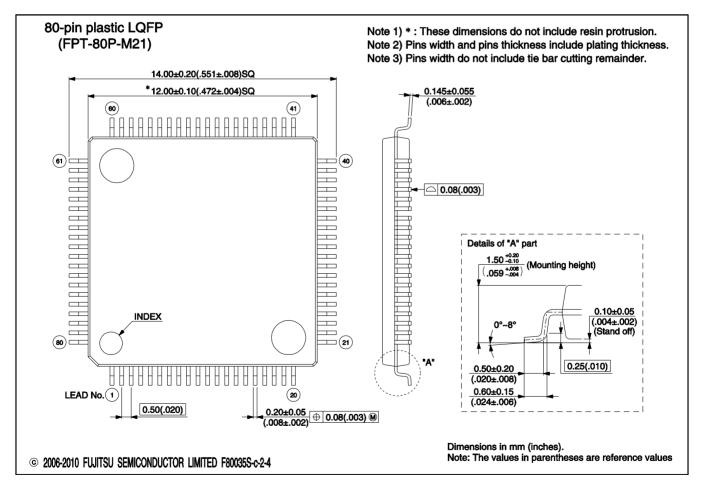
 $^{^{\}star}$: t_{CYCP} represents the APB1 bus clock cycle time.

11.8 Flash Memory Write/Erase Characteristics

 $(V_{CC}=1.65 \text{ V to } 3.6 \text{ V}, T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C})$

Paramet	Parameter		Value			Remarks		
Parameter		Min	Typ*	Max*	Unit	Remarks		
	Large sector	-	1.1	2.7		The sector erase time includes the time of		
Sector erase time	Small sector	-	0.3	0.9	S	writing prior to internal erase.		
Halfword (16-bit) write time		-	30	528	μs	The halfword (16-bit) write time excludes the system-level overhead.		
Chip erase time		-	11.2	28.8	S	The chip erase time includes the time of writing prior to internal erase.		


^{*:} The typical value is immediately after shipment, the maximum value is guarantee value under 10,000 cycle of erase/write.


Write/Erase Cycle and Data Hold Time (Target Value)

Write/Erase Cycle	Data Hold Time (Year)	Remarks
1,000	20*	
10,000	10*	

^{*:} At average + 85°C

