E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	FlexIO, I²C, SPI, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	89
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	34К х 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke14z256vll7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Clock interfaces

- 3 40 MHz fast external oscillator (OSC)
- 32 kHz slow external oscillator (OSC32)
- 48 60 MHz high-accuracy (up to 1%) fast internal reference clock (FIRC) for normal Run
- 8 MHz / 2 MHz high-accuracy (up to 3%) slow internal reference clock (SIRC) for low-speed Run
- 128 kHz low power oscillator (LPO)
- Low-power FLL (LPFLL)
- Up to 60 MHz DC external square wave input clock
- System clock generator (SCG)
- Real time counter (RTC)

Power management

- Low-power ARM Cortex-M0+ core with excellent energy efficiency
- Power management controller (PMC) with multiple power modes: Run, Wait, Stop, VLPR, VLPW and VLPS
- Supports clock gating for unused modules, and specific peripherals remain working in low power modes
- POR, LVD/LVR

Connectivity and communications interfaces

- 3× low-power universal asynchronous receiver/ transmitter (LPUART) modules with DMA support and low power availability
- 2× low-power serial peripheral interface (LPSPI) modules with DMA support and low power availability
- 2× low-power inter-integrated circuit (LPI2C) modules with DMA support and low power availability
- FlexIO module for flexible and high performance serial interfaces

Debug functionality

- · Serial Wire Debug (SWD) debug interface
- Debug Watchpoint and Trace (DWT)
- Micro Trace Buffer (MTB)

Operating Characteristics

- Voltage range: 2.7 to 5.5 V
- Ambient temperature range: –40 to 105 °C

Related Resources

Туре	Description	Resource
Selector Guide	The Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.	KE1xZ256PB ¹
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KE1xZP100M72SF0RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal	This document:
		KE1xZP100M72SF0
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	Kinetis_E_1N36S ¹
Package	Package dimensions are provided in package drawings.	100-LQFP: 98ASS23308W
drawing		64-LQFP: 98ASS23234W

1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.

Overview

Figure 2. System diagram

The crossbar switch connects bus masters and slaves using a crossbar switch structure. This structure allows up to four bus masters to access different bus slaves simultaneously, while providing arbitration among the bus masters when they access the same slave.

2.1 System features

The following sections describe the high-level system features.

rights for each transaction routed to the on-chip flash memory. Configurability allows an increasing number of protected segments while supporting two levels of vendors adding their proprietary software to a device.

2.1.8 Power management

The Power Management Controller (PMC) expands upon ARM's operational modes of Run, Sleep, and Deep Sleep, to provide multiple configurable modes. These modes can be used to optimize current consumption for a wide range of applications. The WFI or WFE instruction invokes a Wait or a Stop mode, depending on the current configuration. For more information on ARM's operational modes, See the ARM[®] Cortex[®] User Guide.

The PMC provides Normal Run (RUN), and Very Low Power Run (VLPR) configurations in ARM's Run operation mode. In these modes, the MCU core is active and can access all peripherals. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption. The configuration that matches the power versus performance requirements of the application can be selected.

The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in ARM's Sleep operation mode. In these modes, even though the MCU core is inactive, all of the peripherals can be enabled and operate as programmed. The difference between the modes is the maximum clock frequency of the system and therefore the power consumption.

The PMC provides Stop (Stop), Very Low Power Stop (VLPS) configurations in ARM's Deep Sleep operational mode. In these modes, the MCU core and most of the peripherals are disabled. Depending on the requirements of the application, different portions of the analog, logic, and memory can be retained or disabled to conserve power.

The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up Interrupt Controller (AWIC) are used to wake up the MCU from low power states. The NVIC is used to wake up the MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU core from STOP and VLPS modes.

For additional information regarding operational modes, power management, the NVIC, AWIC, please refer to the Reference Manual.

The following table provides information about the state of the peripherals in the various operational modes and the modules that can wake MCU from low power modes.

Core mode	Device mode	Descriptions
Run mode	Run	In Run mode, all device modules are operational.
	Very Low Power Run	In VLPR mode, all device modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled.
Sleep mode	Wait	In Wait mode, all peripheral modules are operational. The MCU core is placed into Sleep mode.
	Very Low Power Wait	In VLPW mode, all peripheral modules are operational at a reduced frequency except the Low Voltage Detect (LVD) monitor, which is disabled. The MCU core is placed into Sleep mode.
Deep sleep	Stop	In Stop mode, most peripheral clocks are disabled and placed in a static state. Stop mode retains all registers and SRAMs while maintaining Low Voltage Detection protection. In Stop mode, the ADC, CMP, LPTMR, RTC, and pin interrupts are operational. The NVIC is disabled, but the AWIC can be used to wake up from an interrupt.
	Very Low Power Stop	In VLPS mode, the contents of the SRAM are retained. The CMP (low speed), ADC, OSC, RTC, LPTMR, LPIT, FlexIO, LPUART, LPI2C,LPSPI, and DMA are operational, LVD and NVIC are disabled, AWIC is used to wake up from interrupt.

 Table 5. Peripherals states in different operational modes

2.1.9 Debug controller

This device has extensive debug capabilities including run control and tracing capabilities. The standard ARM debug port supports SWD interface.

2.2 Peripheral features

The following sections describe the features of each peripherals of the chip.

2.2.1 eDMA and DMAMUX

The eDMA is a highly programmable data-transfer engine optimized to minimize any required intervention from the host processor. It is intended for use in applications where the data size to be transferred is statically known and not defined within the transferred data itself. The DMA controller in this device implements 8 channels which can be routed from up to 63 DMA request sources through DMA MUX module.

Main features of eDMA are listed below:

Pinouts

100	64	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
40	26	PTC0	ADC0_SE8/	ADC0 SE8/	PTC0	FTM0 CH0					
			ACMP1_IN4/ TSI0_CH22	ACMP1_IN4/ TSI0_CH22							
41	_	PTD9	ACMP1_IN5	ACMP1_IN5	PTD9	LPI2C1_SCL		FTM2_FLT3			
42	_	PTD8	DISABLED		PTD8	LPI2C1_SDA		FTM2_FLT2			
43	27	PTC17	ADC0_SE15	ADC0_SE15	PTC17	FTM1_FLT3		LPI2C1_SCLS			
44	28	PTC16	ADC0_SE14	ADC0_SE14	PTC16	FTM1_FLT2		LPI2C1_SDAS			
45	29	PTC15	ADC0_SE13	ADC0_SE13	PTC15	FTM1_CH3					
46	30	PTC14	ADC0_SE12	ADC0_SE12	PTC14	FTM1_CH2					
47	31	PTB3	ADC0_SE7/ TSI0_CH21	ADC0_SE7/ TSI0_CH21	PTB3	FTM1_CH1	LPSPI0_SIN	FTM1_QD_ PHA		TRGMUX_IN2	
48	32	PTB2	ADC0_SE6/ TSI0_CH20	ADC0_SE6/ TSI0_CH20	PTB2	FTM1_CH0	LPSPI0_SCK	FTM1_QD_ PHB		TRGMUX_IN3	
49	_	PTC13	DISABLED		PTC13						
50	_	PTC12	DISABLED		PTC12						
51	_	PTC11	DISABLED		PTC11						
52	_	PTC10	DISABLED		PTC10						
53	33	PTB1	ADC0_SE5	ADC0_SE5	PTB1	LPUART0_TX	LPSPI0_SOUT	TCLK0			
54	34	PTB0	ADC0_SE4	ADC0_SE4	PTB0	LPUART0_RX	LPSPI0_PCS0	LPTMR0_ ALT3	PWT_IN3		
55	35	PTC9	DISABLED		PTC9	LPUART1_TX				LPUART0_ RTS	
56	36	PTC8	DISABLED		PTC8	LPUART1_RX				LPUART0_ CTS	
57	37	PTA7	ADC0_SE3/ ACMP1_IN1	ADC0_SE3/ ACMP1_IN1	PTA7	FTM0_FLT2		RTC_CLKIN		LPUART1_ RTS	
58	38	PTA6	ADC0_SE2/ ACMP1_IN0	ADC0_SE2/ ACMP1_IN0	PTA6	FTM0_FLT1	LPSPI1_PCS1			LPUART1_ CTS	
59	39	PTE7	DISABLED		PTE7	FTM0_CH7					
60	40	VSS	VSS	VSS							
61	41	VDD	VDD	VDD							
62	_	PTA17	DISABLED		PTA17	FTM0_CH6		EWM_OUT_b			
63	_	PTB17	DISABLED		PTB17	FTM0_CH5	LPSPI1_PCS3				
64	_	PTB16	DISABLED		PTB16	FTM0_CH4	LPSPI1_SOUT				
65	-	PTB15	DISABLED		PTB15	FTM0_CH3	LPSPI1_SIN				
66	-	PTB14	ADC1_SE9	ADC1_SE9	PTB14	FTM0_CH2	LPSPI1_SCK				
67	42	PTB13	ADC1_SE8	ADC1_SE8	PTB13	FTM0_CH1					
68	43	PTB12	ADC1_SE7	ADC1_SE7	PTB12	FTM0_CH0					
69	44	PTD4	ADC1_SE6	ADC1_SE6	PTD4	FTM0_FLT3					
70	45	PTD3	NMI_b	ADC1_SE3	PTD3		LPSPI1_PCS0	FXIO_D5		TRGMUX_IN4	NMI_b
71	46	PTD2	ADC1_SE2	ADC1_SE2	PTD2		LPSPI1_SOUT	FXIO_D4		TRGMUX_IN5	
72	47	PTA3	ADC1_SE1	ADC1_SE1	PTA3		LPI2C0_SCL	EWM_IN		LPUART0_TX	

4.3.6 Communication Interfaces

Table 21. LPSPIn Signal Descriptions

Chip signal name	Module signal name	Description	I/O
LPSPIn_SOUT	SOUT	Serial Data Out	0
LPSPIn_SIN	SIN	Serial Data In	I
LPSPIn_SCK	SCK	Serial Clock	I/O
LPSPIn_PCS[3:0]	PCS[3:0]	Peripheral Chip Select 0-3	I/O

Table 22. LPI2Cn Signal Descriptions

Chip signal name	Module signal name	Description	I/O
LPI2Cn_SCL	SCL	Bidirectional serial clock line of the I2C system.	I/O
LPI2Cn_SDA	SDA	Bidirectional serial data line of the I2C system.	I/O
LPI2Cn_HREQ	HREQ	Host request, can initiate an LPI2C master transfer if asserted and the I2C bus is idle.	I
LPI2Cn_SCLS	SCLS	Secondary I2C clock line.	I/O
LPI2Cn_SDAS	SDAS	Secondary I2C data line.	I/O

Table 23. LPUARTn Signal Descriptions

Chip signal name	Module signal name	Description	I/O
LPUARTn_TX	LPUART_TX	Transmit data	0
LPUARTn_RX	LPUART_RX	Receive data	I
LPUARTn_CTS	LPUART_CTS	Clear to send	I
LPUARTn_RTS	LPUART_RTS	Request to send	0

Table 24.	FlexIO	Signal	Descri	ptions
-----------	--------	--------	--------	--------

Chip signal name	Module signal name	Description	I/O
FXIO_D[7:0]	FXIO_D[7:0]	Bidirectional FlexIO Shifter and Timer pin inputs/outputs	I/O

4.3.7 Human-Machine Interfaces (HMI) Table 25. GPIO Signal Descriptions

Chip signal name	Module signal	Description	I/O
	name		
PTA[17:0]	PORTA17-PORTA0	General-purpose input/output	I/O
PTB[17:0]	PORTB17-PORTB0	General-purpose input/output	I/O
PTC[17:0]	PORTC17-PORTC0	General-purpose input/output	I/O
PTD[17:0]	PORTD17-PORTD0	General-purpose input/output	I/O
PTE[16:0]	PORTE16-PORTE0	General-purpose input/output	I/O

Table 26. TSI0 Signal Descriptions

Chip signal name	Module signal name	Description	I/O
TSI0_CH[24:0]	TSI[24:0]	TSI sensing pins or GPIO pins	I/O

4.4 Pinout diagram

The following figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous table of Pin Assignments.

5 Electrical characteristics

5.1 Terminology and guidelines

5.1.1 Definitions

Key terms are defined in the following table:

Term	Definition
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered.
	NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions
Typical value	A specified value for a technical characteristic that:
	 Lies within the range of values specified by the operating behavior Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions
	NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.

5.3.1 Nonswitching electrical specifications

5.3.1.1 Voltage and current operating requirements Table 28. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	2.7	5.5	V	
V _{DDA}	Analog supply voltage	2.7	5.5	V	
V _{DD} – V _{DDA}	V _{DD} -to-V _{DDA} differential voltage	- 0.1	0.1	V	
V _{SS} – V _{SSA}	V _{SS} -to-V _{SSA} differential voltage	- 0.1	0.1	V	
I _{ICIO}	Analog DC injection current — single pin				
	$V_{IN} < V_{SS}$ - 0.3 V (Negative current injection)	- 5	—	mA	1, 2
	$V_{IN} > V_{DD} + 0.3 V$ (Positive current injection)	—	+ 5	mA	
I _{ICcont}	Contiguous pin DC injection current — regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins	- 25	_	mA	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	3

All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is less than V_{AIO_MIN} or greater than V_{AIO_MAX}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICIO}I. The positive injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICIO}I. The positive injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICIO}I. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.

- 2. Max voltage levels that I/O pins can withstand while keeping the injection current (maximum) at 5mA:
 - Max supply V_{DD} = 6.0 V for 60 s lifetime (with no switching restrictions) or for 10 hours (if device is in reset or no switching state)
 - Max I/O pin voltage = 6.5 V (at injection current \leq 5 mA) or 7.0 V (at injection current > 5 mA)
- 3. Open drain outputs must be pulled to V_{DD}.

5.3.1.2 DC electrical specifications at 3.3 V Range and 5.0 V Range Table 29. DC electrical specifications

Symbol	Parameter	Value			Parameter Value Unit	Unit	Notes
		Min	Тур	Max			
V _{DD}	I/O Supply Voltage ¹	2.7	3.3	4	V		
	@ V _{DD} = 3.3 V						
	@ V _{DD} = 5.0 V	4	_	5.5	V		
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	-	V _{DD} + 0.3	V		
	@ V _{DD} = 3.3 V						
	@ V _{DD} = 5.0 V	$0.65 \times V_{DD}$	_	V _{DD} + 0.3	V		

Table continues on the next page...

5.3.2.4 AC specifications at 3.3 V range Table 37. Functional pad AC specifications

Characteristic	Symbol	Min	Тур	Мах	Unit
I/O Supply Voltage	Vdd ¹	2.7		4	V

1. Max power supply ramp rate is 500 V/ms.

Name	Prop Delay (ns) ¹	Rise/Fall I	Drive Load (pF)	
	Max	Min	Max	
Normal drive I/O pad	17.5	5	17	25
	28	9	32	50
High drive I/O pad	19	5	17	25
	26	9	33	50
CMOS Input ³	4	1.2	3	0.5

1. Propagation delay measured from 50% of core side input to 50% of the output.

2. Edges measured using 20% and 80% of the VDD supply.

3. Input slope = 2 ns.

NOTE

All measurements were taken accounting for 150 mV drop across VDD and VSS.

5.3.2.5 AC specifications at 5 V range Table 38. Functional pad AC specifications

Characteristic	Symbol	Min	Тур	Max	Unit
I/O Supply Voltage	Vdd ¹	4		5.5	V

1. Max power supply ramp rate is 500 V/ms.

Name	Prop Delay (ns) ¹	Rise/Fall I	Drive Load (pF)	
	Max	Min	Мах	
Normal drive I/O pad	12	3.6	10	25
	18	8	17	50
High drive I/O pad	13	3.6	10	25
	19	8	19	50
CMOS Input ³	3	1.2	2.8	0.5

1. As measured from 50% of core side input to 50% of the output.

2. Edges measured using 20% and 80% of the VDD supply.

3. Input slope = 2 ns.

NOTE

All measurements were taken accounting for 150 mV drop across VDD and VSS.

5.3.3 Thermal specifications

5.3.3.1 Thermal operating requirements Table 39. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is: $T_J = T_A + R_{\odot JA} \times chip$ power dissipation.

5.3.3.2 Thermal attributes

5.3.3.2.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTE

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

5.3.3.2.2 Thermal characteristics for the 64-pin LQFP package Table 40. Thermal characteristics for the 64-pin LQFP package

Rating	Conditions	Symbol	Value	Unit
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2}	Single layer board (1s)	R _{θJA}	62	°C/W
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2}	Four layer board (2s2p)	R _{θJA}	44	°C/W
Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 3}	Single layer board (1s)	R _{θJMA}	50	°C/W

Table continues on the next page ...

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

 $T_J = T_T + (\Psi_{JT} \times P_D)$

where:

- T_T = thermocouple temperature on top of the package (°C)
- Ψ_{JT} = thermal characterization parameter (°C/W)
- P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

5.4 Peripheral operating requirements and behaviors

5.4.1 System modules

There are no specifications necessary for the device's system modules.

5.4.2 Clock interface modules

5.4.2.1 Oscillator electrical specifications

5.4.2.1.1 External Oscillator electrical specifications

NOTE:

1. 1M Feedback resistor is needed only for HG mode.

Figure 18. Oscillator connections scheme (OSC)

NOTE

Data values in the following "External Oscillator electrical specifications" tables are from simulation.

Table 42. External Oscillator electrical specifications (OSC32)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	2.7	—	5.5	V	
I _{DDOSC}	Supply current	—	25	—	μA	1
g _{mXOSC}	Oscillator transconductance	6	—	9	μA/V	
V _{EXTAL}	EXTAL32 input voltage — external clock mode	0	—	3.6	V	

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — Low Frequency, High Gain Mode	32	_	40	kHz	
f _{osc_me}	Oscillator crystal or resonator frequency — Medium Frequency	1		8	MHz	
f _{osc_hi}	Oscillator crystal or resonator frequency — High Frequency	8	—	32		
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz Low Frequency, High-Gain Mode	—	500	—	ms	1
	Crystal startup time — 8 MHz High Frequency, Low-Power Mode	—	1.5	—	-	
	Crystal startup time — 8 MHz High Frequency, High-Gain Mode	—	2.5	—		
	Crystal startup time — 40 MHz High Frequency, Low-Power Mode	—	2	—		
	Crystal startup time — 40 MHz High Frequency, High-Gain Mode	—	2.5	—		

Table 45. External Oscillator frequency specifications (OSC)

1. The start-up measured after 4096 cycles. Proper PC board layout procedures must be followed to achieve specifications.

5.4.2.2 System Clock Generation (SCG) specifications

5.4.2.2.1 Fast internal RC Oscillator (FIRC) electrical specifications Table 46. Fast internal RC Oscillator electrical specifications

Symbol	Parameter	Value		Unit	
		Min.	Тур.	Max.	
F _{FIRC}	Fast internal reference frequency	—	48	—	MHz
	Trim range = 00		52		
	range = 01 (Note: 52/56 MHz are not trimmed)		56		
	range = 10 (Note: 52/56 MHz are not trimmed)		60		
	Trim range = 11				
I _{VDD}	Supply current		400	500	μA
FUntrimmed	IRC frequency (untrimmed)	F _{IRC} × (1-0.3)	_	F _{IRC} × (1+0.3)	MHz
ΔF _{OL}	Open loop total deviation of IRC frequency over voltage and temperature ¹				
	Regulator enable	_	±0.5	±1	%F _{FIRC}
T _{Startup}	Startup time			3	μs ²
T _{JIT}	Period jitter (RMS)		35	150	ps

Electrical characteristics

- 1. Hs-mode is only supported in slave mode.
- 2. The maximum SCL clock frequency in Fast mode with maximum bus loading (400pF) can only be achieved with appropriate pull-up devices on the bus when using the high or normal drive pins across the full voltage range. The maximum SCL clock frequency in Fast mode Plus can support maximum bus loading (400pF) with appropriate pull-up devices when using the high drive pins. The maximum SCL clock frequency in Ultra Fast mode can support maximum bus loading (400pF) when using the high drive pins. The maximum SCL clock frequency for slave in High speed mode can support maximum bus loading (400pF) with appropriate pull-up devices when using the high drive pins. For more information on the required pull-up devices, see I²C Bus Specification.
- 3. See General switching specifications

5.4.7 Human-machine interfaces (HMI)

5.4.7.1 Touch sensing input (TSI) electrical specifications Table 60. TSI electrical specifications

Symbol	ol Description Value				
		Min	Тур	Мах	
I _{DD_EN}	Power consumption in operation mode	_	500	600	μA
I _{DD_DIS}	Power consumption in disable mode	_	20	355	nA
V _{BG}	Internal bandgap reference voltage	—	1.21	—	V
V _{PRE}	Internal bias voltage	_	1.51	_	V
CI	Internal integration capacitance	_	90	_	pF
F _{CLK}	Internal main clock frequency	_	16	_	MHz

5.4.8 Debug modules

5.4.8.1 SWD electricals

Table 61. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
V _{DDA}	Operating voltage	2.7	5.5	V
S1	SWD_CLK frequency of operation	0	25	MHz

Table continues on the next page...

6.1 Hardware design considerations

This device contains protective circuitry to guard against damage due to high static voltage or electric fields. However, take normal precautions to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit.

6.1.1 Printed circuit board recommendations

- Place connectors or cables on one edge of the board and do not place digital circuits between connectors.
- Drivers and filters for I/O functions must be placed as close to the connectors as possible. Connect TVS devices at the connector to a good ground. Connect filter capacitors at the connector to a good ground. Consider to add ferrite bead or inductor to some sensitive lines.
- Physically isolate analog circuits from digital circuits if possible.
- Place input filter capacitors as close to the MCU as possible.
- For best EMC performance, route signals as transmission lines; use a ground plane directly under LQFP packages; and solder the exposed pad (EP) to ground directly under QFN packages.

6.1.2 Power delivery system

Consider the following items in the power delivery system:

- Use a plane for ground.
- Use a plane for MCU VDD supply if possible.
- Always route ground first, as a plane or continuous surface, and never as sequential segments.
- Always route the power net as star topology, and make each power trace loop as minimum as possible.
- Route power next, as a plane or traces that are parallel to ground traces.
- Place bulk capacitance, $10 \,\mu\text{F}$ or more, at the entrance of the power plane.
- Place bypass capacitors for MCU power domain as close as possible to each VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL.
- The minimum bypass requirement is to place $0.1 \ \mu F$ capacitors positioned as near as possible to the package supply pins.

6.1.4 Digital design

Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V).

CAUTION

Do not provide power to I/O pins prior to VDD, especially the RESET_b pin.

• RESET_b pin

The RESET_b pin is a pseudo open-drain I/O pin that has an internal pullup resistor. An external RC circuit is recommended to filter noise as shown in the following figure. The resistor value must be in the range of 4.7 k Ω to 10 k Ω ; the recommended capacitance value is 0.1 μ F. The RESET_b pin also has a selectable digital filter to reject spurious noise.

Figure 32. Reset circuit

When an external supervisor chip is connected to the RESET_b pin, a series resistor must be used to avoid damaging the supervisor chip or the RESET_b pin, as shown in the following figure. The series resistor value (RS below) must be in the range of 100Ω to $1 \text{ k}\Omega$ depending on the external reset chip drive strength. The supervisor chip must have an active high, open-drain output.

Oscillator mode	Oscillator mode
Low frequency (32.768 kHz), high gain	Diagram 3
High frequency (1-32 MHz), low power	Diagram 2
High frequency (1-32 MHz), high gain	Diagram 3

Figure 37. Crystal connection – Diagram 2

Figure 38. Crystal connection – Diagram 3

NOTE

For PCB layout, the user could consider to add the guard ring to the crystal oscillator circuit.

6.2 Software considerations

All Kinetis MCUs are supported by comprehensive NXP and third-party hardware and software enablement solutions, which can reduce development costs and time to market. Featured software and tools are listed below. Visit http://www.nxp.com/kinetis/sw for more information and supporting collateral.

Evaluation and Prototyping Hardware

• Freedom Development Platform: http://www.nxp.com/freedom

Field	Description	Values
FFF	Program flash memory size	 128 = 128 KB 256 = 256 KB
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 LH = 64 LQFP (10 mm x 10 mm) LL = 100 LQFP (14 mm x 14 mm)
CC	Maximum CPU frequency (MHz)	• 7 = 72 MHz
Ν	Packaging type	 R = Tape and reel (Blank) = Trays

Table 63. Part number fields description (continued)

7.4 Example

This is an example part number:

MKE15Z256VLL7

8 Revision history

The following table provides a revision history for this document.

Table 64. Revision history

Rev. No.	Date	Substantial Changes
2	09/2016	Initial public release.