

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H8S/2000
Core Size	16-Bit
Speed	13MHz
Connectivity	I ² C, SCI, SmartCard
Peripherals	POR, PWM, WDT
Number of I/O	72
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2238btf13v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• On-chip memory

ROM	Model	ROM	RAM	Remarks
Flash memory	HD64F2258	256 kbytes	16 kbytes	
version	HD64F2239	384 kbytes	32 kbytes	
	HD64F2238B	256 kbytes	16 kbytes	
	HD64F2238R	256 kbytes	16 kbytes	
	HD64F2227	128 kbytes	16 kbytes	
PROM version	HD6472237	128 kbytes	16 kbytes	
Masked ROM	HD6432258	256 kbytes	16 kbytes	
version	HD6432258W	256 kbytes	16 kbytes	
	HD6432256	128 kbytes	8 kbytes	
	HD6432256W	128 kbytes	8 kbytes	
	HD6432239	384 kbytes	32 kbytes	
	HD6432239W	384 kbytes	32 kbytes	
	HD6432238B	256 kbytes	16 kbytes	
	HD6432238BW	256 kbytes	16 kbytes	
	HD6432238R	256 kbytes	16 kbytes	
	HD6432238RW	256 kbytes	16 kbytes	
	HD6432236B	128 kbytes	8 kbytes	
	HD6432236BW	128 kbytes	8 kbytes	
	HD6432236R	128 kbytes	8 kbytes	
	HD6432236RW	128 kbytes	8 kbytes	
	HD6432237	128 kbytes	16 kbytes	
	HD6432235	128 kbytes	4 kbytes	
	HD6432233	64 kbytes	4 kbytes	
	HD6432227	128 kbytes	16 kbytes	
	HD6432225	128 kbytes	4 kbytes	
	HD6432224	96 kbytes	4 kbytes	
	HD6432223	64 kbytes	4 kbytes	

- General I/O ports
 - I/O pins: 72
 - Input-only pins: 10
- Supports various power-down states

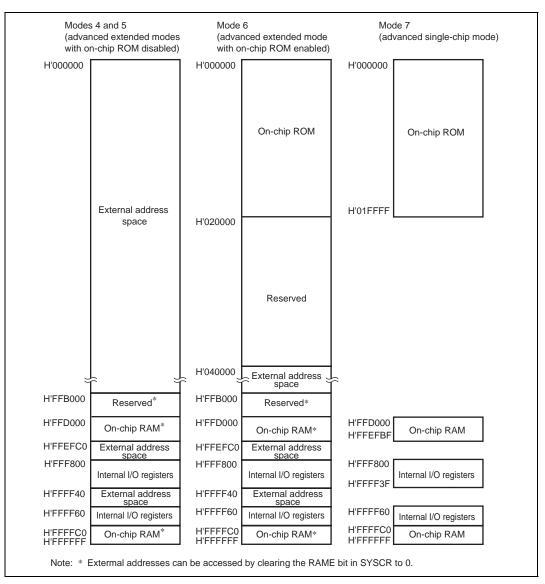
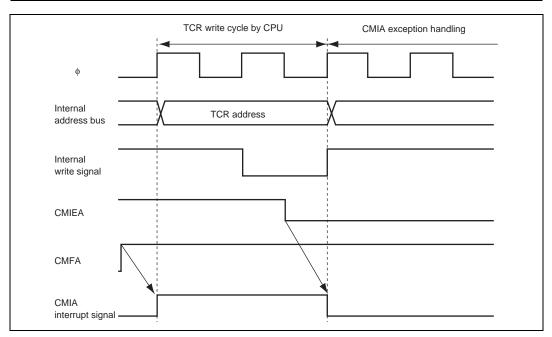



Figure 3.2 H8S/2256 Memory Map in Each Operating Mode

5.6.2 Instructions that Disable Interrupts

The instructions that disable interrupts are LDC, ANDC, ORC, and XORC. After any of these instructions are executed, all interrupts including NMI are disabled and the next instruction is always executed. When the I bit is set by one of these instructions, the new value becomes valid two states after execution of the instruction ends.

5.6.3 When Interrupts are Disabled

There are times when interrupt acceptance is disabled by the interrupt controller.

The interrupt controller disables interrupt acceptance for a 3-state period after the CPU has updated the mask level with an LDC, ANDC, ORC, or XORC instruction.

5.6.4 Interrupts during Execution of EEPMOV Instruction

Interrupt operation differs between the EEPMOV.B instruction and the EEPMOV.W instruction.

With the EEPMOV.B instruction, an interrupt request (including NMI) issued during the transfer is not accepted until the move is completed.

Rn as its addressing mode, and that instruction is located in on-chip ROM or RAM, the instruction will be one state later than in normal operation.

6.4 Usage Notes

6.4.1 Module Stop Mode Setting

PBC operation can be disabled or enabled using the module stop control register. The initial setting is for PBC operation to be halted. Register access is enabled by clearing module stop mode. For details, refer to section 24, Power-Down Modes.

6.4.2 PC Break Interrupts

The PC break interrupt is shared by channels A and B. The channel from which the request was issued must be determined by the interrupt handler.

6.4.3 CMFA and CMFB

The CMFA and CMFB flags are not automatically cleared to 0, so 0 must be written to CMFA or CMFB after first reading the flag while it is set to 1. If the flag is left set to 1, another interrupt will be requested after interrupt handling ends.

6.4.4 PC Break Interrupt when DTC and DMAC* Is Bus Master

A PC break interrupt generated when the DTC and DMAC* is the bus master is accepted after the bus has been transferred to the CPU by the bus controller.

Note: * Supported only by the H8S/2239 Group.

6.4.5 PC Break Set for Instruction Fetch at Address Following BSR, JSR, JMP, TRAPA, RTE, and RTS Instruction

Even if the instruction at the address following a BSR, JSR, JMP, TRAPA, RTE, or RTS instruction is fetched, it is not executed, and so a PC break interrupt is not generated by the instruction fetch at the next address.

Figure 7.1 shows a block diagram of the bus controller.

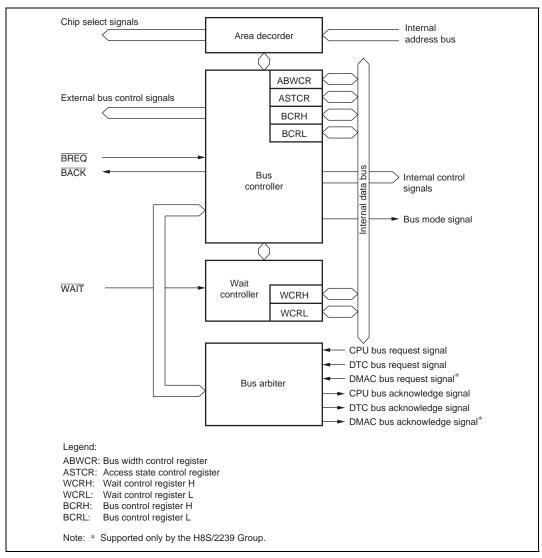


Figure 7.1 Block Diagram of Bus Controller

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
4*	0	0	0	Internal clock: counts on $\phi/1$
			1	Internal clock: counts on $\phi/4$
		1	0	Internal clock: counts on $\phi/16$
			1	Internal clock: counts on $\phi/64$
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKC pin input
		1	0	Internal clock: counts on $\phi/1024$
			1	Counts on TCNT5 overflow/underflow

Table 11.9 TPSC2 to TPSC0 (Channel 4)

Notes: This setting is ignored when channel 4 is in phase counting mode.

* Not available in the H8S/2227 Group.

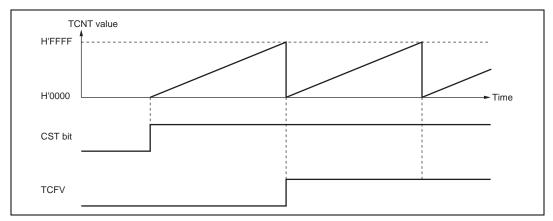
Table 11.10 TPSC2 to TPSC0 (Channel 5)

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
5*	0	0	0	Internal clock: counts on $\phi/1$
			1	Internal clock: counts on
		1	0	Internal clock: counts on
			1	Internal clock: counts on
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKC pin input
		1	0	Internal clock: counts on
			1	External clock: counts on TCLKD pin input

Notes: This setting is ignored when channel 5 is in phase counting mode.

* Not available in the H8S/2227 Group.

2. Free-running count operation and periodic count operation Immediately after a reset, the TPU's TCNT counters are all designated as free-running counters. When the relevant bit in TSTR is set to 1 the corresponding TCNT counter starts upcount operation as a free-running counter. When TCNT overflows (changes from H'FFFF to H'0000), the TCFV bit in TSR is set to 1. If the value of the corresponding TCIEV bit in TIER is 1 at this point, the TPU requests an interrupt. After overflow, TCNT starts counting up again from H'0000.



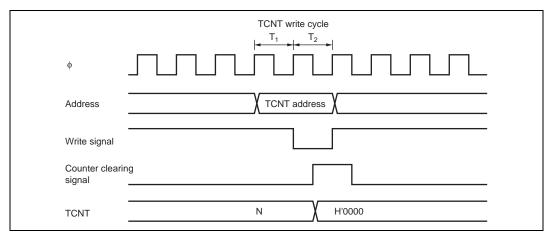

Figure 11.4 illustrates free-running counter operation.

Figure 11.4 Free-Running Counter Operation

When compare match is selected as the TCNT clearing source, the TCNT counter for the relevant channel performs periodic count operation. The TGR register for setting the period is designated as an output compare register, and counter clearing by compare match is selected by means of bits CCLR2 to CCLR0 in TCR. After the settings have been made, TCNT starts count-up operation as a periodic counter when the corresponding bit in TSTR is set to 1. When the count value matches the value in TGR, the TGF bit in TSR is set to 1 and TCNT is cleared to H'0000.

If the value of the corresponding TGIE bit in TIER is 1 at this point, the TPU requests an interrupt. After a compare match, TCNT starts counting up again from H'0000.

Figure 11.5 illustrates periodic counter operation.

11.10.5 Contention between TCNT Write and Increment Operations

If incrementing occurs in the T_2 state of a TCNT write cycle, the TCNT write takes precedence and TCNT is not incremented. Figure 11.47 shows the timing in this case.

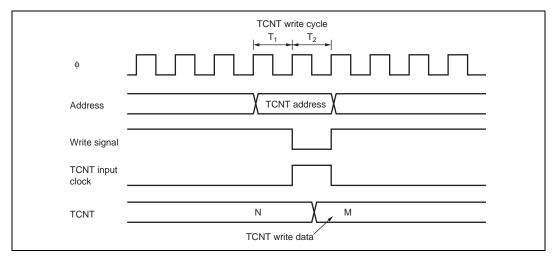


Figure 11.47 Contention between TCNT Write and Increment Operations

12.5.5 TCNT External Reset Timing

TCNT is cleared at the rising edge of an external reset input, depending on the settings of the CCLR1 and CCLR0 bits in TCR. The width of the clearing pulse must be at least 1.5 states. Figure 12.8 shows the timing of this operation.

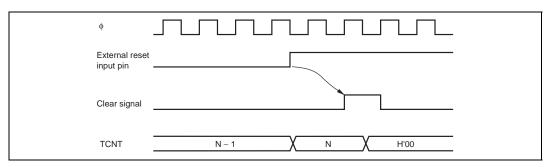


Figure 12.8 Timing of Clearing by External Reset Input

12.5.6 Timing of Overflow Flag (OVF) Setting

OVF in TCSR is set to 1 when the timer count overflows (changes from H'FF to H'00). Figure 12.9 shows the timing of this operation.

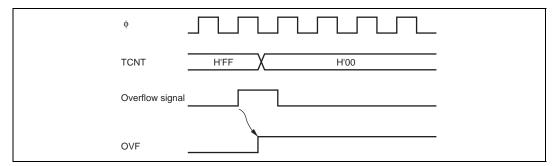


Figure 12.9 Timing of OVF Setting

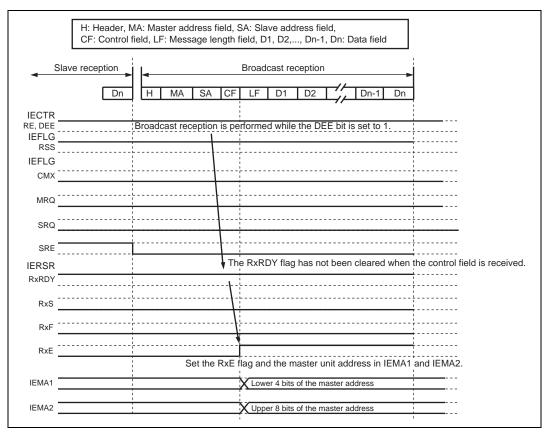


Figure 14.10 Error Occurrence in the Broadcast Reception (DEE = 1)

14.4.3 Master Reception

This section shows an example of performing a master reception using the DTC after slave reception.

(1) IEB Initialization

(a) Setting the IEBus Control Register (IECTR)

Enable the IEBus pins, select the signal polarity, and select a clock supplied to the IEB. Set the RE bit to 1 to perform reception. The LUEE bit does not need to be specified.

(b) Setting the IEBus Master Unit Address Registers 1 and 2 (IEAR1 and IEAR2) Specify the master unit address and specify the communications mode in IEAR1. Compare with the slave address in the communications frame and receive the frame if matched.

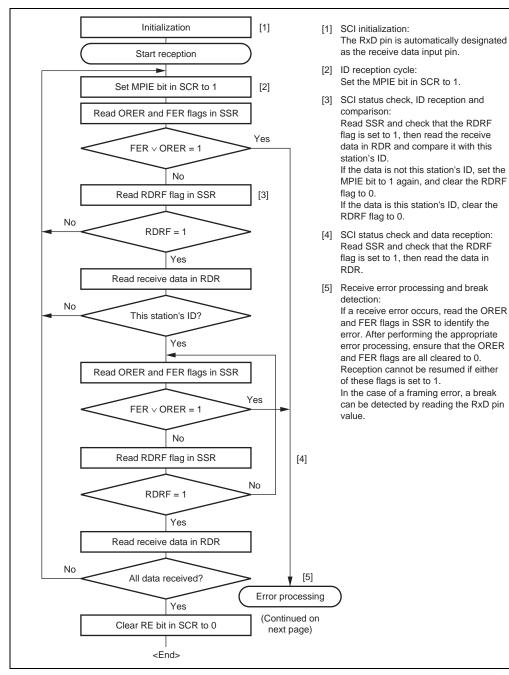


Figure 15.16 Sample Multiprocessor Serial Reception Flowchart (1)

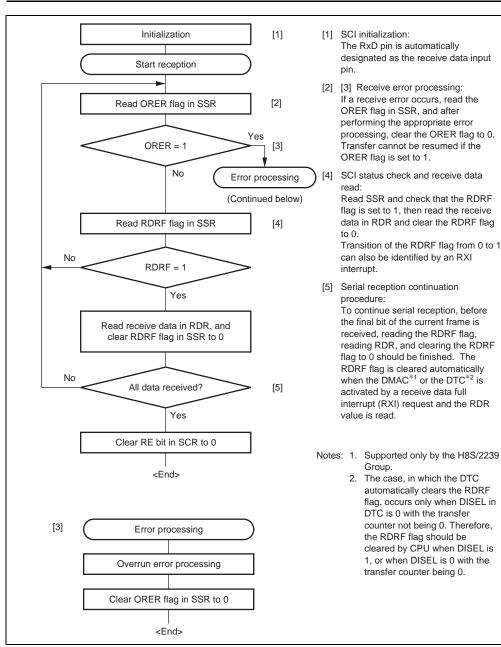


Figure 15.22 Sample Serial Reception Flowchart

16.4.2 Initial Setting

At startup the following procedure is used to initialize the IIC.

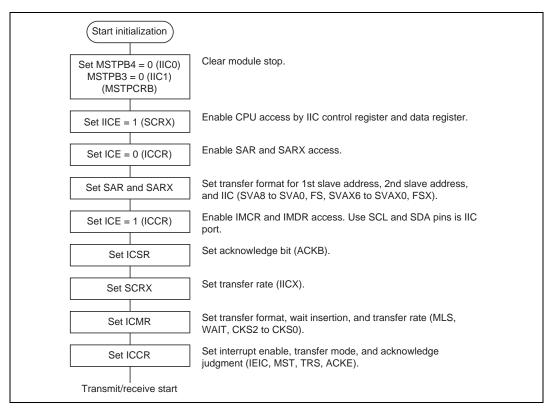


Figure 16.6 Flowchart for IIC Initialization (Example)

Note: The ICMR register should be written to only after transmit or receive operations have completed.

Writing to the ICMR register while a transmit or receive operation is in progress could cause an erroneous value to be written to bit counter bits BC2 to BC0. This could result in improper operation.

16.4.3 Master Transmit Operation

In I²C bus format master transmit mode, the master device outputs the transmit clock and transmit data, and the slave device returns an acknowledge signal.

Do not select the HN27C4096 setting for the PROM programmer, and only use the specified socket adapter. Failure to observe these points may result in damage to the device.

Powering On and Off (See Figures 20.14 to 20.16): Do not apply a high level to the FWE pin until VCC has stabilized. Also, drive the FWE pin low before turning off VCC.

When applying or disconnecting VCC power, fix the FWE pin low and place the flash memory in the hardware protection state.

The power-on and power-off timing requirements should also be satisfied in the event of a power failure and subsequent recovery.

FWE Application/Disconnection (See Figures 20.14 to 20.16): FWE application should be carried out when MCU operation is in a stable condition. If MCU operation is not stable, fix the FWE pin low and set the protection state.

The following points must be observed concerning FWE application and disconnection to prevent unintentional programming or erasing of flash memory:

- Apply FWE when the VCC voltage has stabilized within its rated voltage range.
- In boot mode, apply and disconnect FWE during a reset.
- In user program mode, FWE can be switched between high and low level regardless of the reset state. FWE input can also be switched during execution of a program in flash memory.
- Do not apply FWE if program runaway has occurred.
- Disconnect FWE only when the SWE1, ESU1, PSU1, EV1, PV1, P1, and E1 bits in FLMCR1 are cleared.

Make sure that the SWE1, ESU1, PSU1, EV1, PV1, P1, and E1 bits are not set by mistake when applying or disconnecting FWE.

Do Not Apply a Constant High Level to the FWE Pin: Apply a high level to the FWE pin only when programming or erasing flash memory. A system configuration in which a high level is constantly applied to the FWE pin should be avoided. Also, while a high level is applied to the FWE pin, the watchdog timer should be activated to prevent overprogramming or overerasing due to program runaway, etc.

Use the Recommended Algorithm when Programming and Erasing Flash Memory: The recommended algorithm enables programming and erasing to be carried out without subjecting the device to voltage stress or sacrificing program data reliability. When setting the P1 or E1 bit in FLMCR1, the watchdog timer should be set beforehand as a precaution against program runaway, etc.

Section 26 List of Registers

Register									
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
MAR_1A		—	_	_	_	_	_	_	DMAC
	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
IOAR_1A	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ETCR_1A	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
MAR_1B	_	_	_	_	_	_	_	_	
	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
IOAR_1B	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
ETCR_1B	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
P1DR	P17DR	P16DR	P15DR	P14DR	P13DR	P12DR	P11DR	P10DR	PORT
P3DR	_	P36DR	P35DR	P34DR	P33DR	P32DR	P31DR	P30DR	
P7DR	P77DR	P76DR	P75DR	P74DR	P73DR	P72DR	P71DR	P70DR	
PADR	_	_	_	_	PA3DR	PA2DR	PA1DR	PA0DR	
PBDR	PB7DR	PB6DR	PB5DR	PB4DR	PB3DR	PB2DR	PB1DR	PB0DR	
PCDR	PC7DR	PC6DR	PC5DR	PC4DR	PC3DR	PC2DR	PC1DR	PC0DR	
PDDR	PD7DR	PD6DR	PD5DR	PD4DR	PD3DR	PD2DR	PD1DR	PD0DR	
PEDR	PE7DR	PE6DR	PE5DR	PE4DR	PE3DR	PE2DR	PE1DR	PE0DR	
PFDR	PF7DR	PF6DR	PF5DR	PF4DR	PF3DR	PF2DR	PF1DR	PF0DR	
PGDR	_	_	_	PG4DR	PG3DR	PG2DR	PG1DR	PG0DR	
TCR_0	CCLR2	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0	TPU_0
TMDR_0	_	_	BFB	BFA	MD3	MD2	MD1	MD0	
TIORH_0	IOB3	IOB2	IOB1	IOB0	IOA3	IOA2	IOA1	IOA0	
TIORL_0	IOD3	IOD2	IOD1	IOD0	IOC3	IOC2	IOC1	IOC0	
TIER_0	TTGE	_	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA	

27.3.5 D/A Conversion Characteristics

Table 27.24 lists the D/A conversion characteristics.

Table 27.24 D/A Conversion Characteristics

Condition A (F-ZTAT version and masked ROM version):

 $V_{cc} = 2.7 \text{ V to } 3.6 \text{ V}, \text{AV}_{cc} = 2.7 \text{ V to } 3.6 \text{ V},$ $V_{ref} = 2.7 \text{ V to } \text{AV}_{cc}, \text{V}_{ss} = \text{AV}_{ss} = 0 \text{ V}, \phi = 2 \text{ to } 16.0 \text{ MHz},$ $T_a = -20^{\circ}\text{C to } +75^{\circ}\text{C} \text{ (regular specifications)}$

Condition B (Masked ROM version): $V_{cc} = 2.2 V \text{ to } 3.6 V$, $AV_{cc} = 2.2 V \text{ to } 3.6 V$, $V_{ref} = 2.2 V \text{ to } AV_{cc}$, $V_{ss} = AV_{ss} = 0 V$, $\phi = 2 \text{ to } 6.25 \text{ MHz}$, $T_a = -20^{\circ}\text{C} \text{ to } +75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}$ (wide-range specifications)

Condition C (F-ZTAT version and masked ROM version):

$$\begin{split} V_{cc} &= 3.0 \text{ V to } 3.6 \text{ V}, \text{AV}_{cc} = 3.0 \text{ V to } 3.6 \text{ V}, \\ V_{ref} &= 3.0 \text{ V to } \text{AV}_{cc}, \text{V}_{ss} = \text{AV}_{ss} = 0 \text{ V}, \\ \phi &= 10.0 \text{ to } 20.0 \text{ MHz}, \\ T_a &= -20^{\circ}\text{C to } +75^{\circ}\text{C} \text{ (regular specifications)}, \\ T_a &= -40^{\circ}\text{C to } +85^{\circ}\text{C} \text{ (wide-range specifications)} \end{split}$$

	Co	onditions	s A, C		Condition B				
ltem	Min	Тур	Max	Min	Тур	Max	Unit	Test Condition	
Resolution	8	8	8	8	8	8	bits		
Conversion time	—	—	10	_	—	10	μs	Load capacitance = 20 pF	
Absolute accuracy	*	±2.0	±3.0	_	±3.0	±4.0	LSB	Load resistance = 2 M Ω	
			±2.0		_	±3.0	LSB	Load resistance = 4 MΩ	

Note: * Does not apply in module stop mode, software standby mode, watch mode, subactive mode, or subsleep mode.

Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Programming	Maximum programming	N1		_	6 ^{*4}	Times	
	count ^{*1*4}	N2	_	_	994 ^{*4}	_	
Erase	Wait time after SWE1 bit setting ^{*1}	t _{sswe}	1	1	—	μs	
	Wait time after ESU1 bit setting ^{*1}	t _{sesu}	100	100	_	μs	
	Wait time after E1 bit setting ^{*1*5}	t _{se}	10	10	100	ms	
	Wait time after E1 bit clear ^{*1}	t _{ce}	10	10	—	μs	
	Wait time after ESU1 bit clear ^{*1}	t _{cesu}	10	10	—	μs	
	Wait time after EV1 bit setting ^{*1}	t _{sev}	20	20	_	μs	
	Wait time after H'FF dummy write ^{*1}	t _{sevr}	2	2	_	μs	
	Wait time after EV1 bit clear ^{*1}	t _{cev}	4	4		μs	
	Wait time after SWE1 bit clear	t _{cswe}	100	100	_	μs	
	Maximum erase count ^{*1*5}	Ν	—	_	100	Times	

Notes: 1. Make each time setting in accordance with the program/program-verify flowchart or erase/erase-verify flowchart.

- 2. Programming time per 128 bytes (Shows the total period for which the P1 bit in the flash memory control register 1 (FLMCR1) is set. It does not include the program verification time.)
- 3. Block erase time (Shows the total period for which the E1 bit in FLMCR1 is set. It does not include the erase verification time.)
- 4. Maximum programming time value $t_p(max) = Wait$ time after P1 bit setting $(t_{sp}) \times maximum program count (N)$ $(t_{sp30} + t_{sp10}) \times 6 + (t_{sp200}) \times 994$
- Relationship among the maximum erase time (t_e (max)), the wait time after E1 bit setting (t_{se}), and the maximum erase count (N) is shown below.
 - $t_{_{E}}$ (max) = Wait time after E1 bit setting ($t_{_{se}}$) × maximum erase count (N)
- 6. The minimum times that all characteristics after reprogramming are guaranteed. (The range between 1 and a minimum value is guaranteed.)
- Reference value at 25°C. (Normally, it is a reference that rewriting is enabled up to this value.)
- 8. Data hold characteristics are when reprogramming is performed within the range of specifications including a minimum value.

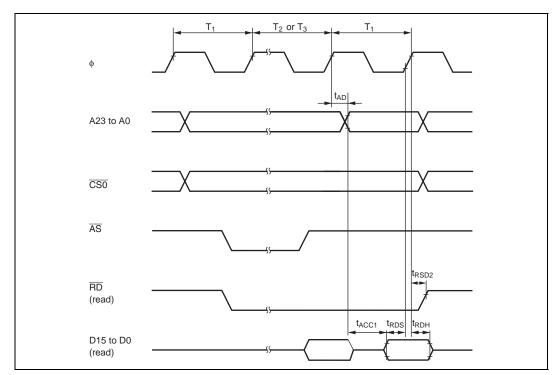


Figure 27.18 Burst ROM Access Timing (One-State Access)

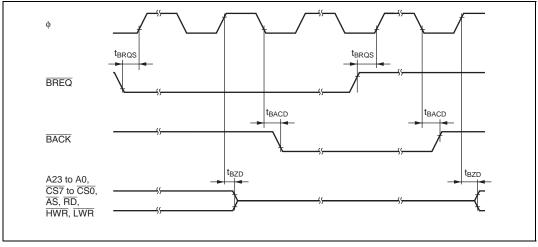


Figure 27.19 External Bus Release Timing

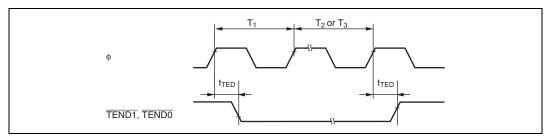
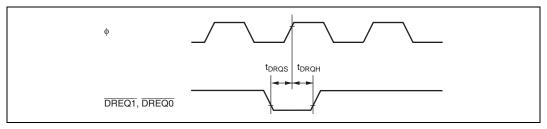



Figure 27.22 DMAC TEND Output Timing

27.7.4 Timing of On-Chip Peripheral Modules

Figures 27.24 to 27.34 show the timing of on-chip peripheral modules.

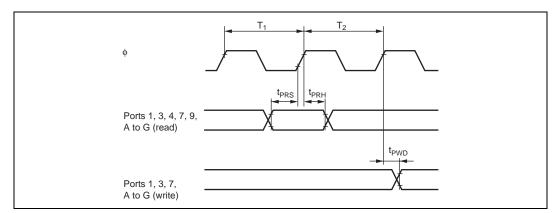


Figure 27.24 I/O Port Input/Output Timing

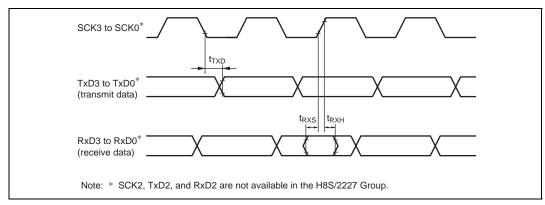


Figure 27.32 SCI Input/Output Timing (Clocked Synchronous Mode)

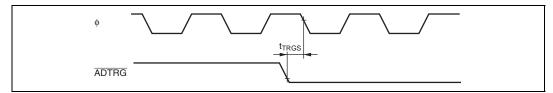


Figure 27.33 A/D Converter External Trigger Input Timing

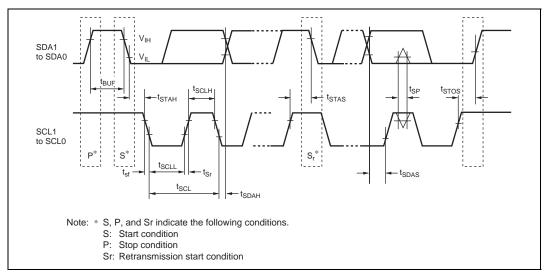


Figure 27.34 I²C Bus Interface Input/Output Timing (Optional)