E·XFL

NXP USA Inc. - MKE14Z256VLH7R Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	FlexIO, I ² C, SPI, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	58
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	34K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke14z256vlh7r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

is reset by the corresponding Reset source. N means the specific module is not reset by the corresponding Reset source.

Reset	Descriptions	Modules									
sources		РМС	SIM	SMC	RCM	Reset pin is negated	WDO G	SCG	RTC	LPTM R	Other s
POR reset	Power-on reset (POR)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
System resets	Low-voltage detect (LVD)	Y ¹	Y	Y	Y	Y	Y	Y	Ν	Y	Y
	External pin reset (RESET)	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y
	Watchdog (WDOG) reset	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y
	Multipurpose clock generator loss of clock (LOC) reset	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y
	Multipurpose clock generator loss of lock (LOL) reset	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y
	Stop mode acknowledge error (SACKERR)	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y
	Software reset (SW)	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y
	Lockup reset (LOCKUP)	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	Ν	Y
	MDM DAP system reset	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	Ν	Y
Debug reset	Debug reset	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y

Table 3.Reset source

1. Except PMC_LVDSC1[LVDV] and PMC_LVDSC2[LVWV]

- 2. Except SIM_SOPT1
- 3. Except SMC_PMPROT, SMC_PMCTRL_RUM, SMC_PMCTRL_STOPM, SMC_STOPCTRL, SMC_PMSTAT
- 4. Except RCM_RPC, RCM_MR, RCM_FM, RCM_SRIE, RCM_SRS, RCM_SSRS
- 5. Except WDOG_CS[TST]
- 6. Except SCG_CSR and SCG_FIRCSTAT

This device supports booting from:

- internal flash
- boot ROM

rights for each transaction routed to the on-chip flash memory. Configurability allows an increasing number of protected segments while supporting two levels of vendors adding their proprietary software to a device.

2.1.8 Power management

The Power Management Controller (PMC) expands upon ARM's operational modes of Run, Sleep, and Deep Sleep, to provide multiple configurable modes. These modes can be used to optimize current consumption for a wide range of applications. The WFI or WFE instruction invokes a Wait or a Stop mode, depending on the current configuration. For more information on ARM's operational modes, See the ARM[®] Cortex[®] User Guide.

The PMC provides Normal Run (RUN), and Very Low Power Run (VLPR) configurations in ARM's Run operation mode. In these modes, the MCU core is active and can access all peripherals. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption. The configuration that matches the power versus performance requirements of the application can be selected.

The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in ARM's Sleep operation mode. In these modes, even though the MCU core is inactive, all of the peripherals can be enabled and operate as programmed. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption.

The PMC provides Stop (Stop), Very Low Power Stop (VLPS) configurations in ARM's Deep Sleep operational mode. In these modes, the MCU core and most of the peripherals are disabled. Depending on the requirements of the application, different portions of the analog, logic, and memory can be retained or disabled to conserve power.

The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up Interrupt Controller (AWIC) are used to wake up the MCU from low power states. The NVIC is used to wake up the MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU core from STOP and VLPS modes.

For additional information regarding operational modes, power management, the NVIC, AWIC, please refer to the Reference Manual.

The following table provides information about the state of the peripherals in the various operational modes and the modules that can wake MCU from low power modes.

Core mode	Device mode	Descriptions
Run mode	Run	In Run mode, all device modules are operational.
	Very Low Power Run	In VLPR mode, all device modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled.
Sleep mode	Wait	In Wait mode, all peripheral modules are operational. The MCU core is placed into Sleep mode.
	Very Low Power Wait	In VLPW mode, all peripheral modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled. The MCU core is placed into Sleep mode.
Deep sleep	Stop	In Stop mode, most peripheral clocks are disabled and placed in a static state. Stop mode retains all registers and SRAMs while maintaining Low Voltage Detection protection. In Stop mode, the ADC, CMP, LPTMR, RTC, and pin interrupts are operational. The NVIC is disabled, but the AWIC can be used to wake up from an interrupt.
	Very Low Power Stop	In VLPS mode, the contents of the SRAM are retained. The CMP (low speed), ADC, OSC, RTC, LPTMR, LPIT, FlexIO, LPUART, LPI2C,LPSPI, and DMA are operational, LVD and NVIC are disabled, AWIC is used to wake up from interrupt.

 Table 5.
 Peripherals states in different operational modes

2.1.9 Debug controller

This device has extensive debug capabilities including run control and tracing capabilities. The standard ARM debug port supports SWD interface.

2.2 Peripheral features

The following sections describe the features of each peripherals of the chip.

2.2.1 eDMA and DMAMUX

The eDMA is a highly programmable data-transfer engine optimized to minimize any required intervention from the host processor. It is intended for use in applications where the data size to be transferred is statically known and not defined within the transferred data itself. The DMA controller in this device implements 8 channels which can be routed from up to 63 DMA request sources through DMA MUX module.

Main features of eDMA are listed below:

Overview

- Hardware CRC generator circuit using a 16-bit or 32-bit programmable shift register
- Programmable initial seed value and polynomial
- Option to transpose input data or output data (the CRC result) bitwise or bytewise.
- Option for inversion of final CRC result
- 32-bit CPU register programming interface

2.2.10 LPUART

This product contains three Low-Power UART modules, and can work in Stop and VLPS modes. The module also supports $4 \times$ to $32 \times$ data oversampling rate to meet different applications.

The LPUART module has the following features:

- Programmable baud rates (13-bit modulo divider) with configurable oversampling ratio from $4 \times$ to $32 \times$
- Transmit and receive baud rate can operate asynchronous to the bus clock and can be configured independently of the bus clock frequency, support operation in Stop mode
- Interrupt, DMA or polled operation
- Hardware parity generation and checking
- Programmable 8-bit, 9-bit or 10-bit character length
- Programmable 1-bit or 2-bit stop bits
- Three receiver wakeup methods
 - Idle line wakeup
 - Address mark wakeup
 - Receive data match
- Automatic address matching to reduce ISR overhead:
 - Address mark matching
 - Idle line address matching
 - Address match start, address match end
- Optional 13-bit break character generation / 11-bit break character detection
- Configurable idle length detection supporting 1, 2, 4, 8, 16, 32, 64 or 128 idle characters
- Selectable transmitter output and receiver input polarity

2.2.13 FlexIO

The FlexIO is a highly configurable module providing a wide range of protocols including, but not limited to UART, I2C, SPI, I2S, Camera IF, LCD RGB, PWM/ Waveform generation. The module supports programmable baud rates independent of bus clock frequency, with automatic start/stop bit generation.

The FlexIO module has the following features:

- Functional in VLPR/VLPW/Stop/VLPS mode provided the clock it is using remains enabled
- Four 32-bit double buffered shift registers with transmit, receive, and data match modes, and continuous data transfer
- The timing of the shifter's shift, load and store events are controlled by the highly flexible 16-bit timer assigned to the shifter
- Two or more shifters can be concatenated to support large data transfer sizes
- Each 16-bit timers operates independently, supports for reset, enable and disable on a variety of internal or external trigger conditions with programmable trigger polarity
- Flexible pin configuration supporting output disabled, open drain, bidirectional output data and output mode
- Supports interrupt, DMA or polled transmit/receive operation

2.2.14 Port control and GPIO

The Port Control and Interrupt (PORT) module provides support for port control, digital filtering, and external interrupt functions. The GPIO data direction and output data registers control the direction and output data of each pin when the pin is configured for the GPIO function. The GPIO input data register displays the logic value on each pin when the pin is configured for any digital function, provided the corresponding Port Control and Interrupt module for that pin is enabled.

The following figure shows the basic I/O pad structure. Pseudo open-drain pins have the p-channel output driver disabled when configured for open-drain operation. None of the I/O pins, including open-drain and pseudo open-drain pins, are allowed to go above VDD.

NOTE

The RESET_b pin is also a normal I/O pad with pseudo opendrain.

4 Pinouts

4.1 KE1xZ Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

On this device, there are several special ADC channels which support hardware interleave between multiple ADCs. Taking ADC0_SE4 and ADC1_SE14 channels as an example, these two channels can work independently, but they can also be hardware interleaved. In the hardware interleaved mode, a signal on the pin PTB0 can be sampled by both ADC0 and ADC1. The interleaved mode is enabled by SIM_CHIPCTL[ADC_INTERLEAVE_EN] bits. For more information, see "ADC Hardware Interleaved Channels" in the ADC chapter of Reference Manual.

100 LQFP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
-	10	VREFL/ VSS	VREFL/ VSS	VREFL/ VSS							
1	_	PTE16	DISABLED		PTE16					FXIO_D3	TRGMUX_ OUT7
2	_	PTE15	DISABLED		PTE15					FXIO_D2	TRGMUX_ OUT6
3	1	PTD1	TSI0_CH5	TSI0_CH5	PTD1	FTM0_CH3	LPSPI1_SIN	FTM2_CH1		FXIO_D1	TRGMUX_ OUT2
4	2	PTD0	TSI0_CH4	TSI0_CH4	PTD0	FTM0_CH2	LPSPI1_SCK	FTM2_CH0		FXIO_D0	TRGMUX_ OUT1
5	3	PTE11	TSI0_CH3	TSI0_CH3	PTE11	PWT_IN1	LPTMR0_ ALT1			FXIO_D5	TRGMUX_ OUT5
6	4	PTE10	TSI0_CH2	TSI0_CH2	PTE10	CLKOUT				FXIO_D4	TRGMUX_ OUT4
7	_	PTE13	DISABLED		PTE13						
8	5	PTE5	TSI0_CH0	TSI0_CH0	PTE5	TCLK2	FTM2_QD_ PHA	FTM2_CH3		FXIO_D7	EWM_IN
9	6	PTE4	TSI0_CH1	TSI0_CH1	PTE4	BUSOUT	FTM2_QD_ PHB	FTM2_CH2		FXIO_D6	EWM_OUT_b

100 LQFP	64 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
10	7	VDD	VDD	VDD							
11	8	VDDA	VDDA	VDDA							
12	9	VREFH	VREFH	VREFH							
13	_	VREFL	VREFL	VREFL							
14	_	VSS	VSS	VSS							
15	11	PTB7	EXTAL	EXTAL	PTB7	LPI2C0_SCL					
16	12	PTB6	XTAL	XTAL	PTB6	LPI2C0_SDA					
17	_	PTE14	DISABLED		PTE14	FTM0_FLT1					
18	13	PTE3	TSI0_CH24	TSI0_CH24	PTE3	FTM0_FLT0	LPUART2_ RTS			TRGMUX_IN6	
19	_	PTE12	DISABLED		PTE12	FTM0_FLT3	LPUART2_TX				
20	_	PTD17	DISABLED		PTD17	FTM0_FLT2	LPUART2_RX				
21	14	PTD16	DISABLED		PTD16	FTM0_CH1					
22	15	PTD15	DISABLED		PTD15	FTM0_CH0					
23	16	PTE9	DAC0_OUT	DAC0_OUT	PTE9	FTM0_CH7	LPUART2_ CTS				
24	—	PTD14	DISABLED		PTD14						CLKOUT
25	_	PTD13	DISABLED		PTD13						RTC_CLKOUT
26	17	PTE8	ACMP0_IN3/ TSI0_CH11	ACMP0_IN3/ TSI0_CH11	PTE8	FTM0_CH6					
27	18	PTB5	TSI0_CH9	TSI0_CH9	PTB5	FTM0_CH5	LPSPI0_PCS1			TRGMUX_IN0	ACMP1_OUT
28	19	PTB4	ACMP1_IN2/ TSI0_CH8	ACMP1_IN2/ TSI0_CH8	PTB4	FTM0_CH4	LPSPI0_SOUT			TRGMUX_IN1	
29	20	PTC3	ADC0_SE11/ ACMP0_IN4/ EXTAL32	ADC0_SE11/ ACMP0_IN4/ EXTAL32	PTC3	FTM0_CH3					
30	21	PTC2	ADC0_SE10/ ACMP0_IN5/ XTAL32	ADC0_SE10/ ACMP0_IN5/ XTAL32	PTC2	FTM0_CH2					
31	22	PTD7	TSI0_CH10	TSI0_CH10	PTD7	LPUART2_TX		FTM2_FLT3			
32	23	PTD6	TSI0_CH7	TSI0_CH7	PTD6	LPUART2_RX		FTM2_FLT2			
33	24	PTD5	TSI0_CH6	TSI0_CH6	PTD5	FTM2_CH3	LPTMR0_ ALT2		PWT_IN2	TRGMUX_IN7	
34	_	PTD12	DISABLED		PTD12	FTM2_CH2	LPI2C1_HREQ			LPUART2_ RTS	
35	—	PTD11	DISABLED		PTD11	FTM2_CH1	FTM2_QD_ PHA			LPUART2_ CTS	
36	_	PTD10	DISABLED		PTD10	FTM2_CH0	FTM2_QD_ PHB				
37	-	VSS	VSS	VSS							
38	-	VDD	VDD	VDD							
39	25	PTC1	ADC0_SE9/ ACMP1_IN3/ TSI0_CH23	ADC0_SE9/ ACMP1_IN3/ TSI0_CH23	PTC1	FTM0_CH1					

Pinouts

100 LQFP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
40	26	PTC0	ADC0_SE8/ ACMP1_IN4/ TSI0_CH22	ADC0_SE8/ ACMP1_IN4/ TSI0_CH22	PTC0	FTM0_CH0					
41	-	PTD9	ACMP1_IN5	ACMP1_IN5	PTD9	LPI2C1_SCL		FTM2_FLT3			
42	-	PTD8	DISABLED		PTD8	LPI2C1_SDA		FTM2_FLT2			
43	27	PTC17	ADC0_SE15	ADC0_SE15	PTC17	FTM1_FLT3		LPI2C1_SCLS			
44	28	PTC16	ADC0_SE14	ADC0_SE14	PTC16	FTM1_FLT2		LPI2C1_SDAS			
45	29	PTC15	ADC0_SE13	ADC0_SE13	PTC15	FTM1_CH3					
46	30	PTC14	ADC0_SE12	ADC0_SE12	PTC14	FTM1_CH2					
47	31	PTB3	ADC0_SE7/ TSI0_CH21	ADC0_SE7/ TSI0_CH21	PTB3	FTM1_CH1	LPSPI0_SIN	FTM1_QD_ PHA		TRGMUX_IN2	
48	32	PTB2	ADC0_SE6/ TSI0_CH20	ADC0_SE6/ TSI0_CH20	PTB2	FTM1_CH0	LPSPI0_SCK	FTM1_QD_ PHB		TRGMUX_IN3	
49	-	PTC13	DISABLED		PTC13						
50	-	PTC12	DISABLED		PTC12						
51	_	PTC11	DISABLED		PTC11						
52	_	PTC10	DISABLED		PTC10						
53	33	PTB1	ADC0_SE5	ADC0_SE5	PTB1	LPUART0_TX	LPSPI0_SOUT	TCLK0			
54	34	PTB0	ADC0_SE4	ADC0_SE4	PTB0	LPUART0_RX	LPSPI0_PCS0	LPTMR0_ ALT3	PWT_IN3		
55	35	PTC9	DISABLED		PTC9	LPUART1_TX				LPUART0_ RTS	
56	36	PTC8	DISABLED		PTC8	LPUART1_RX				LPUART0_ CTS	
57	37	PTA7	ADC0_SE3/ ACMP1_IN1	ADC0_SE3/ ACMP1_IN1	PTA7	FTM0_FLT2		RTC_CLKIN		LPUART1_ RTS	
58	38	PTA6	ADC0_SE2/ ACMP1_IN0	ADC0_SE2/ ACMP1_IN0	PTA6	FTM0_FLT1	LPSPI1_PCS1			LPUART1_ CTS	
59	39	PTE7	DISABLED		PTE7	FTM0_CH7					
60	40	VSS	VSS	VSS							
61	41	VDD	VDD	VDD							
62	-	PTA17	DISABLED		PTA17	FTM0_CH6		EWM_OUT_b			
63	-	PTB17	DISABLED		PTB17	FTM0_CH5	LPSPI1_PCS3				
64	-	PTB16	DISABLED		PTB16	FTM0_CH4	LPSPI1_SOUT				
65	-	PTB15	DISABLED		PTB15	FTM0_CH3	LPSPI1_SIN				
66	_	PTB14	ADC1_SE9	ADC1_SE9	PTB14	FTM0_CH2	LPSPI1_SCK				
67	42	PTB13	ADC1_SE8	ADC1_SE8	PTB13	FTM0_CH1					
68	43	PTB12	ADC1_SE7	ADC1_SE7	PTB12	FTM0_CH0					
69	44	PTD4	ADC1_SE6	ADC1_SE6	PTD4	FTM0_FLT3					
70	45	PTD3	NMI_b	ADC1_SE3	PTD3		LPSPI1_PCS0	FXIO_D5		TRGMUX_IN4	NMI_b
71	46	PTD2	ADC1_SE2	ADC1_SE2	PTD2		LPSPI1_SOUT	FXIO_D4		TRGMUX_IN5	
72	47	PTA3	ADC1_SE1	ADC1_SE1	PTA3		LPI2C0_SCL	EWM_IN		LPUART0_TX	

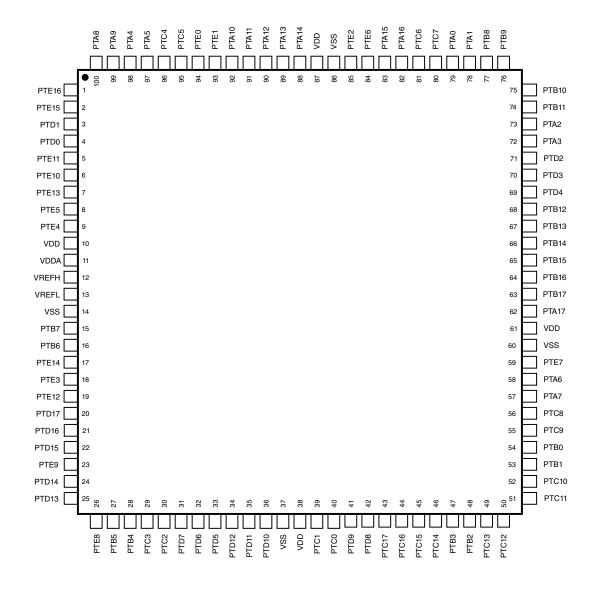


Figure 7. 100 LQFP Pinout Diagram

Symbol	Parameter		Value		Unit	Notes		
		Min	Тур	Max	1			
I _{OLT}	Output low current total for all ports	_	_	100	mA			
I _{IN}	Input leakage current (per pin) for full temperature range							
	@ V _{DD} = 3.3 V							
	All pins other than high drive port pins	_	0.002	0.5	μA			
	High drive port pins	_	0.004	0.5	μA			
	Input leakage current (per pin) for full temperature range							
	@ V _{DD} = 5.5 V							
	All pins other than high drive port pins	—	0.005	0.5	μA			
	High drive port pins	_	0.010	0.5	μA			
R _{PU}	Internal pull-up resistors	20	_	65	kΩ	9		
	@ V _{DD} = 3.3 V							
	@ V _{DD} = 5.0 V	20	_	50	kΩ			
R _{PD}	Internal pull-down resistors	20	—	65	kΩ	10		
	@ V _{DD} = 3.3 V							
	@ V _{DD} = 5.0 V	20	_	50	kΩ			

- 1. Max power supply ramp rate is 500 V/ms.
- 2. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_5 value given above.
- 3. The 20 mA I/O pin is capable of switching a 50 pF load at up to 40 MHz.
- 4. The value given is measured at high drive strength mode. For value at low drive strength mode see the lol_5 value given above.
- 5. Refers to the current that leaks into the core when the pad is in Hi-Z (Off state).
- 6. Maximum pin leakage current at the ambient temperature upper limit.
- 7. PTD0, PTD1, PTD15, PTD16, PTB4, PTB5, PTE0 and PTE1 I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
- 8. Refers to the pin leakage on the GPIOs when they are OFF.
- 9. Measured at V_{DD} supply voltage = V_{DD} min and input V = V_{SS}
- 10. Measured at V_{DD} supply voltage = V_{DD} min and input V = V_{DD}

Mode	Symbol	Clock Configura tion	Description	Temperat ure	Min	Тур	Max ¹	Unit
				50 ℃	—	47	66	
				85 °C	—	146	204	
				105 °C	—	277	388	
VLPS		Very Low Power Stop current, VDD=5V, bias disabled ²	25 °C and blew	_	27	37	μA	
				50 °C	—	45	64	
				85 °C	—	134	187	
				105 °C	—	267	375	
VLPS	I _{DD_VLPS}	-	Very Low Power Stop current, VDD=5V, bias enabled ²	25 °C and blew	_	21	29	μA
				50 ℃	—	29	41	
				85 °C	—	66	92	1
				105 °C	—	109	153	1

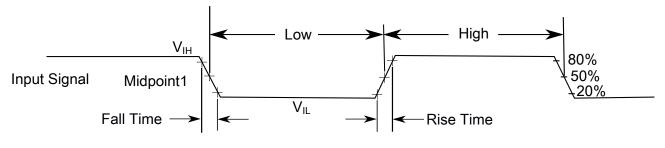
Table 33. Power consumption operating behaviors (continued)

1. These values are based on characterization but not covered by test limits in production.

2. PMC_REGSC[CLKBIASDIS] is the control bit to enable or disable bias under STOP/VLPS mode.

NOTE

CoreMark benchmark compiled using IAR 7.40 with optimization level high, optimized for balanced.


5.3.1.6.1 Low power mode peripheral current adder — typical value

Symbol	Description	Typical
I _{LPTMR}	LPTMR peripheral adder measured by placing the device in VLPS mode with LPTMR enabled using LPO. Includes LPO power consumption.	366 nA
I _{CMP}	CMP peripheral adder measured by placing the device in VLPS mode with CMP enabled using the 8-bit DAC and a single external input for compare. 8-bit DAC enabled with half VDDA voltage, low speed mode. Includes 8-bit DAC power consumption.	16 µA
I _{RTC}	RTC peripheral adder measured by placing the device in VLPS mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC counter enabled. Includes EXTAL32 (32 kHz external crystal) power consumption.	312 nA
I _{LPUART}	LPUART peripheral adder measured by placing the device in VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. (SIRC 8 MHz)	79 µA
I _{FTM}	FTM peripheral adder measured by placing the device in VLPW mode with selected clock source, outputting the edge aligned PWM of 100 Hz frequency.	45 µA

Table continues on the next page ...

5.3.2.2 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 16. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics.

- $C_L=30 \text{ pF loads}$
- Normal drive strength

5.3.2.3 General AC specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and timers.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1, 2
	External RESET and NMI pin interrupt pulse width — Asynchronous path	100	—	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, passive filter disabled) — Asynchronous path	50	_	ns	4

 Table 36.
 General switching specifications

1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop and VLPS modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.

- 2. The greater of synchronous and asynchronous timing must be met.
- 3. These pins have a passive filter enabled on the inputs. This is the shortest pulse width that is guaranteed to be recognized.
- 4. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized.

5.3.2.4 AC specifications at 3.3 V range Table 37. Functional pad AC specifications

Characteristic	Symbol	Min	Тур	Мах	Unit
I/O Supply Voltage	Vdd ¹	2.7		4	V

1. Max power supply ramp rate is 500 V/ms.

Name	Prop Delay (ns) ¹	Rise/Fall I	Drive Load (pF)	
	Max	Min	Max	
Normal drive I/O pad	17.5	5	17	25
	28	9	32	50
High drive I/O pad	19	5	17	25
	26	9	33	50
CMOS Input ³	4	1.2	3	0.5

1. Propagation delay measured from 50% of core side input to 50% of the output.

2. Edges measured using 20% and 80% of the VDD supply.

3. Input slope = 2 ns.

NOTE

All measurements were taken accounting for 150 mV drop across VDD and VSS.

5.3.2.5 AC specifications at 5 V range Table 38. Functional pad AC specifications

Characteristic	Symbol	Min	Тур	Max	Unit
I/O Supply Voltage	Vdd ¹	4		5.5	V

1. Max power supply ramp rate is 500 V/ms.

Name	Prop Delay (ns) ¹	Rise/Fall I	Drive Load (pF)			
	Max	Min	Max			
Normal drive I/O pad	12	3.6 10		3.6 10		25
	18	8	17	50		
High drive I/O pad	13	3.6	10	25		
	19	8	19	50		
CMOS Input ³	3	1.2	2.8	0.5		

1. As measured from 50% of core side input to 50% of the output.

2. Edges measured using 20% and 80% of the VDD supply.

3. Input slope = 2 ns.

NOTE

All measurements were taken accounting for 150 mV drop across VDD and VSS.

5.3.3 Thermal specifications

5.3.3.1 Thermal operating requirements Table 39. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is: $T_J = T_A + R_{\odot JA} \times chip$ power dissipation.

5.3.3.2 Thermal attributes

5.3.3.2.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTE

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

5.3.3.2.2 Thermal characteristics for the 64-pin LQFP package Table 40. Thermal characteristics for the 64-pin LQFP package

Rating	Conditions	Symbol	Value	Unit
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2}	Single layer board (1s)	R _{θJA}	62	°C/W
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2}	Four layer board (2s2p)	R _{θJA}	44	°C/W
Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 3}	Single layer board (1s)	R _{θJMA}	50	°C/W

Table continues on the next page ...

Rating	Conditions	Symbol	Value	Unit
Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 3}	Four layer board (2s2p)	R _{θJMA}	37	°C/W
Thermal resistance, Junction to Board ⁴	_	R _{θJB}	26	°C/W
Thermal resistance, Junction to Case ⁵	—	R _{θJC}	14	°C/W
Thermal resistance, Junction to Package Top ⁶	Natural Convection	ΨJT	2	°C/W

Table 40. Thermal characteristics for the 64-pin LQFP package (continued)

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
- 3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

5.3.3.2.3 Thermal characteristics for the 100-pin LQFP package Table 41. Thermal characteristics for the 100-pin LQFP package

Rating	Conditions	Symbol	Value	Unit
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2}	Single layer board (1s)	R _{θJA}	59	°C/W
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2}	Four layer board (2s2p)	R _{θJA}	46	°C/W
Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 3}	Single layer board (1s)	R _{θJMA}	49	°C/W
Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 3}	Four layer board (2s2p)	R _{θJMA}	40	°C/W
Thermal resistance, Junction to Board ⁴	_	R _{θJB}	31	°C/W
Thermal resistance, Junction to Case ⁵	—	R _{θJC}	16	°C/W
Thermal resistance, Junction to Package Top ⁶	Natural Convection	ΨJT	2	°C/W

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
- 3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

5.3.3.2.4 General notes for specifications at maximum junction temperature

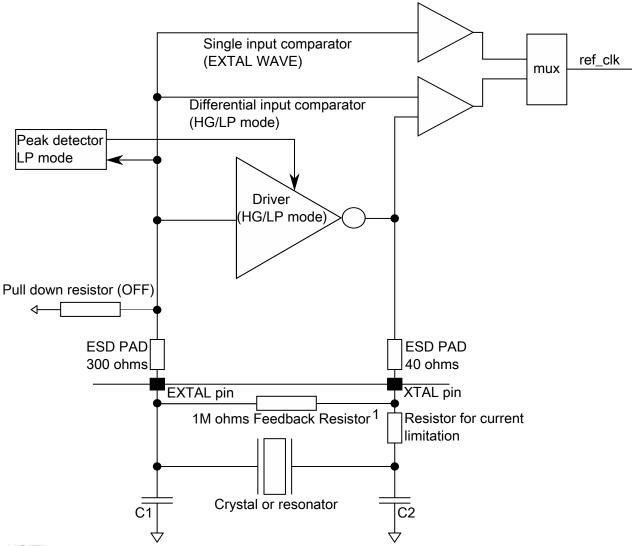
An estimation of the chip junction temperature, T_J, can be obtained from this equation:

 $T_J = T_A + (R_{\theta JA} \times P_D)$

where:

- T_A = ambient temperature for the package (°C)
- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.


When a heat sink is used, the thermal resistance is expressed in the following equation as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

 $R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$

where:

- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- $R_{\theta JC}$ = junction to case thermal resistance (°C/W)
- $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

NOTE:

1. 1M Feedback resistor is needed only for HG mode.

Figure 18. Oscillator connections scheme (OSC)

NOTE

Data values in the following "External Oscillator electrical specifications" tables are from simulation.

Table 42. External Oscillator electrical specifications (OSC32)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	2.7	—	5.5	V	
I _{DDOSC}	Supply current	—	25	—	μA	1
9 _{mXOSC}	Oscillator transconductance	6	_	9	μA/V	
V _{EXTAL}	EXTAL32 input voltage — external clock mode	0	—	3.6	V	

Table continues on the next page...

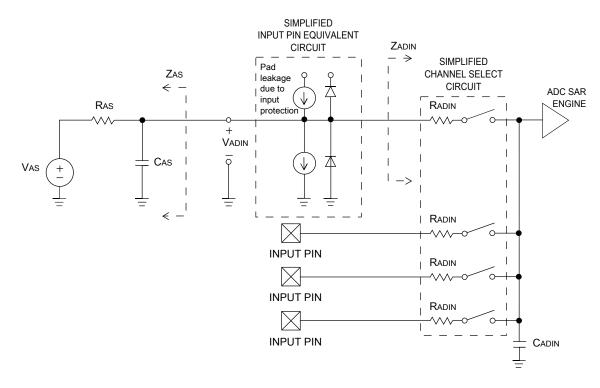


Figure 19. ADC input impedance equivalency diagram

5.4.5.1.2 12-bit ADC electrical characteristics

NOTE

All the parameters in the table are given assuming system clock as the clocking source for ADC.

NOTE

For ADC signals adjacent to VDD/VSS or the XTAL pins some degradation in the ADC performance may be observed.

NOTE

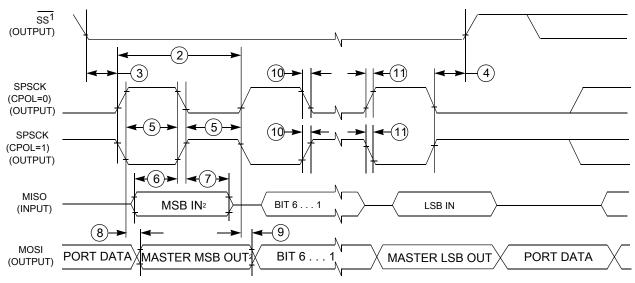

All values guarantee the performance of the ADC for the multiple ADC input channel pins. When using the ADC to monitor the internal analogue parameters, please assume minor degradation.

Table 55. 12-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max. ³	Unit	Notes
I _{DDA_ADC}	Supply current at 2.7 to 5.5 V		927	975 μA @ 5 V	1023	mA	4

Table continues on the next page ...

Electrical characteristics

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 25. LPSPI master mode timing (CPHA = 1)

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	—	ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	
4	t _{Lag}	Enable lag time	1	—	t _{periph}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	—	ns	
6	t _{SU}	Data setup time (inputs)	2.5	—	ns	—
7	t _{HI}	Data hold time (inputs)	3.5	—	ns	—
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	_	31	ns	—
11	t _{HO}	Data hold time (outputs)	0	—	ns	—
12	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input]			
13	t _{RO}	Rise time output	_	25	ns	—
	t _{FO}	Fall time output]			

Table 58. LPSPI slave mode timing

- 1. $f_{periph} = LPSPI$ peripheral clock
- 2.
- $t_{periph} = 1/f_{periph}$ Time to data active from high-impedance state З.
- 4. Hold time to high-impedance state

Symbol	Description	Min.	Max.	Unit
S2	SWD_CLK cycle period	1/S1	—	ns
S3	SWD_CLK clock pulse width	15	—	ns
S4	SWD_CLK rise and fall times	_	3	ns
S9	SWD_DIO input data setup time to SWD_CLK rise	8	—	ns
S10	SWD_DIO input data hold time after SWD_CLK rise	1.4	—	ns
S11	SWD_CLK high to SWD_DIO data valid		25	ns
S12	SWD_CLK high to SWD_DIO high-Z	5	—	ns

Table 61. SWD full voltage range electricals (continued)

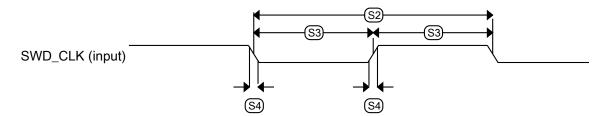


Figure 28. Serial wire clock input timing

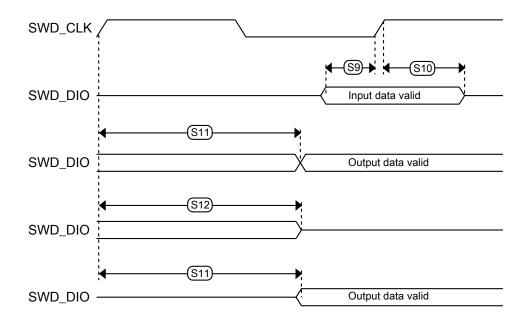


Figure 29. Serial wire data timing

6 Design considerations

Kinetis KE1xZ with up to 256 KB Flash, Rev. 2, 09/2016