E·XFL

NXP USA Inc. - MKE15Z128VLL7 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	89
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mke15z128vll7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.1 ARM Cortex-M0+ core

The enhanced ARM Cortex M0+ is the member of the Cortex-M Series of processors targeting microcontroller cores focused on very cost sensitive, low power applications. It has a single 32-bit AMBA AHB-Lite interface and includes an NVIC component. It also has hardware debug functionality including support for simple program trace capability. The processor supports the ARMv6-M instruction set (Thumb) architecture including all but three 16-bit Thumb opcodes (52 total) plus seven 32-bit instructions. It is upward compatible with other Cortex-M profile processors.

2.1.2 NVIC

The Nested Vectored Interrupt Controller supports nested interrupts and 4 priority levels for interrupts. In the NVIC, each source in the IPR registers contains 2 bits. It also differs in number of interrupt sources and supports 32 interrupt vectors.

The Cortex-M family uses a number of methods to improve interrupt latency to up to 15 clock cycles for Cortex-M0+. It also can be used to wake the MCU core from Wait and VLPW modes.

2.1.3 AWIC

The asynchronous wake-up interrupt controller (AWIC) is used to detect asynchronous wake-up events in Stop mode and signal to clock control logic to resume system clocking. After clock restarts, the NVIC observes the pending interrupt and performs the normal interrupt or event processing. The AWIC can be used to wake MCU core from Partial Stop, Stop and VLPS modes.

Wake-up sources for this SoC are listed as below:

Wake-up source	Description
Available system resets	RESET pin, WDOG , loss of clock(LOC) reset and loss of lock (LOL) reset
Pin interrupts	Port Control Module - Any enabled pin interrupt is capable of waking the system
ADCx	ADCx is optional functional with clock source from SIRC or OSC
CMPx	Functional in Stop/VLPS modes with clock source from SIRC or OSC
LPI2C	Functional in Stop/VLPS modes with clock source from SIRC or OSC
LPUART	Functional in Stop/VLPS modes with clock source from SIRC or OSC

Table 2. AWIC Stop and VLPS Wake-up Sources

Table continues on the next page...

Wake-up source	Description
LPSPI	Functional in Stop/VLPS modes with clock source from SIRC or OSC
LPIT	Functional in Stop/VLPS modes with clock source from SIRC or OSC
FlexIO	Functional in Stop/VLPS modes with clock source from SIRC or OSC
LPTMR	Functional in Stop/VLPS modes
RTC	Functional in Stop/VLPS modes
SCG	Functional in Stop mode (Only SIRC)
TSI	Touch sense wakeup
NMI	Non-maskable interrupt

Table 2. AWIC Stop and VLPS Wake-up Sources (continued)

2.1.4 Memory

This device has the following features:

- Upto 256 KB of embedded program flash memory.
- Upto 32 KB of embedded RAM accessible (read/write) at CPU clock speed with 0 wait states.
- The non-volatile memory is divided into several arrays:
 - 32 KB of embedded data flash memory
 - 2 KB of Emulated EEPROM
 - 8 KB ROM (built-in bootloader to support UART, I2C, and SPI interfaces)

The program flash memory contains a 16-byte flash configuration field that stores default protection settings and security information. The page size of program flash is 1 KB.

The protection setting can protect 32 regions of the program flash memory from unintended erase or program operations.

The security circuitry prevents unauthorized access to RAM or flash contents from debug port.

2.1.5 Reset and boot

The following table lists all the reset sources supported by this device.

NOTE

In the following table, Y means the specific module, except for the registers, bits or conditions mentioned in the footnote, is reset by the corresponding Reset source. N means the specific module is not reset by the corresponding Reset source.

Reset	Descriptions	Modules									
sources		РМС	SIM	SMC	RCM	Reset pin is negated	WDO G	SCG	RTC	LPTM R	Other s
POR reset	Power-on reset (POR)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
System resets	Low-voltage detect (LVD)	Y ¹	Y	Y	Y	Y	Y	Y	Ν	Y	Y
	External pin reset (RESET)	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y
	Watchdog (WDOG) reset	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y
	Multipurpose clock generator loss of clock (LOC) reset	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y
	Multipurpose clock generator loss of lock (LOL) reset	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y
	Stop mode acknowledge error (SACKERR)	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y
	Software reset (SW)	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y
	Lockup reset (LOCKUP)	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	Ν	Y
	MDM DAP system reset	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	Ν	Y
Debug reset	Debug reset	Y ¹	Y ²	Y ³	Y ⁴	Y	Y ⁵	Y ⁶	Ν	N	Y

Table 3.Reset source

1. Except PMC_LVDSC1[LVDV] and PMC_LVDSC2[LVWV]

- 2. Except SIM_SOPT1
- 3. Except SMC_PMPROT, SMC_PMCTRL_RUM, SMC_PMCTRL_STOPM, SMC_STOPCTRL, SMC_PMSTAT
- 4. Except RCM_RPC, RCM_MR, RCM_FM, RCM_SRIE, RCM_SRS, RCM_SSRS
- 5. Except WDOG_CS[TST]
- 6. Except SCG_CSR and SCG_FIRCSTAT

This device supports booting from:

- internal flash
- boot ROM

2.2.13 FlexIO

The FlexIO is a highly configurable module providing a wide range of protocols including, but not limited to UART, I2C, SPI, I2S, Camera IF, LCD RGB, PWM/ Waveform generation. The module supports programmable baud rates independent of bus clock frequency, with automatic start/stop bit generation.

The FlexIO module has the following features:

- Functional in VLPR/VLPW/Stop/VLPS mode provided the clock it is using remains enabled
- Four 32-bit double buffered shift registers with transmit, receive, and data match modes, and continuous data transfer
- The timing of the shifter's shift, load and store events are controlled by the highly flexible 16-bit timer assigned to the shifter
- Two or more shifters can be concatenated to support large data transfer sizes
- Each 16-bit timers operates independently, supports for reset, enable and disable on a variety of internal or external trigger conditions with programmable trigger polarity
- Flexible pin configuration supporting output disabled, open drain, bidirectional output data and output mode
- Supports interrupt, DMA or polled transmit/receive operation

2.2.14 Port control and GPIO

The Port Control and Interrupt (PORT) module provides support for port control, digital filtering, and external interrupt functions. The GPIO data direction and output data registers control the direction and output data of each pin when the pin is configured for the GPIO function. The GPIO input data register displays the logic value on each pin when the pin is configured for any digital function, provided the corresponding Port Control and Interrupt module for that pin is enabled.

The following figure shows the basic I/O pad structure. Pseudo open-drain pins have the p-channel output driver disabled when configured for open-drain operation. None of the I/O pins, including open-drain and pseudo open-drain pins, are allowed to go above VDD.

NOTE

The RESET_b pin is also a normal I/O pad with pseudo opendrain.

100 LQFP	64 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
10	7	VDD	VDD	VDD							
11	8	VDDA	VDDA	VDDA							
12	9	VREFH	VREFH	VREFH							
13	_	VREFL	VREFL	VREFL							
14	_	VSS	VSS	VSS							
15	11	PTB7	EXTAL	EXTAL	PTB7	LPI2C0_SCL					
16	12	PTB6	XTAL	XTAL	PTB6	LPI2C0_SDA					
17	_	PTE14	DISABLED		PTE14	FTM0_FLT1					
18	13	PTE3	TSI0_CH24	TSI0_CH24	PTE3	FTM0_FLT0	LPUART2_ RTS			TRGMUX_IN6	
19	_	PTE12	DISABLED		PTE12	FTM0_FLT3	LPUART2_TX				
20	_	PTD17	DISABLED		PTD17	FTM0_FLT2	LPUART2_RX				
21	14	PTD16	DISABLED		PTD16	FTM0_CH1					
22	15	PTD15	DISABLED		PTD15	FTM0_CH0					
23	16	PTE9	DAC0_OUT	DAC0_OUT	PTE9	FTM0_CH7	LPUART2_ CTS				
24	—	PTD14	DISABLED		PTD14						CLKOUT
25	_	PTD13	DISABLED		PTD13						RTC_CLKOUT
26	17	PTE8	ACMP0_IN3/ TSI0_CH11	ACMP0_IN3/ TSI0_CH11	PTE8	FTM0_CH6					
27	18	PTB5	TSI0_CH9	TSI0_CH9	PTB5	FTM0_CH5	LPSPI0_PCS1			TRGMUX_IN0	ACMP1_OUT
28	19	PTB4	ACMP1_IN2/ TSI0_CH8	ACMP1_IN2/ TSI0_CH8	PTB4	FTM0_CH4	LPSPI0_SOUT			TRGMUX_IN1	
29	20	PTC3	ADC0_SE11/ ACMP0_IN4/ EXTAL32	ADC0_SE11/ ACMP0_IN4/ EXTAL32	PTC3	FTM0_CH3					
30	21	PTC2	ADC0_SE10/ ACMP0_IN5/ XTAL32	ADC0_SE10/ ACMP0_IN5/ XTAL32	PTC2	FTM0_CH2					
31	22	PTD7	TSI0_CH10	TSI0_CH10	PTD7	LPUART2_TX		FTM2_FLT3			
32	23	PTD6	TSI0_CH7	TSI0_CH7	PTD6	LPUART2_RX		FTM2_FLT2			
33	24	PTD5	TSI0_CH6	TSI0_CH6	PTD5	FTM2_CH3	LPTMR0_ ALT2		PWT_IN2	TRGMUX_IN7	
34	_	PTD12	DISABLED		PTD12	FTM2_CH2	LPI2C1_HREQ			LPUART2_ RTS	
35	—	PTD11	DISABLED		PTD11	FTM2_CH1	FTM2_QD_ PHA			LPUART2_ CTS	
36	_	PTD10	DISABLED		PTD10	FTM2_CH0	FTM2_QD_ PHB				
37	-	VSS	VSS	VSS							
38	-	VDD	VDD	VDD							
39	25	PTC1	ADC0_SE9/ ACMP1_IN3/ TSI0_CH23	ADC0_SE9/ ACMP1_IN3/ TSI0_CH23	PTC1	FTM0_CH1					

Pinouts

100 LQFP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
40	26	PTC0	ADC0_SE8/ ACMP1_IN4/ TSI0_CH22	ADC0_SE8/ ACMP1_IN4/ TSI0_CH22	PTC0	FTM0_CH0					
41	-	PTD9	ACMP1_IN5	ACMP1_IN5	PTD9	LPI2C1_SCL		FTM2_FLT3			
42	-	PTD8	DISABLED		PTD8	LPI2C1_SDA		FTM2_FLT2			
43	27	PTC17	ADC0_SE15	ADC0_SE15	PTC17	FTM1_FLT3		LPI2C1_SCLS			
44	28	PTC16	ADC0_SE14	ADC0_SE14	PTC16	FTM1_FLT2		LPI2C1_SDAS			
45	29	PTC15	ADC0_SE13	ADC0_SE13	PTC15	FTM1_CH3					
46	30	PTC14	ADC0_SE12	ADC0_SE12	PTC14	FTM1_CH2					
47	31	PTB3	ADC0_SE7/ TSI0_CH21	ADC0_SE7/ TSI0_CH21	PTB3	FTM1_CH1	LPSPI0_SIN	FTM1_QD_ PHA		TRGMUX_IN2	
48	32	PTB2	ADC0_SE6/ TSI0_CH20	ADC0_SE6/ TSI0_CH20	PTB2	FTM1_CH0	LPSPI0_SCK	FTM1_QD_ PHB		TRGMUX_IN3	
49	-	PTC13	DISABLED		PTC13						
50	-	PTC12	DISABLED		PTC12						
51	_	PTC11	DISABLED		PTC11						
52	_	PTC10	DISABLED		PTC10						
53	33	PTB1	ADC0_SE5	ADC0_SE5	PTB1	LPUART0_TX	LPSPI0_SOUT	TCLK0			
54	34	PTB0	ADC0_SE4	ADC0_SE4	PTB0	LPUART0_RX	LPSPI0_PCS0	LPTMR0_ ALT3	PWT_IN3		
55	35	PTC9	DISABLED		PTC9	LPUART1_TX				LPUART0_ RTS	
56	36	PTC8	DISABLED		PTC8	LPUART1_RX				LPUART0_ CTS	
57	37	PTA7	ADC0_SE3/ ACMP1_IN1	ADC0_SE3/ ACMP1_IN1	PTA7	FTM0_FLT2		RTC_CLKIN		LPUART1_ RTS	
58	38	PTA6	ADC0_SE2/ ACMP1_IN0	ADC0_SE2/ ACMP1_IN0	PTA6	FTM0_FLT1	LPSPI1_PCS1			LPUART1_ CTS	
59	39	PTE7	DISABLED		PTE7	FTM0_CH7					
60	40	VSS	VSS	VSS							
61	41	VDD	VDD	VDD							
62	-	PTA17	DISABLED		PTA17	FTM0_CH6		EWM_OUT_b			
63	-	PTB17	DISABLED		PTB17	FTM0_CH5	LPSPI1_PCS3				
64	-	PTB16	DISABLED		PTB16	FTM0_CH4	LPSPI1_SOUT				
65	-	PTB15	DISABLED		PTB15	FTM0_CH3	LPSPI1_SIN				
66	_	PTB14	ADC1_SE9	ADC1_SE9	PTB14	FTM0_CH2	LPSPI1_SCK				
67	42	PTB13	ADC1_SE8	ADC1_SE8	PTB13	FTM0_CH1					
68	43	PTB12	ADC1_SE7	ADC1_SE7	PTB12	FTM0_CH0					
69	44	PTD4	ADC1_SE6	ADC1_SE6	PTD4	FTM0_FLT3					
70	45	PTD3	NMI_b	ADC1_SE3	PTD3		LPSPI1_PCS0	FXIO_D5		TRGMUX_IN4	NMI_b
71	46	PTD2	ADC1_SE2	ADC1_SE2	PTD2		LPSPI1_SOUT	FXIO_D4		TRGMUX_IN5	
72	47	PTA3	ADC1_SE1	ADC1_SE1	PTA3		LPI2C0_SCL	EWM_IN		LPUART0_TX	

4.3.1 Core Modules

Table	7. SWD Signal Descriptions

Chip signal name	Module signal name	Description	I/O
SWD_CLK	SWD_CLK	Serial Wire Clock	Ι
SWD_DIO	SWD_DIO	Serial Wire Data	I/O

4.3.2 System Modules

Table 8. System Signal Descriptions

Chip signal name	Module signal name	Description	I/O
NMI_b	_	Non-maskable interrupt NOTE: Driving the NMI signal low forces a non-maskable interrupt, if the NMI function is selected on the corresponding pin.	I
RESET_b	—	Reset bidirectional signal	I/O
VDD		MCU power	I
VSS	_	MCU ground	I

Table 9. EWM Signal Descriptions

Chip signal name	Module signal name	Description	I/O
EWM_IN	EWM_in	EWM input for safety status of external safety circuits. The polarity of EWM_IN is programmable using the EWM_CTRL[ASSIN] bit. The default polarity is active-low.	Ι
EWM_OUT_b	EWM_out	EWM reset out signal	0

4.3.3 Clock Modules

Table 10. OSC (in SCG) Signal Descriptions

Chip signal name	Module signal name	Description	I/O
EXTAL	EXTAL	External clock/Oscillator input	I
XTAL	XTAL	Oscillator output	0

5 Electrical characteristics

5.1 Terminology and guidelines

5.1.1 Definitions

Key terms are defined in the following table:

Term	Definition
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered.
	NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions
Typical value	A specified value for a technical characteristic that:
	 Lies within the range of values specified by the operating behavior Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions
	NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.

Symbol	Parameter	Parameter Value				Notes	
	1	Min	Тур	Max	1		
I _{OLT}	Output low current total for all ports	_	_	100	mA		
I _{IN}	Input leakage current (per pin) for full temperatur	re range	·			8, 7	
	@ V _{DD} = 3.3 V						
	All pins other than high drive port pins	_	0.002	0.5	μA		
	High drive port pins	_	0.004	0.5	μA		
	Input leakage current (per pin) for full temperature range						
	@ V _{DD} = 5.5 V						
	All pins other than high drive port pins	—	0.005	0.5	μA		
	High drive port pins	_	0.010	0.5	μA		
R _{PU}	Internal pull-up resistors	20	_	65	kΩ	9	
	@ V _{DD} = 3.3 V						
	@ V _{DD} = 5.0 V	20	_	50	kΩ		
R _{PD}	Internal pull-down resistors	20	—	65	kΩ	10	
	@ V _{DD} = 3.3 V						
	@ V _{DD} = 5.0 V	20	_	50	kΩ		

- 1. Max power supply ramp rate is 500 V/ms.
- 2. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_5 value given above.
- 3. The 20 mA I/O pin is capable of switching a 50 pF load at up to 40 MHz.
- 4. The value given is measured at high drive strength mode. For value at low drive strength mode see the lol_5 value given above.
- 5. Refers to the current that leaks into the core when the pad is in Hi-Z (Off state).
- 6. Maximum pin leakage current at the ambient temperature upper limit.
- 7. PTD0, PTD1, PTD15, PTD16, PTB4, PTB5, PTE0 and PTE1 I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
- 8. Refers to the pin leakage on the GPIOs when they are OFF.
- 9. Measured at V_{DD} supply voltage = V_{DD} min and input V = V_{SS}
- 10. Measured at V_{DD} supply voltage = V_{DD} min and input V = V_{DD}

Mode	Symbol	Clock Configura tion	Description	Temperat ure	Min	Тур	Max ¹	Unit
				50 ℃	—	47	66	
				85 °C	—	146	204	
				105 °C	—	277	388	
VLPS	I _{DD_VLPS}	-	Very Low Power Stop current, VDD=5V, bias disabled ²	25 °C and blew	_	27	37	μA
				50 °C	—	45	64	
				85 °C	—	134	187	
				105 °C	—	267	375	
VLPS	I _{DD_VLPS}	-	Very Low Power Stop current, VDD=5V, bias enabled ²	25 °C and blew	_	21	29	μA
				50 ℃	—	29	41	
				85 °C	—	66	92	1
				105 °C	—	109	153	1

Table 33. Power consumption operating behaviors (continued)

1. These values are based on characterization but not covered by test limits in production.

2. PMC_REGSC[CLKBIASDIS] is the control bit to enable or disable bias under STOP/VLPS mode.

NOTE

CoreMark benchmark compiled using IAR 7.40 with optimization level high, optimized for balanced.

5.3.1.6.1 Low power mode peripheral current adder — typical value

Symbol	Description	Typical		
I _{LPTMR}	I _{LPTMR} LPTMR peripheral adder measured by placing the device in VLPS mode with LPTMR enabled using LPO. Includes LPO power consumption.			
I _{CMP}	I _{CMP} CMP peripheral adder measured by placing the device in VLPS mode with CMP enabled using the 8-bit DAC and a single external input for compare. 8-bit DAC enabled with half VDDA voltage, low speed mode. Includes 8-bit DAC power consumption.			
I _{RTC}				
I _{LPUART}				
I _{FTM}	FTM peripheral adder measured by placing the device in VLPW mode with selected clock source, outputting the edge aligned PWM of 100 Hz frequency.	45 µA		

Table continues on the next page...

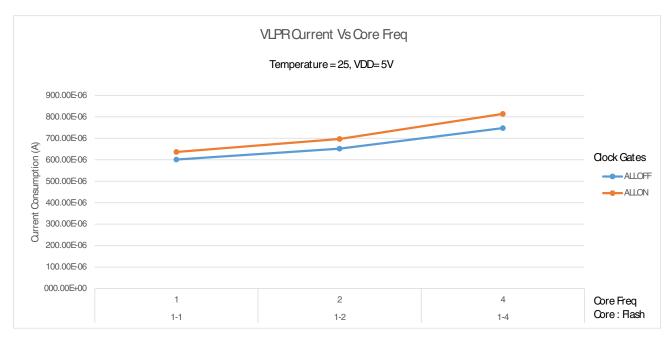


Figure 15. VLPR mode supply current vs. core frequency

5.3.1.7 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components, and MCU software operation play a significant role in the EMC performance. The system designer can consult the following applications notes, available on http://www.nxp.com for advice and guidance specifically targeted at optimizing EMC performance.

- AN2321: Designing for Board Level Electromagnetic Compatibility
- AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS Microcontrollers
- AN1263: Designing for Electromagnetic Compatibility with Single-Chip Microcontrollers
- AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications
- AN1259: System Design and Layout Techniques for Noise Reduction in MCU-Based Systems

5.3.1.7.1 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

NOTE

All measurements were taken accounting for 150 mV drop across VDD and VSS.

5.3.3 Thermal specifications

5.3.3.1 Thermal operating requirements Table 39. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is: $T_J = T_A + R_{\odot JA} \times chip$ power dissipation.

5.3.3.2 Thermal attributes

5.3.3.2.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTE

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

5.3.3.2.2 Thermal characteristics for the 64-pin LQFP package Table 40. Thermal characteristics for the 64-pin LQFP package

Rating	Conditions	Symbol	Value	Unit
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2}	Single layer board (1s)	R _{θJA}	62	°C/W
Thermal resistance, Junction to Ambient (Natural Convection) ^{1, 2}	Four layer board (2s2p)	R _{θJA}	44	°C/W
Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 3}	Single layer board (1s)	R _{ejma}	50	°C/W

Table continues on the next page ...

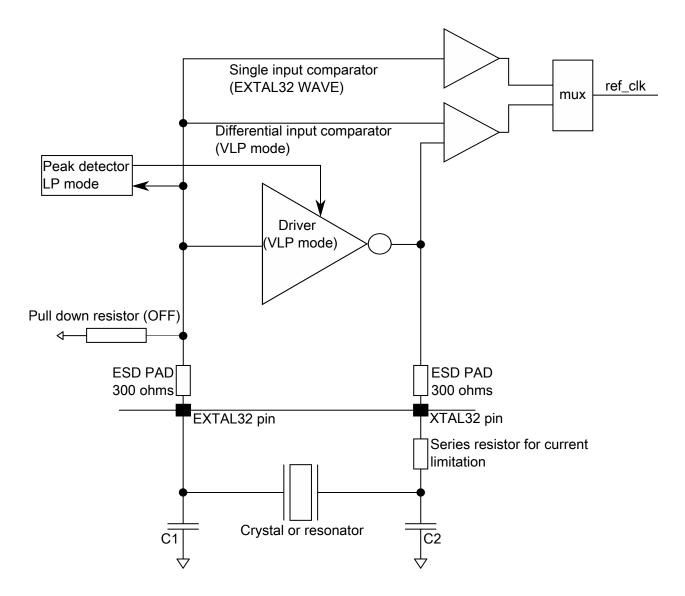


Figure 17. Oscillator connections scheme (OSC32)

- 1. The limit is respected across process, voltage and full temperature range.
- 2. Startup time is defined as the time between clock enablement and clock availability for system use.

NOTE

Fast internal RC Oscillator is compliant with CAN and LIN standards.

5.4.2.2.2 Slow internal RC oscillator (SIRC) electrical specifications Table 47. Slow internal RC oscillator (SIRC) electrical specifications

Symbol	Parameter	Value			Unit
		Min.	Тур.	Max.	
F _{SIRC}	Slow internal reference frequency	—	2	—	MHz
			8		
I _{VDD}	Supply current	_	23	—	μA
FUntrimmed	IRC frequency (untrimmed)	_	_	—	MHz
ΔF _{OL}	Open loop total deviation of IRC frequency over voltage and temperature ¹				
	Regulator enable	—	_	±3	%F _{SIRC}
T _{Startup}	Startup time	—	6	—	μs ²

- 1. The limit is respected across process, voltage and full temperature range.
- 2. Startup time is defined as the time between clock enablement and clock availability for system use.

5.4.2.2.3 Low Power Oscillator (LPO) electrical specifications Table 48. Low Power Oscillator (LPO) electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{LPO}	Internal low power oscillator frequency	113	128	139	kHz
I _{LPO}	Current consumption	1	3	7	μA
T _{startup}	Startup Time			20	μs

5.4.2.2.4 LPFLL electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{avg}	Power consumption		240		μA
T _{start}	Start-up time		3.6		μs
ΔF _{ol}	Frequency accuracy over temperature and voltage in open loop after process trimmed	-10		10	%
ΔF _{cl}	Frequency accuracy in closed loop	-1 ¹	—	1 ¹	%

Table 49. LPFLL electrical specifications

1. ΔF_{cl} is dependent on reference clock accuracy. For example, if locked to crystal oscillator, ΔF_{cl} is typically limited by trimming ability of the module itself; if locked to other clock source which has 3% accuracy, then ΔF_{cl} can only be $\pm 3\%$.

5.4.3 Memories and memory interfaces

5.4.3.1 Flash memory module (FTFE) electrical specifications

This section describes the electrical characteristics of the flash memory module (FTFE).

5.4.3.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm8}	Program Phrase high-voltage time	—	7.5	18	μs	
t _{hversscr}	Erase Flash Sector high-voltage time	—	13	113	ms	1
t _{hversblk32k}	Erase Flash Block high-voltage time for 32 KB	—	26	226	ms	1
t _{hversblk256k}	Erase Flash Block high-voltage time for 256 KB	_	208	1808	ms	1

Table 50. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

5.4.3.1.2 Flash timing specifications — commands Table 51. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					
t _{rd1blk32k}	• 32 KB data flash	_	—	0.3	ms	
t _{rd1blk256k}	• 256 KB program flash	_		1.8	ms	
t _{rd1sec2k}	Read 1s Section execution time (2 KB flash)	—	_	75	μs	1
t _{pgmchk}	Program Check execution time	_	—	95	μs	1
t _{rdrsrc}	Read Resource execution time	_	—	40	μs	1
t _{pgm8}	Program Phrase execution time	—	90	150	μs	
	Erase Flash Block execution time					2
t _{ersblk32k}	• 32 KB data flash	_	28	240	ms	
t _{ersblk256k}	• 256 KB program flash	_	220	1850	ms	
t _{ersscr}	Erase Flash Sector execution time	_	15	115	ms	2

Table continues on the next page ...

				()			
Symbol	Description	Min.	Тур.	Max.	Unit	Notes	
t _{pgmsec512}	Program Section execution time (512B flash)		2.5	_	ms		
t _{rd1all}	Read 1s All Blocks execution time	_	—	2.2	ms		
t _{rdonce}	Read Once execution time	_	—	30	μs	1	
t _{pgmonce}	Program Once execution time	_	90	_	μs		
t _{ersall}	Erase All Blocks execution time	_	250	2100	ms	2	
t _{vfykey}	Verify Backdoor Access Key execution time	_	—	30	μs	1	
t _{ersallu}	Erase All Blocks Unsecure execution time	_	250	2100	ms	2	
	Program Partition for EEPROM execution time						
t _{pgmpart24k}	24 KB EEPROM backup	—	69	_	ms		
t _{pgmpart32k}	32 KB EEPROM backup	—	70	_	ms		
	Set FlexRAM Function execution time:						
t _{setramff}	Control Code 0xFF	—	50	_	μs		
t _{setram24k}	24 KB EEPROM backup	—	0.6	1.1	ms		
t _{setram32k}	• 32 KB EEPROM backup	—	0.8	1.2	ms		
	Byte-write to FlexRAM execution time:						
t _{eewr8b24k}	24 KB EEPROM backup	—	370	1625	μs		
t _{eewr8b32k}	32 KB EEPROM backup	—	385	1700	μs		
	16-bit write to FlexRAM execution time:						
t _{eewr16b24k}	24 KB EEPROM backup	—	370	1625	μs		
t _{eewr16b32k}	32 KB EEPROM backup	—	385	1700	μs		
t _{eewr32bers}	32-bit write to erased FlexRAM location execution time		360	1500	μs		
	32-bit write to FlexRAM execution time:						
t _{eewr32b24k}	24 KB EEPROM backup	_	600	1950	μs		
t _{eewr32b32k}	32 KB EEPROM backup	_	630	2000	μs		

 Table 51. Flash command timing specifications (continued)

1. Assumes 25MHz or greater flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

5.4.3.1.3 Flash high voltage current behaviors Table 52. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	_PGM Average current adder during high voltage flash programming operation		3.5	7.5	mA
I _{DD_ERS}	I _{DD_ERS} Average current adder during high voltage flash erase operation		1.5	4.0	mA

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
	Program F	lash			•	
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50		years	
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100		years	
n _{nvmcycp}	Cycling endurance	10 K	50 K	—	cycles	2
	Data Flas	sh			1	
t _{nvmretd10k}	Data retention after up to 10 K cycles	5	50		years	
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycd}	Cycling endurance	10 K	50 K		cycles	2
	FlexRAM as El	EPROM				
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	_	years	
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years	
n _{nvmcycee}	Cycling endurance for EEPROM backup	20 K	50 K	—	cycles	2
	Write endurance					3
n _{nvmwree16}	 EEPROM backup to FlexRAM ratio = 16 	140 K	400 K	_	writes	
n _{nvmwree128}	 EEPROM backup to FlexRAM ratio = 128 	1.26 M	3.2 M	_	writes	
n _{nvmwree512}	 EEPROM backup to FlexRAM ratio = 512 	5 M	12.8 M	_	writes	
n _{nvmwree1k}	 EEPROM backup to FlexRAM ratio = 1,024 	10 M	25 M	_	writes	

5.4.3.1.4 Reliability specifications Table 53. NVM reliability specifications

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_i \leq 125°C.

3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM and the allocated EEPROM backup. Minimum and typical values assume all 16-bit or 32-bit writes to FlexRAM; all 8-bit writes result in 50% less endurance.

5.4.4 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

5.4.5 Analog

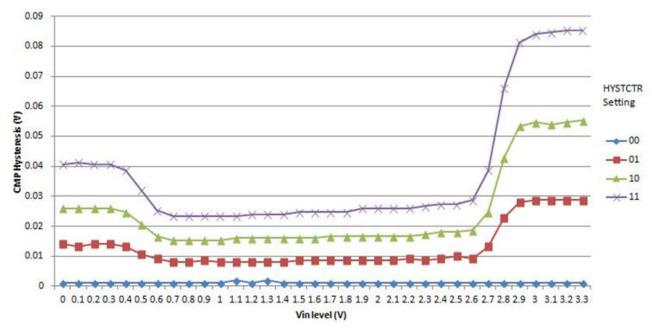
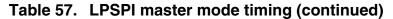
5.4.5.1 ADC electrical specifications

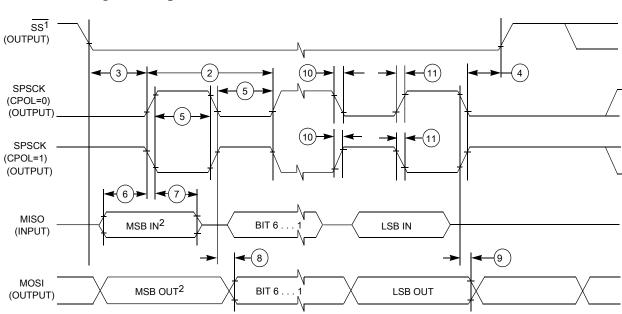
Table 56.	Comparator with	8-bit DAC electrical specifications	(continued)
-----------	-----------------	-------------------------------------	-------------

Symbol	Description	Min.	Typ. ¹	Max.	Unit
	within ambient temperature range		48	133	
	Analog comparator hysteresis, Hyst3, Low-speed mode				
	within ambient temperature range	—	33	80	
I _{DAC8b}	8-bit DAC current adder (enabled)	—	10	16	μA
INL	8-bit DAC integral non-linearity	-0.6	—	0.5	LSB ⁵
DNL	L 8-bit DAC differential non-linearity		—	0.5	LSB

1. Typical values assumed at VDDA = 5.0 V, Temp = 25 °C, unless otherwise stated.

- 2. Difference at input > 200mV
- 3. Applied ± (100 mV + Hyst) around switch point
- 4. Applied \pm (30 mV + 2 × Hyst) around switch point
- 5. 1 LSB = $V_{reference}/256$


Figure 20. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Num.	Symbol	Description	Min.	Max.	Unit	Note
5	twspsck	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	18	—	ns	—
7	t _{HI}	Data hold time (inputs)	0	_	ns	—
8	t _v	Data valid (after SPSCK edge)	—	15	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	—
10	t _{RI}	Rise time input	_	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	_
	t _{FO}	Fall time output				

1. f_{periph} = LPSPI peripheral clock

2. $t_{periph} = 1/f_{periph}$

NOTE

High drive pin should be used for fast bit rate.

1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 24. LPSPI master mode timing (CPHA = 0)

Electrical characteristics

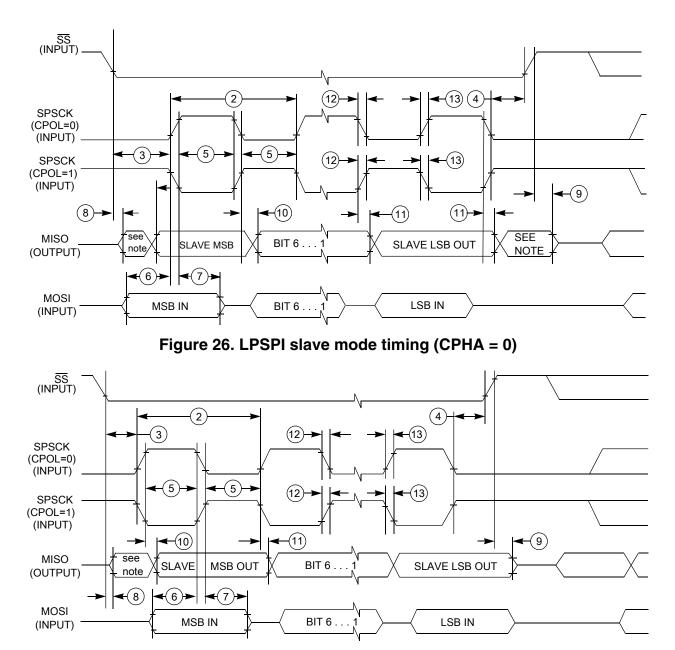


Figure 27. LPSPI slave mode timing (CPHA = 1)

5.4.6.3 LPI²C

Table 59.	LPI ² C s	pecifications
-----------	----------------------	---------------

Symbol	Description		Min.	Max.	Unit	Notes
f _{SCL}	SCL clock frequency	Standard mode (Sm)	0	100	kHz	1, 2, 3
		Fast mode (Fm)	0	400		
		Fast mode Plus (Fm+)	0	1000		
		Ultra Fast mode (UFm)	0	5000		
		High speed mode (Hs-mode)	0	3400]	