

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuns	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	59
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2136ccdfa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/36C Group.

Table 1.1	Specifications for R8C/36C Group (1)
-----------	--------------------------------------

Item	Function	Specification
CPU	Central processing	R8C CPU core
	unit	Number of fundamental instructions: 89
		Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits \rightarrow 32 bits
		Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM, Data flash	Refer to Table 1.3 Product List for R8C/36C Group
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 3 (detection level of voltage detection 0 and voltage
Detection		detection 1 selectable)
I/O Ports	Programmable I/O	Input-only: 1 pin
	ports	CMOS I/O ports: 59, selectable pull-up resistor High current drive ports: 59
Clock	Clock generation	4 circuits: XIN clock oscillation circuit,
	circuits	XCIN clock oscillation circuit (32 kHz),
		High-speed on-chip oscillator (with frequency adjustment function),
		Low-speed on-chip oscillator • Oscillation stop detection: XIN clock oscillation stop detection function
		Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		Low power consumption modes:
		Standard operating mode (high-speed clock, low-speed clock, high-speed on-
		chip oscillator, low-speed on-chip oscillator), wait mode, stop mode
		Real-time clock (timer RE)
Interrupts		Interrupt Vectors: 69
•		• External: 9 sources (INT × 5, key input × 4)
		Priority levels: 7 levels
Watchdog Tim	er	• 14 bits x 1 (with prescaler)
		Reset start selectable
		 Low-speed on-chip oscillator for watchdog timer selectable
DTC (Data Tra	nsfer Controller)	• 1 channel
		Activation sources: 39
	Γ	Transfer modes: 2 (normal mode, repeat mode)
Timer	Timer RA	8 bits × 1 (with 8-bit prescaler)
		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
	Timer DD	measurement mode
	Timer RB	8 bits x 1 (with 8-bit prescaler)
		Timer mode (period timer), programmable waveform generation mode (PWM output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RC	16 bits × 1 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 3 pins), PWM2 mode (PWM output pin)
	Timer RD	16 bits x 2 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 6 pins), reset synchronous PWM mode (output three-phase
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3 mode (PWM output 2 pins with fixed period)
		mode (F www.output z pins with lixed penod)

Current of Nov 2010

1.2 Product List

Tables 1.3 and 1.4 list Product List for R8C/36C Group. Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/36C Group.

	Program		RAM	Deel/eee Turee	Dam	مصباده
R5E21364CNED 10	ROM	Data flash	Capacity	Package Type	Rer	narks
	6 Kbytes	1 Kbyte x 4	1.5 Kbytes	PLQP0064KB-A	N version	
R5F21365CNFP 24	4 Kbytes	1 Kbyte × 4	2 Kbytes	PLQP0064KB-A		
R5F21366CNFP 32	2 Kbytes	1 Kbyte x 4	2.5 Kbytes	PLQP0064KB-A		
R5F21367CNFP 48	8 Kbytes	1 Kbyte × 4	4 Kbytes	PLQP0064KB-A		
R5F21368CNFP 64	4 Kbytes	1 Kbyte × 4	6 Kbytes	PLQP0064KB-A		
R5F2136ACNFP 96	6 Kbytes	1 Kbyte x 4	8 Kbytes	PLQP0064KB-A		
R5F2136CCNFP 12	28 Kbytes	1 Kbyte x 4	10 Kbytes	PLQP0064KB-A		
R5F21364CNFA 16	6 Kbytes	1 Kbyte x 4	1.5 Kbytes	PLQP0064GA-A		
R5F21365CNFA 24	4 Kbytes	1 Kbyte x 4	2 Kbytes	PLQP0064GA-A		
R5F21366CNFA 32	2 Kbytes	1 Kbyte x 4	2.5 Kbytes	PLQP0064GA-A		
R5F21367CNFA 48	8 Kbytes	1 Kbyte × 4	4 Kbytes	PLQP0064GA-A		
R5F21368CNFA 64	4 Kbytes	1 Kbyte × 4	6 Kbytes	PLQP0064GA-A		
R5F2136ACNFA 96	6 Kbytes	1 Kbyte × 4	8 Kbytes	PLQP0064GA-A		
R5F2136CCNFA 12	28 Kbytes	1 Kbyte x 4	10 Kbytes	PLQP0064GA-A		
R5F21364CNFB (D) 16	6 Kbytes	1 Kbyte × 4	1.5 Kbytes	PTQP0064LB-A		
R5F21365CNFB (D) 24	4 Kbytes	1 Kbyte x 4	2 Kbytes	PTQP0064LB-A		
R5F21366CNFB (D) 32	2 Kbytes	1 Kbyte x 4	2.5 Kbytes	PTQP0064LB-A		
R5F21367CNFB (D) 48	8 Kbytes	1 Kbyte x 4	4 Kbytes	PTQP0064LB-A		
R5F21368CNFB (D) 64	4 Kbytes	1 Kbyte x 4	6 Kbytes	PTQP0064LB-A		
R5F2136ACNFB (D) 96	6 Kbytes	1 Kbyte x 4	8 Kbytes	PTQP0064LB-A		
R5F2136CCNFB (D) 12	28 Kbytes	1 Kbyte × 4	10 Kbytes	PTQP0064LB-A		
R5F21364CNXXXFP 16	6 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLQP0064KB-A	N version	Factory
R5F21365CNXXXFP 24	4 Kbytes	1 Kbyte x 4	2 Kbytes	PLQP0064KB-A		programming
R5F21366CNXXXFP 32	2 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0064KB-A		product ⁽¹⁾
R5F21367CNXXXFP 48	8 Kbytes	1 Kbyte × 4	4 Kbytes	PLQP0064KB-A		
R5F21368CNXXXFP 64	4 Kbytes	1 Kbyte x 4	6 Kbytes	PLQP0064KB-A		
R5F2136ACNXXXFP 96	6 Kbytes	1 Kbyte x 4	8 Kbytes	PLQP0064KB-A		
R5F2136CCNXXXFP 12	28 Kbytes	1 Kbyte × 4	10 Kbytes	PLQP0064KB-A		
R5F21364CNXXXFA 16	6 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLQP0064GA-A		
R5F21365CNXXXFA 24	4 Kbytes	1 Kbyte × 4	2 Kbytes	PLQP0064GA-A		
R5F21366CNXXXFA 32	2 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLQP0064GA-A		
R5F21367CNXXXFA 48	8 Kbytes	1 Kbyte × 4	4 Kbytes	PLQP0064GA-A		
R5F21368CNXXXFA 64		1 Kbyte x 4		PLQP0064GA-A		
R5F2136ACNXXXFA 96	6 Kbytes	1 Kbyte x 4	8 Kbytes	PLQP0064GA-A		
R5F2136CCNXXXFA 12	28 Kbytes	1 Kbyte x 4	10 Kbytes	PLQP0064GA-A		
R5F21364CNXXXFB (D) 16				PTQP0064LB-A		
R5F21365CNXXXFB (D) 24	4 Kbytes	1 Kbyte x 4	2 Kbytes	PTQP0064LB-A		
R5F21366CNXXXFB (D) 32	2 Kbytes	1 Kbyte x 4	2.5 Kbytes	PTQP0064LB-A		
R5F21367CNXXXFB (D) 48		1 Kbyte x 4		PTQP0064LB-A		
R5F21368CNXXXFB (D) 64	4 Kbytes	1 Kbyte x 4	6 Kbytes	PTQP0064LB-A		
R5F2136ACNXXXFB (D) 96	6 Kbytes	1 Kbyte x 4	8 Kbytes	PTQP0064LB-A		
R5F2136CCNXXXFB (D) 12	28 Kbytes	1 Kbyte x 4	10 Kbytes	PTQP0064LB-A		

Table 1.3Product List for R8C/36C Group (1)

(D): Under development

Note:

1. The user ROM is programmed before shipment.

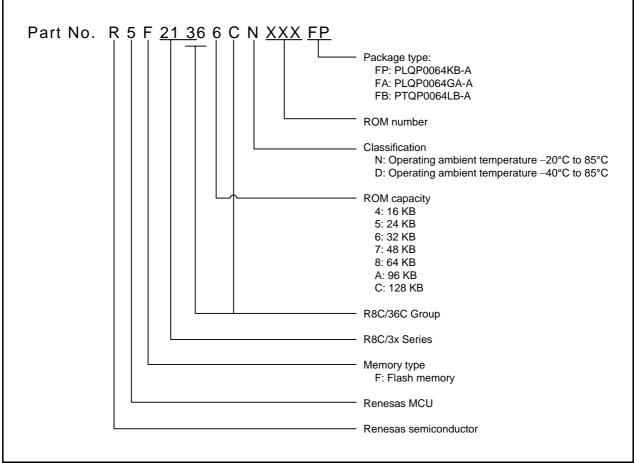
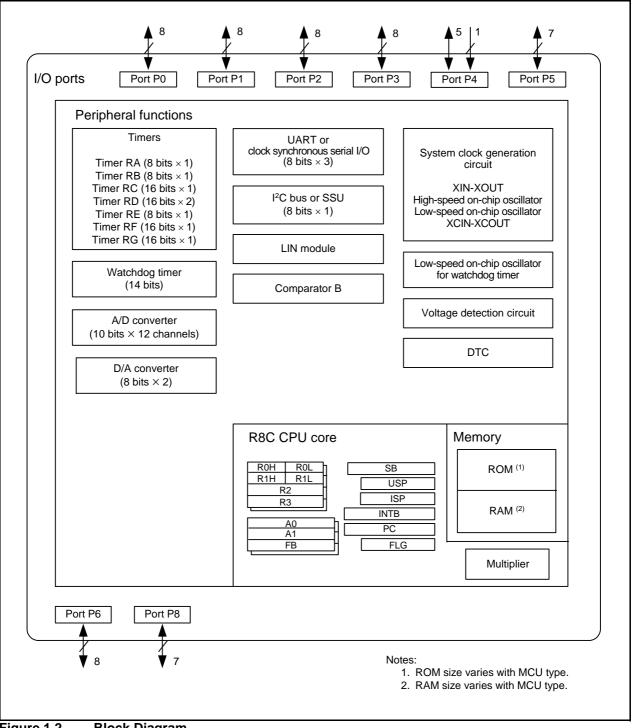



Figure 1.1 Part Number, Memory Size, and Package of R8C/36C Group

1.3 Block Diagram

Figure 1.2 shows a Block Diagram.

				I/O Pin Fund	tions for Periphe	eral Mod	dules	
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	l ² C bus	A/D Converter, D/A Converter, Comparator B
40		P4_5	INT0		(RXD2/SCL2)			ADTRG
41		P1_7	INT1	(TRAIO)				IVCMP1
42		P1_6			(CLK0)			IVREF1
43		P1_5	(INT1)	(TRAIO)	(RXD0)			
44		P1_4		(TRCCLK)	(TXD0)			
45		P1_3	KI3	TRBO (/TRCIOC)				AN11
46		P1_2	KI2	(TRCIOB)				AN10
47		P1_1	KI1	(TRCIOA/TRCTRG)				AN9
48		P1_0	KI0	(TRCIOD)				AN8
49		P0_7		(TRCIOC)				AN0/DA1
50		P0_6		(TRCIOD)				AN1/DA0
51		P0_5		(TRCIOB)				AN2
52		P0_4		TREO(/TRCIOB)				AN3
53		P0_3		(TRCIOB)	(CLK1)			AN4
54		P0_2		(TRCIOA/TRCTRG)	(RXD1)			AN5
55		P0_1		(TRCIOA/TRCTRG)	(TXD1)			AN6
56		P0_0		(TRCIOA/TRCTRG)				AN7
57		P6_4			(RXD1)			
58		P6_3			(TXD1)			
59		P6_2			(CLK1)			
60		P6_1						
61		P6_0		(TREO)				
62		P5_7		(TRGIOB)				
63		P5_6		(TRAO/TRGIOA)				
64		P3_2	(INT1/ INT2)	(TRAIO/TRGCLKB)				

Table 1.6 Pin Name Information by Pin Number (2)

Note:

1. Can be assigned to the pin in parentheses by a program.

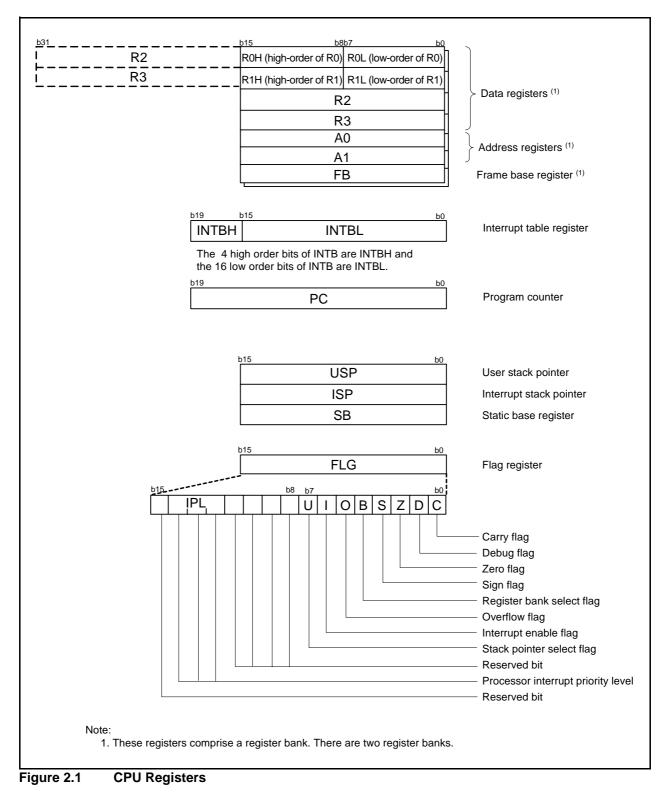

Item	Pin Name	I/O Type	Description
SSU	SSI	I/O	Data I/O pin.
	SCS	I/O	Chip-select signal I/O pin.
	SSCK	I/O	Clock I/O pin.
	SSO	I/O	Data I/O pin.
I ² C bus	SCL	I/O	Clock I/O pin
	SDA	I/O	Data I/O pin
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter.
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter.
	ADTRG	I	AD external trigger input pin.
D/A converter	DA0, DA1	0	D/A converter output pins.
Comparator B	IVCMP1, IVCMP3	I	Comparator B analog voltage input pins.
	IVREF1, IVREF3	I	Comparator B reference voltage input pins.
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_3 to P4_7, P5_0 to P5_4, P5_6, P5_7, P6_0 to P6_7, P8_0 to P8_6	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program.
Input port	P4_2		Input-only port.

Table 1.8Pin Functions (2)

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

Address	Register	Symbol	After Reset
2C00h	DTC Transfer Vector Area		XXh
2C01h	DTC Transfer Vector Area		XXh
2C02h	DTC Transfer Vector Area		XXh
2C03h	DTC Transfer Vector Area		XXh
2C04h	DTC Transfer Vector Area		XXh
2C05h	DTC Transfer Vector Area		XXh
2C06h	DTC Transfer Vector Area		XXh
2C07h	DTC Transfer Vector Area		XXh
2C08h	DTC Transfer Vector Area		XXh
2C09h	DTC Transfer Vector Area		XXh
2C0Ah	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
: 2C3Ah	DTC Transfer Vector Area DTC Transfer Vector Area		XXh XXh
2C3An 2C3Bh	DTC Transfer Vector Area		XXh
2C3Dh	DTC Transfer Vector Area		XXh
2C3Dh	DTC Transfer Vector Area		XXh
2C3Eh	DTC Transfer Vector Area		XXh
2C3Fh	DTC Transfer Vector Area		XXh
2C3Fii 2C40h	DTC Control Data 0	DTCD0	XXh
2C40n 2C41h			XXh
2C4111 2C42h	4		XXh
2C420 2C43h	4		XXh
2C43h 2C44h	4		XXh
2C440 2C45h	4		XXh
2C45h	•		XXh
2C460 2C47h			XXh
2C47h 2C48h	DTC Control Data 1	DTCD1	XXh
2C40h		ысы	XXh
2C490 2C4Ah			XXh
2C4An 2C4Bh			XXh
2C4Bh 2C4Ch	•		XXh
2C4Ch 2C4Dh	-		XXh
2C4Dh 2C4Eh			XXh
2C4En 2C4Fh			XXh
2C4Fn 2C50h	DTC Control Data 2	DTCD2	XXh
2C50h		DICD2	XXh
2C51h			XXh
2C52h			XXh
2C53h			XXh
2C55h	•		XXh
2C55h			XXh
2C50n			XXh
2C58h	DTC Control Data 3	DTCD3	XXh
2C59h		DICDS	XXh
2C59h	-		XXh
2C5An 2C5Bh	4		XXh
2C5Bn 2C5Ch	4		XXh
2C5Ch	4		XXh
2C5Dh 2C5Eh	4		XXh
2C5En 2C5Fh	4		XXh
	DTC Control Data 4	DTCD4	
2C60h 2C61h	DTC Control Data 4		XXh XXh
2C61h 2C62h	4		XXh
2C62h	4		XXh
2C63h	4		XXh
2C64h 2C65h	4		XXh
2C65h	4		XXh
2C667h	4		XXh
2C67h 2C68h	DTC Control Data 5	DTCD5	XXh
2C68h 2C69h		60010	XXh
2C69n 2C6Ah	4		XXh
2C6An 2C6Bh	4		XXh
	4		XXn XXh
2C6Ch	4		
2C6Dh	4		XXh
2C6Eh 2C6Fh	4		XXh
	1		XXh

Table 4.9SFR Information (9) (1)

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.12SFR Information (12) (1)

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h			XXh
2CF4h			XXh
2CF5h			XXh
2CF6h			XXh
2CF7h			XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h			XXh
2CFAh			XXh
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh			XXh
2CFFh			XXh
2D00h			
:			

2FFFh

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.13 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset	
Address	Alea Naille	Symbol	Allel Resel	
:		1		
FFDBh	Option Function Select Register 2	OFS2	(Note 1)	
:				
FFDFh	ID1		(Note 2)	
:			•	
FFE3h	ID2		(Note 2)	
:			•	
FFEBh	ID3		(Note 2)	
:				
FFEFh	ID4		(Note 2)	
:				
FFF3h	ID5		(Note 2)	
:				
FFF7h	ID6		(Note 2)	
:				
FFFBh	ID7		(Note 2)	
:				
FFFFh	Option Function Select Register	OFS	(Note 1)	

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

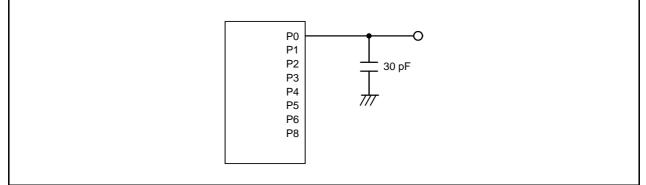


Figure 5.1 Ports P0 to P6, P8 Timing Measurement Circuit

Symbol	Parameter	Conditions		Unit		
Symbol	Falametei	Conditions	Min.	Тур.	Max.	Onit
—	Program/erase endurance (2)		10,000 (3)	_	—	times
-	Byte program time (program/erase endurance ≤ 1,000 times)		—	160	1500	μS
-	Byte program time (program/erase endurance > 1,000 times)		_	300	1500	μS
-	Block erase time (program/erase endurance ≤ 1,000 times)		_	0.2	1	S
-	Block erase time (program/erase endurance > 1,000 times)		—	0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		_	_	5 + CPU clock × 3 cycles	ms
-	Interval from erase start/restart until following suspend request		0	_	—	μS
—	Time from suspend until erase restart		_	_	30 + CPU clock × 1 cycle	μS
td(CMDRST -READY)	Time from when command is forcibly stopped until reading is enabled		—	_	30 + CPU clock × 1 cycle	μS
—	Program, erase voltage		2.7	_	5.5	V
—	Read voltage		1.8	—	5.5	V
—	Program, erase temperature		-20 (7)	_	85	°C
—	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20	_	—	year

Table 5.7 Flash Memory (Data flash Block A to Block D) Electrical Characteristics

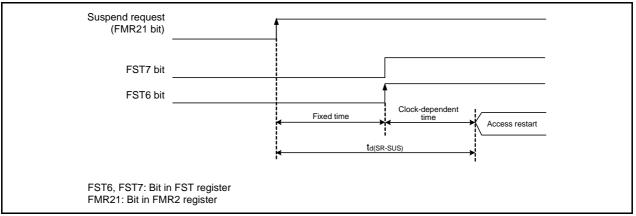
Notes:

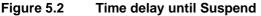
1. Vcc = 2.7 to 5.5 V and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).


3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed.)

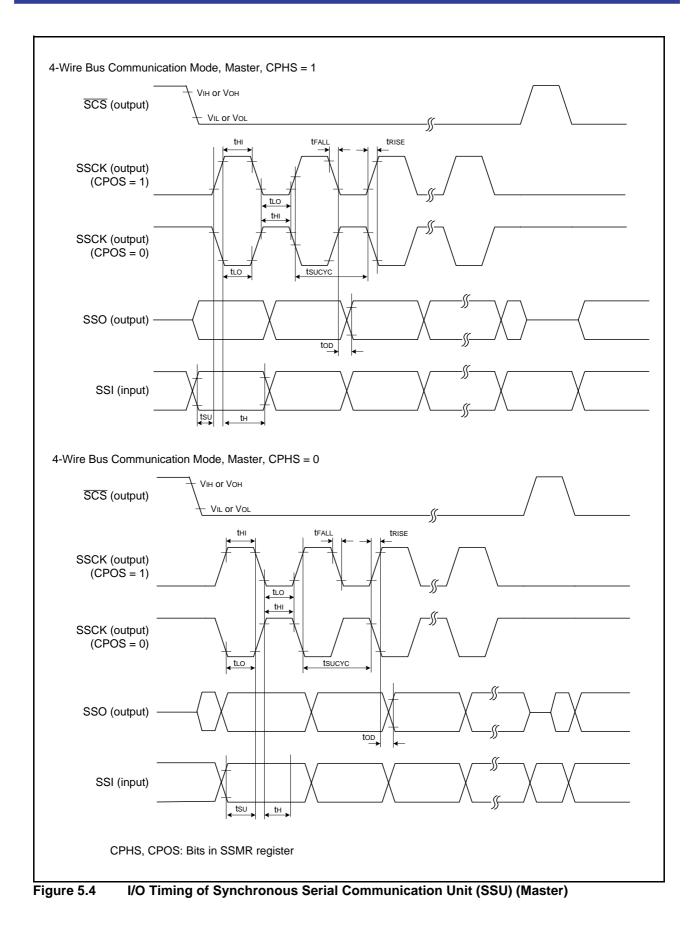

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

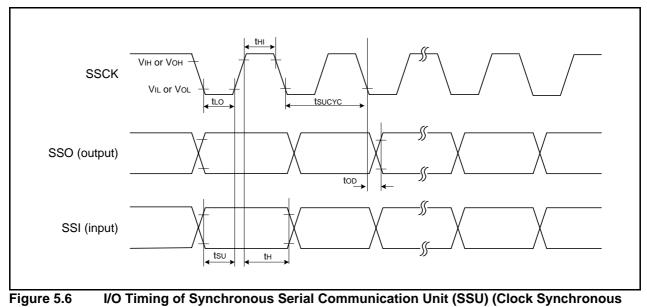
6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

^{8.} The data hold time includes time that the power supply is off or the clock is not supplied.

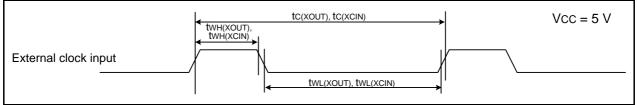
^{7. -40 °}C for D version.


Symbol	Parameter		Conditions		Standard			
Symbol			Conditions	Min.	Тур.	Max.	Unit	
tsucyc	SSCK clock cycle tim	е		4	_	—	tCYC ⁽²⁾	
tнı	SSCK clock "H" width	1		0.4		0.6	tsucyc	
tLO	SSCK clock "L" width			0.4	_	0.6	tsucyc	
TRISE	SSCK clock rising Master			—	_	1	tCYC ⁽²⁾	
	time	Slave		—	_	1	μs	
t FALL	SSCK clock falling	Master		—	_	1	tCYC ⁽²⁾	
	time	Slave		_	_	1	μS	
ts∪	SSO, SSI data input setup time			100	_	—	ns	
tн	SSO, SSI data input hold time			1	_	—	tCYC ⁽²⁾	
t LEAD	SCS setup time	Slave		1tcyc + 50	_	_	ns	
tlag	SCS hold time	Slave		1tcyc + 50	_	—	ns	
tod	SSO, SSI data outpu	t delay time		—	_	1	tCYC ⁽²⁾	
tsa	SSI slave access time	Э	$2.7~V \leq Vcc \leq 5.5~V$	_	_	1.5tcyc + 100	ns	
			$1.8~V \leq Vcc < 2.7~V$	—	_	1.5tcyc + 200	ns	
tor	SSI slave out open til	ne	$2.7~V \leq Vcc \leq 5.5~V$	—	—	1.5tcyc + 100	ns	
			$1.8~V \leq Vcc < 2.7~V$	—	—	1.5tcyc + 200	ns	

Timing Requirements of Synchronous Serial Communication Unit (SSU) Table 5.15


Notes:

1. Vcc = 1.8 to 5.5 V, Vss = 0 V, and $T_{opr} = -20$ to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified. 2. 1tcvc = 1/f1(s)


Communication Mode)

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V, Topr = 25 °C)

Table 5.19 External Clock Input (XOUT, XCIN)

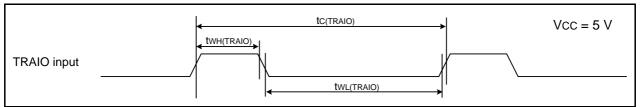

Symbol	Parameter	Stan	dard	Unit
Symbol	Falantelei	Min.	Max.	Unit
tc(XOUT)	XOUT input cycle time	50	_	ns
twh(xout)	XOUT input "H" width	24	_	ns
twl(xout)	XOUT input "L" width	24	_	ns
tc(XCIN)	XCIN input cycle time	14	_	μS
twh(xcin)	XCIN input "H" width	7	_	μS
twl(xcin)	XCIN input "L" width	7		μS

Figure 5.8 External Clock Input Timing Diagram when VCC = 5 V

Table 5.20 TRAIO Input

Svmbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	100	_	ns	
twh(traio)	TRAIO input "H" width 40 —				
twl(traio)	TRAIO input "L" width40				

Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Table 5.21 TRFI Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(TRFI)	TRFI input cycle time	400 (1)	_	ns	
twh(trfi)	TRFI input "H" width	200 (2)	_	ns	
twl(trfi)	TRFI input "L" width	200 (2)		ns	

Notes:

1. When using timer RF input capture mode, adjust the cycle time to (1/timer RF count source frequency × 3) or above.

2. When using timer RF input capture mode, adjust the pulse width to (1/timer RF count source frequency × 1.5) or above.

	<	tc(TRFI)	Vcc = 5 V
TRFI input		twl(trfi)	

Figure 5.10 TRFI Input Timing Diagram when Vcc = 5 V

Table 5.25Electrical Characteristics (4) $[2.7 V \le VCC \le 3.3 V]$
(Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.)

Symbol	Paramotor	Condition		Standard			Unit
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
lcc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	10	mA
	output pins are open, other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	7.5	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	—	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	—	4.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	1.5	—	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRD = MSTTRC = 1	-	1	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	—	90	390	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	_	80	400	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40		μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5		μA
		Stop mode	XIN clock off, Topr = $25 ^{\circ}$ C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA
			XIN clock off, Topr = 85 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	15	_	μA

Symbol	Parameter		Condition		Standard			Unit
Symbol					Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Іон = –2 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	_	Vcc	V
		XOUT		Іон = -200 μА	1.0		Vcc	V
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IOL = 2 mA	—		0.5	V
			Drive capacity Low	lo∟ = 1 mA	—	_	0.5	V
		XOUT		IOL = 200 μA	—	_	0.5	V
VT+-VT-	Hysteresis	NT0, INT1, INT2,INT3, INT4,KI0, KI1, KI2, KI3,TRAIO, TRBO,TRCIOA, TRCIOB,TRCIOC, TRCIOD,TRDIOA0, TRDIOB0,TRDIOC0, TRDIOD0,TRDIOC1, TRDIOD1,TRCTRG, TRCCLK,TRFI, TRGIOA,TRGIOB, ADTRG,RXD0, RXD1, RXD2,CLK0, CLK1, CLK2,SSI, SCL, SDA, SSORESET			0.05	0.20		V
Ін	Input "H" current		VI = 2.2 V, Vcc = 2.2	2 V	—		4.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 2.2 V	V	—		-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 2.2 V	V	70	140	300	kΩ
Rfxin	Feedback resistance	XIN			—	0.3	_	MΩ
RfXCIN	Feedback resistance	XCIN			—	8	—	MΩ
VRAM	RAM hold voltage	•	During stop mode		1.8	_	_	V

Table 5.31	Electrical Characteristics (5) [1.8 V \leq VCC $<$ 2.7 V]
------------	---

Note:

1. 1.8 V \leq Vcc < 2.7 V, T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), and f(XIN) = 5 MHz, unless otherwise specified.

REVISION HISTORY	R8C/36C Group Datasheet
-------------------------	-------------------------

Rev.	Date		Description
Rev.	Page		Summary
0.01	Oct 30, 2009	_	First Edition issued
1.00	Nov 02, 2010	All pages	"Preliminary", "Under development" deleted
		4	Table 1.3 revised
		28 to 54	"5. Electrical Characteristics" added
1.10	Nov 02, 2010		TN-R8C-A015A/E reflected
		3	Table 1.2 "Timer RG" and "Package" revised
		4 and 5	Tables 1.3 and 1.4 revised
		6	Figure 1.1 revised
		8	Figure 1.3 "PTQP0064LB-A" added
		17	Figure 3.1 "Part Number" revised
		33	Table 5.3 "tCONV", "tSAMP" revised
		47	Table 5.21 revised
		51	Table 5.28 revised
		55	Table 5.35 revised
		59	Package (PTQP0064LB-A) added

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.