E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	256KB (256K × 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l162vct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			Low-	Low-		Stop	Standby	
lps	Run/Active	Sleep	power Run	power Sleep		Wakeup capability		Wakeup capability
ADC	Y	Y						
DAC	Y	Y	Y	Y	Y			
Tempsensor	Y	Y	Y	Y	Y			
OP amp	Y	Y	Y	Y	Y			
Comparators	Y	Y	Y	Y	Y	Y		
16-bit and 32-bit Timers	Y	Y	Y	Y				
IWDG	Y	Y	Y	Y	Y	Y	Y	Y
WWDG	Y	Y	Y	Y				
Touch sensing	Y	Y						
Systic Timer	Y	Y	Y	Y				
GPIOs	Y	Y	Y	Y	Y	Y		3 pins
Wakeup time to Run mode	0 µs	0.4 µs	3 µs	46 µs		< 8 µs		58 µs
					((I V).43 μΑ no RTC) _{DD} =1.8V	(()	0.29 μΑ no RTC) _{DD} =1.8V
Consumption $V_{-} = 1.8 \text{ to } 3.6 \text{ V}$	Down to 185	Down to 34.5	Down to	Down to	(% >	1.15 μΑ ⁄ith RTC) _{DD} =1.8V	() >	0.9 µA ⁄ith RTC) _{DD} =1.8V
(Typ)	Flash)	Flash)	8.6 µA	4.4 µA	((I V).44 μΑ no RTC) _{DD} =3.0V	(i (i V	0.29 μΑ no RTC) _{DD} =3.0V
					(w V	1.4 μΑ /ith RTC) _{DD} =3.0V	(w V	1.15 µA vith RTC) _{DD} =3.0V

Table 5. Functionalities depending on the working mode (from Run/active down to
standby) (continued)

1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before entering run mode.

3.2 ARM[®] Cortex[®]-M3 core with MPU

The ARM[®] Cortex[®]-M3 processor is the industry leading processor for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

DocID022881 Rev 10

power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System memory
- Boot from embedded RAM

The boot loader is located in System memory. It is used to reprogram the Flash memory by using USART1, USART2 or USB. See Application note "STM32 microcontroller system memory boot mode" (AN2606) for details.

Figure 5. STM32L162RC LQFP64 pinout

1. This figure shows the package top view.

STM32L162VC, STM32L162RC

				I	Digital alter	rnate func	tion numbe	er				
Port	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO11	•	AFIO14	AFIO15
name					Alte	ernate fund	tion					
	SYSTEM	TIM2	TIM3/4/5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3	LCD		CPRI	SYSTEM
PC4	-	-	-	-	-	-	-	-	SEG22		TIMx_IC1	EVENT OUT
PC5	-	-	-	-	-	-	-	-	SEG23		TIMx_IC2	EVENT OUT
PC6	-	-	TIM3_CH1	-	-	I2S2_MCK	-	-	SEG24		TIMx_IC3	EVENT OUT
PC7	-	-	TIM3_CH2	-	-	-	I2S3_MCK	-	SEG25		TIMx_IC4	EVENT OUT
PC8	-	-	TIM3_CH3	-	-	-	-	-	SEG26		TIMx_IC1	EVENT OUT
PC9	-	-	TIM3_CH4	-	-	-	-	-	SEG27		TIMx_IC2	EVENT OUT
PC10	-	-	-	-	-	-	SPI3_SCK I2S3_CK	USART3_TX	COM4/ SEG28/ SEG40		TIMx_IC3	EVENT OUT
PC11	-	-	-	-	-	-	SPI3_MISO	USART3_RX	COM5/ SEG29 /SEG41		TIMx_IC4	EVENT OUT
PC12	-	-	-	-	-	-	SPI3_MOSI I2S3_SD	USART3_CK	COM6/ SEG30/ SEG42		TIMx_IC1	EVENT OUT
PC13- WKUP2	-	-	-	-	-	-	-	-	-		TIMx_IC2	EVENT OUT
PC14 OSC32_IN	-	-	-	-	-	-	-	-	-		TIMx_IC3	EVENT OUT
PC15 OSC32_ OUT	-	-	-	-	-	-	-	-	-		TIMx_IC4	EVENT OUT
PD0	-	-	-	TIM9_CH1	-	SPI2_NSS I2S2_WS	-	-	-		TIMx_IC1	EVENT OUT
PD1	-	-	-	-	-	SPI2 SCK I2S2_CK	-	-	-		TIMx_IC2	EVENT OUT
PD2	-	-	TIM3_ETR	-	-	-	-	-	COM7/ SEG31/ SEG43		TIMx_IC3	EVENT OUT

Table 10. Alternate function input/output (continued)

DocID022881 Rev 10

5

43/123

Pin descriptions

DocID022881 Rev 10

Port	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO11	· AFIO1	4 AFIO15
name			1		Alte	ernate func	tion	1	-	1 1	
	SYSTEM	TIM2	TIM3/4/5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3	LCD	CPR	SYSTEM
PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS	-	TIMx_IC	4 EVENT OUT
PD4	-	-	-	-	-	SPI2_MOSI I2S2_SD	-	USART2_RTS	-	TIMx_IC	1 EVENT OUT
PD5	-	-	-	-	-		-	USART2_TX	-	TIMx_IC	2 EVENT OUT
PD6	-	-	-		-	-	-	USART2_RX	-	TIMx_IC	3 EVENT OUT
PD7	-	-	-	TIM9_CH2	-	-	-	USART2_CK	-	TIMx_IC	4 EVENT OUT
PD8	-	-	-	-	-	-	-	USART3_TX	SEG28	TIMx_IC	1 EVENT OUT
PD9	-	-	-	-	-	-	-	USART3_RX	SEG29	TIMx_IC	2 EVENT OUT
PD10	-	-	-	-	-	-	-	USART3_CK	SEG30	TIMx_IC	3 EVENT OUT
PD11	-	-	-	-	-	-	-	USART3_CTS	SEG31	TIMx_IC	4 EVENT OUT
PD12	-	-	TIM4_CH1	-	-	-	-	USART3_RTS	SEG32	TIMx_IC	1 EVENT OUT
PD13	-	-	TIM4_CH2	-	-	-	-	-	SEG33	TIMx_IC	2 EVENT OUT
PD14	-	-	TIM4_CH3	-	-	-	-	-	SEG34	TIMx_IC	3 EVENT OUT
PD15	-	-	TIM4_CH4	-	-	-	-	-	SEG35	TIMx_IC	4 EVENT OUT
PE0	-	-	TIM4_ETR	TIM10_CH1	-	-	-	-	SEG36	TIMx_IC	1 EVENT OUT
PE1	-	-	-	TIM11_CH1	-	-	-	-	SEG37	TIMx_IC	2 EVENT OUT
PE2	TRACECK	-	TIM3_ETR	-				-	SEG 38	TIMx_IC	3 EVENT OUT
PE3	TRACED0	-	TIM3_CH1	-	-	-	-	-	SEG 39	TIMx_IC4	EVENT OUT
PE4	TRACED1	-	TIM3_CH2	-	-	-	-	-	-	TIMx_IC	1 EVENT OUT
PE5	TRACED2	-	-	TIM9_CH1	-	-	-	-	-	TIMx_IC	2 EVENT OUT
PE6- WKUP3	TRACED3	-	-	TIM9_CH2	-	-	-	-	-	TIMx_IC	3 EVENT OUT
PE7	-	-	-	-	-	-	-	-	-	TIMx_IC	4 EVENT OUT

Table 10. Alternate function input/output (continued)

Digital alternate function number

1

STM32L162VC, STM32L162RC

				1	Digital alter	rnate funct	ion numb	er			
Port	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO11	AFIO14	AFIO15
name					Alte	ernate func	tion			·	•
	SYSTEM	TIM2	TIM3/4/5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/3	LCD	CPRI	SYSTEM
PE8	-	-	-	-	-	-	-	-	-	TIMx_IC1	EVENT OUT
PE9	-	TIM2_CH1_ETR	TIM5_ETR	-	-	-	-	-	-	TIMx_IC2	EVENT OUT
PE10	-	TIM2_CH2	-	-	-	-	-	-	-	TIMx_IC3	EVENT OUT
PE11	-	TIM2_CH3	-	-	-	-	-	-	-	TIMx_IC4	EVENT OUT
PE12	-	TIM2_CH4	-	-	-	SPI1_NSS	-	-	-	TIMx_IC1	EVENT OUT
PE13	-	-	-	-	-	SPI1_SCK	-	-	-	TIMx_IC2	EVENT OUT
PE14	-	-	-	-	-	SPI1_MISO	-	-	-	TIMx_IC3	EVENT OUT
PE15	-	-	-	-	-	SPI1_MOSI	-	-	-	TIMx_IC4	EVENT OUT
PH0OSC _IN	-	-	-	-	-	-	-	-	-	-	-
PH1OSC_ OUT	-	-	-	-	-	-	-	-	-	-	-
PH2	-	-	-	-	-	-	-	-	-	-	-

Table 10. Alternate function input/output (continued)

5

STM32L162VC, STM32L162RC

Symbol	Parameter	Cond	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
				1 MHz	215	400	
			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	2 MHz	400	600	μA
				4 MHz	725	960	
		$f_{HSE} = f_{HCLK}$ up to 16		4 MHz	0.915	1.1	
I _{DD} (Run from		MHz included, f _{HSE} =	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	8 MHz	1.75	2.1	
	Supply	(PLL ON) ⁽²⁾		16 MHz	3.4	3.9	
	current in			8 MHz	2.1	2.8	
	Run mode, code executed from Flash		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	16 MHz	4.2	4.9	mA
Flash)				32 MHz	8.25	9.4	
,		from Flash HSI clock source (16	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	3.5	4	
		MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	8.2	9.6	
		MSI clock, 65 kHz		65 kHz	40.5	110	
		MSI clock, 524 kHz	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	524 kHz	125	190	μA
		MSI clock, 4.2 MHz		4.2 MHz	775	900	

Table 18. Current consumption in Run mode, code with data processing running from Flash

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter	C	onditions		Тур	Max ⁽¹⁾	Unit	
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8 \text{ V}$	1.15	-		
			I CD	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.4	-		
			OFF	T _A = 55°C	2	-		
		RTC clocked by LSI			T _A = 85°C	3.4	10	
				T _A = 105°C	6.35	23		
		(32.768kHz),		$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.55	6		
		regulator in LP mode, HSI and HSE OFF	ON	T _A = 55°C	2.15	7		
		(no independent	(static	T _A = 85°C	3.55	12		
		watchdog)	uuty)**	T _A = 105°C	6.3	27		
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	3.9	10		
				T _A = 55°C	4.65	11		
	Supply current in Stop mode with RTC enabled		duty) ⁽³⁾	T _A = 85°C	6.25	16	μA	
				T _A = 105°C	9.1	44		
I _{DD} (Stop with BTC)				$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.5	-		
			LCD OFF	T _A = 55°C	2.15	-		
wiarrer ()				T _A = 85°C	3.7	-		
				T _A = 105°C	6.75	-	-	
				$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.6	-		
			ON	T _A = 55°C	2.3	-		
		RTC clocked by LSE	(static duty) ⁽²⁾	T _A = 85°C	3.8	-		
		external quartz (32.768kHz),	uuty)	T _A = 105°C	6.85	-		
		regulator in LP mode,		$T_A = -40^{\circ}C$ to $25^{\circ}C$	4	-		
		(no independent	LCD ON (1/8	T _A = 55°C	4.85	-		
		watchdog ⁽⁴⁾	duty) ⁽³⁾	T _A = 85°C	6.5	-		
				T _A = 105°C	9.1	-		
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 1.8V$	1.2	-		
			LCD OFF	$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.0V$	1.5	-		
				$T_A = -40^{\circ}C \text{ to } 25^{\circ}C$ $V_{DD} = 3.6V$	1.75	-		

Table 23	Typical and maximum	current consum	ntions in St	on mode
	Typical and maximum	current consum	puons in ou	op moue

Symbol	Parameter	Conditions	i	Тур	Max ⁽¹⁾	Unit
		Regulator in LP mode, HSI and HSE OFF, independent watchdog and LSI enabled	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.8	2.2	
אסס (Stop)	Supply current in Stop mode (RTC disabled)		$T_A = -40^{\circ}C$ to $25^{\circ}C$	0.435	1	uА
		Regulator in LP mode, LSI, HSI	T _A = 55°C	0.99	3	P
		watchdog)	T _A = 85°C	2.4	9	
			T _A = 105°C	5.5	22 ⁽⁵⁾	
חח	Supply current during	MSI = 4.2 MHz		2	-	
(WU from Stop)	wakeup from Stop	MSI = 1.05 MHz	$T_A = -40^{\circ}C$ to $25^{\circ}C$	1.45	-	mA
	mode	MSI = 65 kHz ⁽⁶⁾		1.45	-	

Table 20. Typical and maximum current consumptions in otop mode (continued	Table 23.	Typical and	maximum ci	urrent consum	ptions in Sto	p mode	(continued
--	-----------	-------------	------------	---------------	---------------	--------	------------

1. Guaranteed by characterization results, unless otherwise specified.

2. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.

3. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.

4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.

5. Guaranteed by test in production.

When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining part
of the wakeup period, the current corresponds the Run mode current.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{OSC_IN}	Oscillator frequency	-	1		24	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
с	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	-	20	-	pF
I _{HSE}	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load	-	-	3	mA
1	HSE oscillator power	C = 20 pF f _{OSC} = 16 MHz	F MHz -		2.5 (startup) 0.7 (stabilized)	m۸
'DD(HSE)	consumption	C = 10 pF f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.46 (stabilized)	
9 _m	Oscillator transconductance	Startup	3.5	-	-	mA /V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	ms

Table 29. HSE oscillator characteristics⁽¹⁾⁽²⁾

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by characterization results.

 The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 14*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

6.3.7 Internal clock source characteristics

The parameters given in *Table 31* are derived from tests performed under the conditions summarized in *Table 14*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
(1)(2)	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
		V_{DDA} = 3.0 V, T_A = 0 to 55 °C	-1.5	-	1.5	%
ACC _{HSI} ⁽²⁾	Accuracy of the	V_{DDA} = 3.0 V, T_A = -10 to 70 °C	-2	-	2	%
	factory-calibrated HSI oscillator	V _{DDA} = 3.0 V, T _A = -10 to 85 °C	-2.5	-	2	%
		V _{DDA} = 3.0 V, T _A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 105 °C	-4	-	3	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μΑ

Table 31. HSI oscillator ch	aracteristics
-----------------------------	---------------

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Low-speed internal (LSI) RC oscillator

Table 32. LSI oscillator characteristics

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift $0^{\circ}C \leq T_{A} \leq 105^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

		Conditions		Max vs.			
Symbol	Parameter		Monitored frequency band	4 MHz voltage range 3	16 MHz voltage range 2	32 MHz voltage range 1	Unit
S _{EMI}	Peak level	$\begin{array}{l} V_{DD}=3.3 \text{ V},\\ T_{A}=25 \ ^{\circ}\text{C},\\ \text{LQFP100 package}\\ \text{compliant with IEC}\\ 61967\text{-}2 \end{array}$	0.1 to 30 MHz	3	-6	-5	
			30 to 130 MHz	18	4	-7	dBµV
			130 MHz to 1GHz	15	5	-7	
			SAE EMI Level	2.5	2	1	-

Table 39. EMI characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1. standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \text{ °C}$, conforming to JESD22-A114	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C}$, conforming to ANSI/ESD STM5.3.1.	C4	500	V

Table 40. ESD absolute maximum ratings

1. Guaranteed by characterization results.

6.3.14 **NRST** pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see Table 46)

Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under the conditions summarized in Table 14.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	-	-	0.3 V _{DD}	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	0.39V _{DD} +0.59	-	-	V
Ver (1)	NRST output low	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V	-	-	0.4	v
VOL(NRST)	level voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-	-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽³⁾	NRST input not filtered pulse	-	350	-	-	ns

Table 46. NRST pin characteristics

1. Guaranteed by design.

2. With a minimum of 200 mV.

The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series 3. resistance is around 10%.

Figure 17. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

2. The user must ensure that the level on the NRST pin can go below the $V_{IL(NRST)}$ max level specified in *Table 46*. Otherwise the reset will not be taken into account by the device.

6.3.15 TIM timer characteristics

The parameters given in the Table 47 are guaranteed by design.

Refer to *Section 6.3.13: I/O port characteristics* for details on the input/output ction characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Мах	Unit		
+	Timor resolution time	-	1	-	t _{TIMxCLK}		
^r res(TIM)		f _{TIMxCLK} = 32 MHz	31.25	-	ns		
f	Timer external clock	-	0	f _{TIMxCLK} /2	MHz		
IEXT	frequency on CH1 to CH4	f _{TIMxCLK} = 32 MHz	0	16	MHz		
Res _{TIM}	Timer resolution	-		16	bit		
	16-bit counter clock	-	1	65536	t _{TIMxCLK}		
t _{COUNTER}	period when internal clock is selected (timer's prescaler disabled)	f _{TIMxCLK} = 32 MHz	0.0312	2048	μs		
t	Maximum possible count	_	-	65536 × 65536	t _{TIMxCLK}		
'MAX_COUNT	Maximum possible count	f _{TIMxCLK} = 32 MHz	-	134.2	S		

Table 47. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.

SPI characteristics

Unless otherwise specified, the parameters given in the following table are derived from tests performed under the conditions summarized in *Table 14*.

Refer to Section 6.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit
_		Master mode	-	16	
f _{SCK}	SPI clock frequency	Slave mode	-	16	MHz
		Slave transmitter	-	12 ⁽³⁾	
$t_{r(SCK)}^{(2)}$ $t_{f(SCK)}^{(2)}$	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	6	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)}	NSS setup time	Slave mode	4t _{HCLK}	-	
t _{h(NSS)}	NSS hold time	Slave mode	2t _{HCLK}	-	
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode	t _{SCK} /2-5	t _{SCK} /2+3	
t _{su(MI)} ⁽²⁾	Data input actus timo	Master mode	5	-	
t _{su(SI)} ⁽²⁾		Slave mode	6	-	
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	5	-	ns
t _{h(SI)} ⁽²⁾		Slave mode	5	-	
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode	0	3t _{HCLK}	
t _{v(SO)} (2)	Data output valid time	Slave mode	-	33	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode	-	6.5	
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode	17	-	
t _{h(MO)} ⁽²⁾		Master mode	0.5	-	

Table 50. SPI characteristics⁽¹⁾

1. The characteristics above are given for voltage range 1.

2. Guaranteed by characterization results.

 The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.

4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

Figure 27. Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion

Table 58. Maximum source impedance $R_{AIN} max^{(1)}$

	R _{AIN} max (kΩ)					
Ts (µs)	Multiplexed channels		Direct c	Ts (cycles) f _{4DC} =16 MHz ⁽²⁾		
	2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	ADC	
0.25	Not allowed	Not allowed	0.7	Not allowed	4	
0.5625	0.8	Not allowed	2.0	1.0	9	
1	2.0	0.8	4.0	3.0	16	
1.5	3.0	1.8	6.0	4.5	24	
3	6.8	4.0	15.0	10.0	48	
6	15.0	10.0	30.0	20.0	96	
12	32.0	25.0	50.0	40.0	192	
24	50.0	50.0	50.0	50.0	384	

1. Guaranteed by design.

2. Number of samples calculated for f_{ADC} = 16 MHz. For f_{ADC} = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (µs),

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 9*. The applicable procedure depends on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

- 4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
- 5. Difference between the value measured at Code (0x800) and the ideal value = $V_{REF+}/2$.
- 6. Difference between the value measured at Code (0x001) and the ideal value.
- 7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when buffer is OFF, and from code giving 0.2 V and ($V_{DDA} 0.2$) V when buffer is ON.
- 8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).

 The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.19 Operational amplifier characteristics

Symbol	Parameter		Condition ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
CMIR	Common mode inpu	ut range	-	0	-	V _{DD}	
	Input offset voltage	Maximum calibration range	-	-	-	±15	m\/
VOFFSET	input onset voltage	After offset calibration	-	-	-	±1.5	IIIV
	Input offset voltage	Normal mode	-	-	-	±40	µV/°C
drift	Low-power mode	-	-	-	±80		
	Input current bias	Dedicated input		-	-	1	
I _{IB}		General purpose input	75 °C	-	-	10	nA
1		Normal mode	-	-	-	500	
LOAD	Drive current	Low-power mode	-	-	-	100	μΑ
	Consumption	Normal mode	No load,	-	100	220	
I _{DD}	Consumption	Low-power mode	quiescent mode	-	30	60	μΑ
CMRR	Common mode	Normal mode	-	-	-85	-	dB
	rejection ration	Low-power mode	-	-	-90	-	

Table 60. Operational amplifier characteristics

6.3.20 Temperature sensor characteristics

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 $^{\circ}C \pm 5 ^{\circ}C$ V _{DDA} = 3 V ± 10 mV	0x1FF8 00FA - 0x1FF8 00FB
TS_CAL2	TS ADC raw data acquired at temperature of 110 $^\circ$ C \pm 5 $^\circ$ C V _{DDA} = 3 V \pm 10 mV	0x1FF8 00FE - 0x1FF8 00FF

Table 61. Temperature sensor calibration values

Table 62. Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	£	±2	°C
Avg_Slope ⁽¹⁾	Average slope	1.48	1.61	1.75	mV/°C
V ₁₁₀	Voltage at 110°C ±5°C ⁽²⁾	612	626.8	641.5	mV
I _{DDA(TEMP)} ⁽³⁾	Current consumption	-	3.4	6	μA
t _{START} ⁽³⁾	Startup time	-	-	10	
T _{S_temp} ⁽³⁾	ADC sampling time when reading the temperature	4	-	_	μs

1. Guaranteed by characterization results.

2. Measured at V_{DD} = 3 V \pm 10 mV. V110 ADC conversion result is stored in the TS_CAL2 byte.

3. Guaranteed by design.

6.3.21 Comparator

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V_{DDA}	Analog supply voltage	-	1.65		3.6	V
R _{400K}	R _{400K} value	-	-	400	-	kO
R _{10K}	R _{10K} value	-	-	10	-	N22
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V
t _{START}	Comparator startup time	-	-	7	10	110
td	Propagation delay ⁽²⁾	-	-	3	10	μο
Voffset	Comparator offset	-	-	ŧ	±10	mV
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$V_{DDA} = 3.6 V$ $V_{IN+} = 0 V$ $V_{IN-} = V_{REFINT}$ $T_{A} = 25 °C$	0	1.5	10	mV/1000 h
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA

Table 63. Comparator 1 characteristics

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 31. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID022881 Rev 10