

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	CSIO, I ² C, LINbus, SmartCard, UART/USART, USB
Peripherals	I ² S, LCD, LVD, POR, PWM, WDT
Number of I/O	102
Program Memory Size	560KB (560K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/s6e1b86ghagv20000

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Packages

Product Name Package	S6E1B84E/S6E1B86E	S6E1B84F/S6E1B86F	S6E1B84G/S6E1B86G
LQFP: FPT-80P-M21 (0.50 mm pitch)	О	-	-
LQFP: FPT-100P-M20 (0.50 mm pitch)	-	0	-
LQFP: FPT-120P-M21 (0.50 mm pitch)	-	-	0

O: Available

Note:

- See "13. Package Dimensions" for detailed information on each package.

Pin No.		Pin No.		I/O Circuit Type	Pin State Type	
LQFP-120	LQFP-100	LQFP-80	Pin Name	I/O Circuit Type	Pin State Type	
			P5A			
12	-	-	SOT7_0	F	J	
			INT16_2			
			P5B			
13	-	-	SCK7_0	F	J	
			INT17_2			
			P30			
			TIOB0_1			
			SCS60_1			
	•	0	MI2SWS6_1			
14	9	9	 INT03_2	— M	Т	
			WKUP4			
			COM7			
			SEG43			
			P31			
			TIOB1_1			
			SCK6_1			
15	10	10	MI2SCK6_1	М	S	
		.0	INT04_2		Ŭ	
			COM6			
			SEG42			1
			P32			
			TIOB2_1	—		
			SOT6_1	_	S	
16	11	11	MI2SDO6_1	M		
10	11	11	INT05_2	IVI		
		-	COM5			
			SEG41			
		-	P33			
			TIOB3_1	-	-	
			SIN6_1			
			MI2SDI6_1			
17	12	12	INT04_0	— M	S	
				_		
			ADTG_6			
			COM4	_		
			SEG40 P34			
				_		
18	13	-	SCS61_1	- I	I	
			FRCK0_0	_		
			TIOB4_1			
			P35	_		
			SCS62_1	_		
19	14	-	IC03_0	L	S	
			TIOB5_1	_	_	
			INT08_1	_		
			SEG37			
			P36	I		
	. –		IC02_0			
20	15	-	SIN5_2		N	
			INT09_1			
			WKUP11			
			P37			
21	16	_	IC01_0	- I	J	
<u> </u>	10	-	SOT5_2		5	
			INT10_1			

Pin No.			Dia Nama		
LQFP-120	LQFP-100	LQFP-80	Pin Name	I/O Circuit Type	Pin State Type
			P4C		
			TIOB2_0		
10	4.4	24	SOT7_1		D
49	44	34	CEC0_0	L	R
			INT12_0		
			SEG29		
		_	P4D		
		-	TIOB3_0		
50	45	35	SCK7_1	L	т
00	10		INT13_0		•
			WKUP6		
			SEG28		
			P70		
51	-	-	TIOA4_2	F	I
			SCS71_1		
		-	P71		
52	-		TIOB4_2	— F	J
		-	SCS72_1		
			INT13_2		
			P72		
53	-		SIN2_0 TIOA6_0	— F	J
		-	INT14_2		
			P73		
			SOT2_0		
54	-	-	TIOB6_0	— F	J
		-	INT15_2		
			P74		
55	-		SCK2_0	— F	I
			PE0		
56	46	36	MD1	C	D
57	47	37	MD0	J	М
			PE2		
58	48	38	X0	— A	A
			PE3		
59	49	39		Α	В
			X1		
60	50	40	VSS	-	-
61	51	41	VCC	-	-
			P10		
		Ī	IC1_CLK_1		
62	52	42	CTS1_1	Р	К
		1	AN00		
		ł	SEG27		
			P11		
		-	IC1_VCC_1	-	
		-	SIN1_1		
		-	FRCK0_2		w
63	53 53 43	43	INT02_1	— Р	
		4	WKUP1		
		4	AN01		
		ł	SEG26		

Pin No.			Dia Nama		Din State Trme
LQFP-120	LQFP-100	LQFP-80	Pin Name	I/O Circuit Type	Pin State Type
	P12				
			IC1_VPEN_1		
			SOT1_1		
64	54	44	IC00_2	— P	К
			SEG25		
			P13		
			IC1_RST_1		
			SCK1_1		
05		45	RTCCO_1		IZ.
65	55	45	IC01_2	— Р	К
			SUBOUT_1		
			SEG24		
			P14		
		-	IC1_DATA_1		
		-	RTS1_1		
			SIN0_1		V
66	56	46	IC02_2	— P	
			INT03_1		
			AN04		
			SEG23		
			P15		
			IC1_CIN_1		V
			SOT0_1		
67	57	47	IC03_2	Р	
0.	01		INT14_0	· ·	
		-	AN05		
		-	SEG22		
			P16		
		-	SCK0_1		
68	58	48	INT15_0	P	V
00	00	-10	AN06	- '	v
		-	SEG21		
			P17		
		-	SIN2_2		
69	59	49	INT04_1	Р	V
03			AN07	'	v
		-	SEG20		
70	60	50	AVCC	-	-
70	61	50	AVCC		-
72	62	52	AVSS		-
73	63	53	AVRL		-
15	00	55	P18	-	-
		+		1	
74	64	54		— P	К
		+	SEG19	-	
			P19		
75	05		SCK2_2		к
75	65	55	IC00_1	Р	
			AN09	_	
			SEG18		

Pin Function	Pin Name	Function Description	LQFP-120	Pin No. LQFP-100	LQFP-80
_	INT00_0		2	2	2
	INT00_1	External interrupt request 00 input pin	97	82	-
	INT00_2		102	87	67
	INT01_0	External interrupt request 04 input air	3	3	3
F	INT01_1	External interrupt request 01 input pin	98	83	-
	INT02_0		4	4	4
	INT02_1	External interrupt request 02 input pin	63	53	43
	INT02_2		82	-	-
Γ	INT03_0		113	93	73
	INT03_1	External interrupt request 03 input pin	66	56	46
	INT03_2		14	9	9
F	INT04_0		17	12	12
	INT04_1	External interrupt request 04 input pin	69	59	49
	INT04_2		15	10	10
	INT05_0		89	74	-
	INT05_1	External interrupt request 05 input pin	76	66	56
	INT05_2		16	11	11
	INT06_0	External interrupt request 06 input pin	23	18	13
External	INT06_1		88	73	60
Interrupt	INT06_2		96	81	65
_	INT07_0		24	19	14
-	INT07_1 INT07_2	External interrupt request 07 input pin	<u>114</u> 5	94 5	74 5
H	INT07_2		34	29	5
F	INT08_1	External interrupt request 08 input pin	19	14	-
	INT08_2		8	8	8
F	INT09_0	External interrupt request 00 input pin	35	30	-
	INT09_1	External interrupt request 09 input pin	20	15	-
	INT10_0		36	31	21
-	INT10_1	External interrupt request 10 input pin	21	16	-
-	INT10_2 INT11_0		112 118	-	- 70
	INT11_0	External interrupt request 11 input pin	22	98 17	78 -
-	INT11_2		110	-	
	INT12_0		49	44	34
	INT12_1	External interrupt request 12 input pin	32	27	-
	INT12_2		108	-	-
Ļ	INT13_0		50	45	35
F	INT13_1	External interrupt request 13 input pin	33	28	-
	INT13_2		52	-	-
F	INT14_0 INT14_1	External interrupt request 14 input pin	67 92	57 77	47 61
	INT14_1		53	-	-

Pin Function	Pin Name Function Description			Pin No.			
Fin Function	Fill Name	Function Description	LQFP-120	LQFP-100	LQFP-80		
	SIN3_0		110	-	-		
	SIN3_1	Multi-function serial interface ch.3 input pin	2	2	2		
	SIN3_2		94	79	63		
	SOT3_0 (SDA3_0)	Multi-function serial interface ch.3 output pin.	109	-	-		
Multi-function	SOT3_1 (SDA3_1)	This pin operates as SOT3 when used as a UART/CSIO/LIN pin (operation mode 0 to 3)	3	3	3		
Serial 3	SOT3_2 (SDA3_2)	and as SDA3 when used as an I ² C pin (operation mode 4).	92	77	61		
	SCK3_0 (SCL3_0)	Multi-function serial interface ch.3 clock I/O pin.	108	-	-		
	SCK3_1 (SCL3_1)	This pin operates as SCK3 when used as a CSIO (operation mode 2) and as SCL3	4	4	4		
	SCK3_2 (SCL3_2)	when used as an I ² C pin (operation mode 4).	96	81	65		
	SIN4_0		102	87	67		
	SIN4_1	Multi-function serial interface ch.4 input pin	76	66	56		
	SIN4_2		97	82	-		
	SOT4_0 (SDA4_0)	Multi-function serial interface ch.4 output pin.	99	84	66		
	SOT4_1 (SDA4_1)	This pin operates as SOT4 when used as a UART/CSIO/LIN pin (operation mode 0 to 3)	77	67	57		
	SOT4_2 (SDA4_2)	and as SDA4 when used as an I ² C pin (operation mode 4).	98	83	-		
Multi-function Serial 4	SCK4_0 (SCL4_0)	Multi-function serial interface ch.4 clock I/O pin.	107	92	72		
	SCK4_1 (SCL4_1)	This pin operates as SCK4 when used as a CSIO (operation mode 2) and as SCL4	78	68	-		
	SCK4_2 (SCL4_2)	when used as an I ² C pin (operation mode 4).	99	84	66		
	CTS4_0	Multi function parial interface ob 4 CTS input	106	91	71		
	CTS4_1	Multi-function serial interface ch4 CTS input pin	79	69	-		
	CTS4_2		100	85	-		
	RTS4_0	Multi-function serial interface ch4 RTS input	105	90	70		
	RTS4_1		80	70	-		
	RTS4_2	L	101	86	-		

Pin Function	Pin Name	Function Description		Pin No. LQFP-120 LQFP-100 L			
	SIN5_0		LQFP-120	LQFP-100	LQFP-80		
	(MI2SDI5_0)	Multi-function serial interface ch.5 input pin.	116	96	76		
-	SIN5_1	SIN5_0 pin operates as I2SIN5_0 when	113	-	-		
F	SIN5_2	used as an I ² S pin (operation mode 2).	20	15	-		
	SOT5_0	Multi-function serial interface ch.5 output					
	(SDA5_0)	pin.	115	95	75		
	(MI2SDO5_0)	This pin operates as SOT5 when used as a					
	SOT5_1	UART/CSIO/LIN pin (operation mode 0 to 3)	112		-		
	(SDA5_1)	and as SDA5 when used as an I ² C pin	112	-	-		
	0075 0	(operation mode 4). SOT5_0 pin operates as MI2SDO5_0 when					
Multi-function Serial 5	SOT5_2 (SDA5_2)	used as an I^2S pin (operation mode 2).	21	16	-		
Senars	(SDA5_2)	used as an i S pin (operation mode 2).					
	SCK5_0	Multi-function serial interface ch.5 clock I/O					
	(SCL5_0)	pin.	114	94	74		
	(MI2SCK5_0)	This pin operates as SCK5 when used as a					
	SCK5_1	CSIO (operation mode 2) and as SCL5 $\frac{1}{2}$	111	-	-		
-	(SCL5_1)	when used as an I ² C pin (operation mode 4).	111				
	SCK5_2 SCK5_0 pin operates as MI2SCK5_0 when		22	17			
	(SCL5_2)	used as an l^2S pin (operation mode 2).	22	17	-		
	MI2SWS5_0	I ² S word select (WS) output	113	93	73		
	SIN6_0	Multi-function serial interface ch.6 input pin.	5	5	5		
	 SIN6_1	SIN6_1 pin operates as I2SIN6_1 when					
	(MI2SDI6_1)	used as an l^2S pin (operation mode 2).	17	12	12		
-	SOT6_0	Multi-function serial interface ch.6 output					
	(SDA6_0)	pin.	6	6	6		
-	(00/10_0)	This pin operates as SOT6 when used as a					
	SOT6_1	UART/CSIO/LIN pin (operation mode 0 to 3)					
	(SDA6_1)	and as SDA6 when used as an I ² C pin	16	11	11		
	(MI2SDO6_1)	(operation mode 4).	10				
	()	SOT6_1 pin operates as MI2SDO6_1 when used as an I ² S pin (operation mode 2).					
-	SCK6_0	Multi-function serial interface ch.6 clock I/O					
Multi-function	(SCL6_0)	pin.	7	7	7		
Serial 6	(This pin operates as SCK6 when used as a					
	SCK6_1	CSIO (operation mode 2) and as SCL6					
	(SCL6_1)	when used as an I ² C pin (operation mode	15	10	10		
	(MI2SCK6_1)	4).	10	10	10		
	(SCK6_6 pin operates as MI2SCK6_1 when used as an I^2 S pin (operation mode 2).					
ŀ		Multi-function serial interface ch.6 serial					
	SCS60_1	chip select 0 input/output pin.	14	9	9		
ſ	SCS61 1	Multi-function serial interface ch.6 serial	10	10			
	SCS61_1	chip select 1 input/output pin.	18	13	-		
	SCS62_1	Multi-function serial interface ch.6 serial	19	14	-		
ļ		chip select 2 input/output pin.					
	MI2SWS6_1	I ² S word select (WS) output	14	9	9		

Pin Function	Function Pin Name Function Description		LQFP-120	Pin No. LQFP-100	LQFP-80	
LVDI		Input pin to monitor the external voltage.	37	32	22	
VBAT	VWAKEUP	The return signal input pin from a hibernation state	45	40	30	
	REGCTL	On-board regulator control pin	44	39	29	
Reset	INITX	External Reset Input pin. A reset is valid when INITX="L".	41	36	26	
	MD0	Mode 0 pin. During normal operation, input MD0="L". During serial programming to Flash memory, input MD0="H".	57	47	37	
Mode	MD1	Mode 1 pin. During normal operation, input is not needed. During serial programming to Flash memory, MD1 = "L" must be input.	56	46	36	
			1	1	1	
			31	26	-	
Power	VCC	Power supply pin	40	35	25	
				51	41	
			91	76	-	
VBAT power	VBAT	VBAT power supply pin Backup power supply (battery etc.) and system power supply	46	41	31	
			30	25	20	
	VSS			39	34	24
GND		VSS GND pin		50	40	
			90	75	-	
			120	100	80	
	X0	Main clock (oscillation) input pin	58	48	38	
	X0A	Sub clock (oscillation) input pin	42	37	27	
	X1	Main clock (oscillation) I/O pin	59	49	39	
Clock	X1A	Sub clock (oscillation) I/O pin	43	38	28	
	CROUT_0	Built-in high-speed CR oscillation clock output port	89	74	-	
	CROUT_1	Built-in high-speed CR oscillation clock output port	107	92	72	
Analog	AVCC	A/D converter analog power supply pin	70	60	50	
Power	AVRH	A/D converter analog reference voltage input pin	73	63	53	
Analog GND	AVSS	A/D converter analog reference voltage input pin	71	61	51	
C pin	С	Power supply stabilization capacitance pin	38	33	23	

*: PE0 is an open drain pin, cannot output high.

Latch-Up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

(1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.

(2) Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Spansion semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

6.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Spansion recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

Parameter	Symbol	Ra	Unit	Remarks	
	Symbol	Min	Max	Unit	Reliarks
Power supply voltage* ^{1, *2}	V _{CC}	V _{SS} - 0.5	V _{SS} + 4.6	V	
Analog power supply voltage*1,*3	AV _{CC}	V _{SS} - 0.5	V _{SS} + 4.6	V	
Analog reference voltage*1, *3	AVRH	V _{SS} - 0.5	V _{SS} + 4.6	V	
Input voltage*1	VI	V _{SS} - 0.5	V _{CC} + 0.5 (≤ 4.6 V)	V	
		V _{SS} - 0.5	V _{SS} + 6.5	V	5 V tolerant
Analog pin input voltage* ¹	VIA	V _{SS} - 0.5	V _{CC} + 0.5 (≤ 4.6 V)	V	
Output voltage*1	Vo	V _{SS} - 0.5	V _{CC} + 0.5 (≤ 4.6 V)	V	
· · · · · · · · · · · · · · · · · · ·			10	mA	
L level maximum output current* ⁴	I _{OL}	-	39	mA	P0B / P0C
L level average output current* ⁵	I _{OLAV}	-	4	mA	
L level total maximum output current	∑l _{OL}	-	100	mA	
L level total average output current* ^⁵	Σl _{olav}	-	50	mA	
l level mention entruit entruit *4			- 10	mA	
H level maximum output current* ⁴	I _{OH}	-	- 39	mA	P0B / P0C
H level average output current*5	I _{OHAV}	-	- 4	mA	
H level total maximum output current	∑I _{OH}	-	- 100	mA	
H level total average output current* ⁶	Σlohav	-	- 50	mA	
Power consumption	PD	-	250	mW	
Storage temperature	T _{STG}	- 55	+ 150	°C	

*1: These parameters are based on the condition that V_{SS}=AV_{SS}=0 V.

*2: V_{CC} must not drop below V_{SS} - 0.5 V.

*3: Ensure that the voltage does not to exceed V_{CC} + 0.5 V at power-on.

*4: The maximum output current is the peak value for a single pin.

*5: The average output is the average current for a single pin over a period of 100 ms.

*6: The total average output current is the average current for all pins over a period of 100 ms.

*7: When P0C/UDP0 and P0B/UDM0 pins are used as GPIO (P0C, P0B).

*8: When P0C/UDP0 and P0B/UDM0 pins are used as USB (UDP0, UDM0).

<WARNING>

 Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

11.3 DC Characteristics

11.3.1 Current Rating

Symbol	Conditions		HCLK	Va	lue	Unit	Remarks	
(Pin Name)		Conditions	Frequency ^{*4}	Typ ^{*1}	Max ^{*2}	Unit	Remarks	
		4 MHz external clock input, PLL ON ^{*8}	4 MHz	0.7	TBD			
		NOP code executed	8 MHz	1.15	TBD	mA	*3	
		Built-in high speed CR stopped	20 MHz	2.25	TBD	mA	3	
		All peripheral clock stopped by CKENx	40 MHz	4.5	TBD			
	Run mode.	4 MHz external clock input, PLL ON ^{*8}	4 MHz	0.75	TBD			
	code executed	Benchmark code executed	8 MHz	1.25	TBD	mA	*3	
	from Flash	Built-in high speed CR stopped	20 MHz	2.5	TBD	mA	3	
	IIOIII FIASI	PCLK1 stopped	40 MHz	5.0	TBD			
		4 MHz crystal oscillation, PLL ON ^{*8}	4 MHz	0.8	TBD			
		NOP code executed	8 MHz	1.4	TBD	mA	*3	
		Built-in high speed CR stopped	20 MHz	2.75	TBD	ША	3	
		All peripheral clock stopped by CKENx	40 MHz	5.5	TBD			
I _{CC}	Run mode,	4 MHz external clock input, PLL ON ^{*8}	4 MHz	0.6	TBD			
(VCC)	code executed	NOP code executed	8 MHz	1.2	TBD	mA	*3	
(100)	from RAM	Bulit-in nigh speed CR stopped	20 MHz	2.4	TBD	ША	5	
		All peripheral clock stopped by CKEINX	40 MHz	4.8	TBD			
	Run mode, code executed from Flash	4 MHz external clock input, PLL ON NOP code executed Built-in high speed CR stopped PCLK1 stopped	40 MHz	2.6	TBD	mA	*3,*6,*7	
	Due reade	Built-in high speed CR ^{*5} NOP code executed All peripheral clock stopped by CKENx	4 MHz	1.2	TBD	mA	*3	
	Run mode, code executed		32 kHz crystal oscillation NOP code executed All peripheral clock stopped by CKENx	32 kHz	96	TBD	μΑ	*3
	Tom Flash	Built-in low speed CR NOP code executed All peripheral clock stopped by CKENx	100 kHz	120	TBD	μA	*3	
			4 MHz	0.6	TBD			
		4 MHz external clock input, PLL ON*8	8 MHz	1.1	TBD	m A	*3	
		All peripheral clock stopped by CKENx	20 MHz	1.9	TBD	mA	3	
			40 MHz	3.2	TBD			
I _{CCS} (VCC)	Sleep operation	Built-in high speed CR ^{*5} All peripheral clock stopped by CKENx	4 MHz	0.5	TBD	mA	*3	
		32 kHz crystal oscillation All peripheral clock stopped by CKENx	32 kHz	94	TBD	μΑ	*3	
		Built-in low speed CR All peripheral clock stopped by CKENx	100 kHz	105	TBD	μΑ	*3	

*1 : T_A=+25°C,V_{CC}=3.3 V *2 : T_A=+105°C,V_{CC}=3.6 V

*3 : All ports are fixed *4 : PCLK0 is set to divided rate 8

*5 : The frequency is set to 4 MHz by trimming *6 : Flash sync down is set to FRWTR.RWT=11 and FSYNDN.SD=1111

*7 : VCC=1.65 V

*8 : When HCLK=4 MHz, PLL OFF

Parameter	Symbol	Conditions		Va Typ	alue	Unit	Remarks	
	(Pin Name)				Max			
			T _A =25°C V _{CC} =3.3 V	10	TBD	μA	*1	
	I _{ССН} (VCC)	Stop mode	T _A =25°C V _{CC} =1.65 V	9	TBD	μΑ	*1	
			T _A =105°C V _{CC} =3.6 V	-	TBD	μA	*1	
Power		Sub timer mode	$T_A=25^{\circ}C$ V _{CC} =3.3 V 32 kHz Crystal oscillation	13	TBD	μA	*1	
	I _{CCT} (VCC)		$T_A=25^{\circ}C$ $V_{CC}=1.65 V$ 32 kHz Crystal oscillation	12	TBD	μΑ	*1	
supply current			$T_A=105^{\circ}C$ $V_{CC}=3.6 V$ 32 kHz Crystal oscillation	-	TBD	μΑ	*1	
			T _A =25°C V _{CC} =3.3 V 32 kHz Crystal oscillation	10.5	TBD	μΑ	*1	
	I _{CCR} (VCC)	RTC mode	$T_A=25^{\circ}C$ $V_{CC}=1.65 V$ 32 kHz Crystal oscillation	9.5	TBD	μΑ	*1	
			T _A =105°C V _{CC} =3.6 V 32 kHz Crystal oscillation	-	TBD	μA	*1	

*1: All ports are fixed. LVD off. Flash off.

LVD Current

	(V _{CC} =1.65 V to 3.6 V, V _{SS} =AV _{SS} =0 V, T _A =- 40°C to +10										
Parameter	Symbol	Pin Name	Conditions	Value Typ Max		Unit	Remarks				
Low-Voltage detection circuit (LVD) power supply current	ICCLVD		At operation	Тур 0.13	TBD	μA	For occurrence of reset				
		VCC		0.13	TBD	μΑ	For occurrence of interrupt				

Flash Memory Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}=AV_{SS}=0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
	Symbol		Conditions	Тур	Max	Unit	Rellarks
Flash memory write/erase current	I _{CCFLASH}	VCC	At Write/Erase	9.5	TBD	mA	

A/D converter Current

(V_{CC}=1.65 V to 3.6 V, V_{SS}=AV_{SS}=0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
	Symbol	Fininame	Conditions	Тур	Max	Unit	Remarks
Power supply current	I _{CCAD}	AVCC	At operation	0.7	TBD	mA	
			At stop	0.13	TBD	μA	
Reference power supply current (AVRH)	I _{CCAVRH}	AVRH	At operation	1.1	TBD	mA	AVRH=3.6 V
			At stop	0.1	TBD	μA	

11.4.3 Built-in CR Oscillation Characteristics

Built-in High-Speed CR

(V_{CC}=AV_{CC}=1.65 V to 3.6 V, V_{SS} =AV_{SS}=0 V, T_A=- 40°C to +105°C)

Parameter	Sympol	Conditions		Value		Unit	Remarks	
	Symbol	Conditions	Min	Тур	Мах	Unit	Reindiks	
Clock frequency		T _A = -20°C to +85°C		4	4.04		During trimming ^{*1}	
	f _{CRH}	$T_A = -40^{\circ}C \text{ to } +105^{\circ}C$	3.92	4	4.08	MHz		
		$T_A = -40^{\circ}C \text{ to } +105^{\circ}C$	2.6	4	5.2		Not during trimming	
Frequency	+		_		30	μs	*2	
stabilization time	t _{CRWT}	-	-	-	300	μs	If TRT is changed. ^{*2}	

*1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming/temperature trimming.

*2: This is time from the trim value setting to stable of the frequency of the High-speed CR clock. After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock.

Built-in Low-Speed CR

(V_CC=AV_CC=1.65 V to 3.6 V, V_SS=AV_SS=0 V, T_A=- 40^{\circ}C to +105 $^{\circ}$ C)

Parameter	Symbol	Conditions		Value		Unit	Remarks
	Symbol	Conditions	Min	Тур	Max	Unit	Reillarks
Clock frequency	f _{CRL}	-	50	100	150	kHz	

When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=1)

(V_{CC}=AV_{CC}=1.65 V to 3.6 V, V_{SS}=AV_{SS}=0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Conditions	V _{cc} < 2	2.7 V	V _{cc} ≥ 2	Unit	
Faianetei	Symbol	Conditions	Min	Max	Min	Max	Onic
SCS↓→SCK↑ setup time	t _{CSSI}		(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns
SCK↓→SCS↑ hold time	t _{CSHI}	Master mode	(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns
SCS deselect time	t _{CSDI}		(*3)-50	(*3)+50	(*3)-50	(*3)+50	ns
SCS↓→SCK↑ setup time	t _{CSSE}		3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCK↓→SCS↑ hold time	t _{CSHE}		0	-	0	-	ns
SCS deselect time	t _{CSDE}	Slave mode	3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCS↓→SOT delay time	t _{DSE}		-	55	-	43	ns
SCS∱→SOT delay time	t _{DEE}	1	0	-	0	-	ns

*1: CSSU bit value × serial chip select timing operating clock cycle.

*2: CSHD bit value × serial chip select timing operating clock cycle.

*3: CSDS bit value x serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5t_{CYCP} or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again.

Notes:

- t_{CYCP} indicates the APB bus clock cycle time.
 For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ".
- For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.
- When the external load capacitance $C_L=30$ pF.

When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=0)

(V_{CC}=AV_{CC}=1.65 V to 3.6 V, V_{SS}=AV_{SS}=0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Conditions	V _{cc} < 2	2.7 V	V _{cc} ≥2	Unit	
Parameter	Symbol	Conditions	Min	Max	Min	Max (*1)+0 (*2)+50 (*3)+50 - -	Sint
SCS↑→SCK↑ setup time	t _{CSSI}		(*1)-50	(*1)+0	(*1)-50	(*1)+0	ns
SCK↓→SCS↓ hold time	t _{CSHI}	Master mode	(*2)+0	(*2)+50	(*2)+0	(*2)+50	ns
SCS deselect time	t _{CSDI}		(*3)-50	(*3)+50	(*3)-50	(*3)+50	ns
SCS↑→SCK↑ setup time	t _{CSSE}		3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCK↓→SCS↓ hold time	t _{CSHE}		0	-	0	-	ns
SCS deselect time	t _{CSDE}	Slave mode	3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCS↑→SOT delay time	t _{DSE}	1	-	55	-	43	ns
SCS↓→SOT delay time	t _{DEE}	1	0	-	0	-	ns

*1: CSSU bit value × serial chip select timing operating clock cycle.

*2: CSHD bit value × serial chip select timing operating clock cycle.

*3: CSDS bit value x serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5t_{CYCP} or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again.

Notes:

- t_{CYCP} indicates the APB bus clock cycle time.
 For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ".
- For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".

These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.

- When the external load capacitance $C_L=30$ pF.

11.4.13 Smart Card Interface Characteristics

(V_{CC}=1.65 V to 3.3 V, V_{SS}=0 V, T_A =- 40°C to +105°C)

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
Falameter	Symbol	Fininame	Conditions	Min	Max		
		ICx_VCC,		4	20	ns	
Output rising time	t _R	ICx_RST,	C _L =30 pF				
Output folling time	+	ICx_CLK,		4	20		
Output falling time	t _F	ICx_DATA		4	20	ns	
Output clock frequency	f _{CLK}	ICx CLK		-	20	MHz	
Duty cycle	Δ			45%	55%		

External pull-up resistor (20 k Ω to 50 k Ω) must be applied to ICx_CIN pin when it's used as smart card reader function.

- *3 : The output drive capability of the driver is below 0.3 V at Low-state (VoL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to the VSS and 1.5 kΩ load) at high-state (VoH)
- *4: The cross voltage of the external differential output signal (D+ / D-) of USB I/O buffer is within 1.3 V to 2.0 V.

*5 : The indicate rising time (Trise) and falling time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within ±10% to minimize RFI emission.

*6 : USB Full-speed connection is performed via twist pair cable shield with 90 $\Omega \pm 15\%$ characteristic impedance (Differential Mode).

USB standard defines that output impedance of USB driver must be in range from 28Ω to 44Ω . So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance.

When using this USB I/O, use it with 25 Ω to 33 Ω (recommendation value : 27 Ω) series resistor Rs.