

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8S/2000
Core Size	16-Bit
Speed	6MHz
Connectivity	I ² C, SCI, SmartCard
Peripherals	POR, PWM, WDT
Number of I/O	72
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2238rte6v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Secti	on 1 (Overview	1
1.1	Feature	S	1
1.2	Internal	l Block Diagram	4
1.3	Pin Des	scription	9
	1.3.1	Pin Arrangement	9
	1.3.2	Pin Arrangements in Each Mode	20
	1.3.3	Pin Functions	44
Secti	on 2 (CPU	63
2.1	Feature	S	63
	2.1.1	Differences between H8S/2600 CPU and H8S/2000 CPU	64
	2.1.2	Differences from H8/300 CPU	65
	2.1.3	Differences from H8/300H CPU	65
2.2	CPU O	perating Modes	66
	2.2.1	Normal Mode	66
	2.2.2	Advanced Mode	67
2.3	Addres	s Space	70
2.4	Registe	r Configuration	71
	2.4.1	General Registers	72
	2.4.2	Program Counter (PC)	73
	2.4.3	Extended Control Register (EXR)	73
	2.4.4	Condition-Code Register (CCR)	74
	2.4.5	Initial Values of CPU Registers	75
2.5	Data Fo	ormats	76
	2.5.1	General Register Data Formats	76
	2.5.2	Memory Data Formats	78
2.6	Instruct	ion Set	79
	2.6.1	Table of Instructions Classified by Function	80
	2.6.2	Basic Instruction Formats	
2.7	Addres	sing Modes and Effective Address Calculation	90
	2.7.1	Register Direct—Rn	91
	2.7.2	Register Indirect—@ERn	91
	2.7.3	Register Indirect with Displacement-@(d:16, ERn) or @(d:32, ERn)	91
	2.7.4	Register Indirect with Post-Increment-@ERn+ or Register Indirect	
		with Pre-Decrement—@-ERn	
	2.7.5	Absolute Address-@aa:8, @aa:16, @aa:24, or @aa:32	91
	2.7.6	Immediate—#xx:8, #xx:16, or #xx:32	92

Section 5 Interrupt Controller

Table 5.1	Pin Configuration	.129
Table 5.2	Interrupt Sources, Vector Addresses, and Interrupt Priorities	.137
Table 5.3	Interrupt Control Modes	.142
Table 5.4	Interrupts Selected in Each Interrupt Control Mode (1)	.143
Table 5.5	Interrupts Selected in Each Interrupt Control Mode (2)	.144
Table 5.6	Operations and Control Signal Functions in Each Interrupt Control Mode	.144
Table 5.7	Interrupt Response Times	.150
Table 5.8	Number of States in Interrupt Handling Routine Execution Status	.151
Table 5.9	Interrupt Source Selection and Clear Control	.153

Section 7 Bus Controller

Table 7.1	Pin Configuration	167
Table 7.2	Bus Specifications for Each Area (Basic Bus Interface)	177
Table 7.3	Data Buses Used and Valid Strobes	
Table 7.4	Pin States in Idle Cycle	196
Table 7.5	Pin States in Bus Released State	197

Section 8 DMA Controller (DMAC)

Table 8.1	Pin Configuration	205
Table 8.2	Short Address Mode and Full Address Mode (Channel 0)	
Table 8.3	DMAC Activation Sources	232
Table 8.4	DMAC Transfer Modes	234
Table 8.5	Register Functions in Sequential Mode	236
Table 8.6	Register Functions in Idle Mode	239
Table 8.7	Register Functions in Repeat Mode	241
Table 8.8	Register Functions in Single Address Mode	245
Table 8.9	Register Functions in Normal Mode	
Table 8.10	Register Functions in Block Transfer Mode	251
Table 8.11	DMAC Channel Priority Order	271
Table 8.12	Interrupt Sources and Priority Order	275

Section 9 Data Transfer Controller (DTC)

Table 9.1	Activation Source and DTCER Clearance	
Table 9.2	Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs	
Table 9.3	Register Information in Normal Mode	
Table 9.4	Register Information in Repeat Mode	
Table 9.5	Register Information in Block Transfer Mode	
Table 9.6	DTC Execution Status	

Section 1 Overview

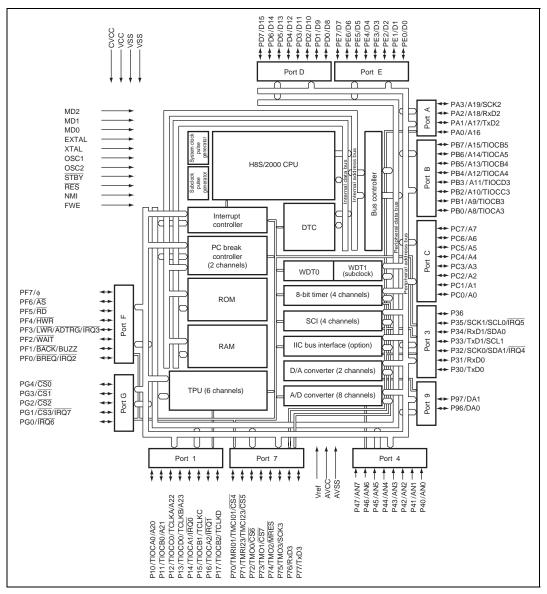


Figure 1.3 Internal Block Diagram of H8S/2238 Group

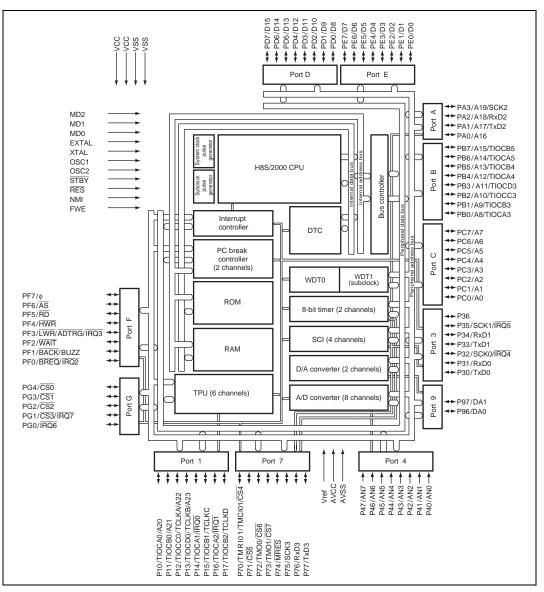


Figure 1.4 Internal Block Diagram of H8S/2237 Group

Section 5 Interrupt Controller

5.1 Features

This LSI controls interrupts with the interrupt controller. The interrupt controller has the following features:

- Two interrupt control modes
 - Any of two interrupt control modes can be set by means of the INTM1 and INTM0 bits in the system control register (SYSCR).
- Priorities settable with IPR
 - An interrupt priority register (IPR) is provided for setting interrupt priorities. Eight priority levels can be set for each module for all interrupts except NMI. NMI is assigned the highest priority level of 8, also accepted (using nesting) during interrupt processing. Additionally accepted during state 12 if Opcode = H'57F3.
- Independent vector addresses
 - All interrupt sources are assigned independent vector addresses, making it unnecessary for the source to be identified in the interrupt handling routine.
- Nine external interrupts
 - NMI is the highest-priority interrupt, and is accepted at all times. Rising edge or falling edge can be selected for NMI. Falling edge, rising edge, or both edge detection, or level sensing, can be independently selected for IRQ7 to IRQ0.
- DTC and DMAC* control
 - The DTC and DMAC* can be activated by an interrupt request.
- Note: * Supported only by the H8S/2239 Group.

		Object of Access					
			External Device				
			8	Bit Bus	16	Bit Bus	
Symbol		Internal Memory	2-State Access	3-State Access	2-State Access	3-State Access	
Instruction fetch	S	1	4	6 + 2 m	2	3 + m	
Branch address read	S						
Stack manipulation	S _κ						

Table 5.8 Number of States in Interrupt Handling Routine Execution Status

Legend:

m: Number of wait states in an external device access.

5.5.6 DTC and DMAC* Activation by Interrupt

The DTC and DMAC* can be started by interrupts. The following settings are required for this operation.

- 1. Interrupt request to the CPU
- 2. Start request to the DTC
- 3. Start request to the DMAC*
- 4. Multiple specification of items 1 to 3.

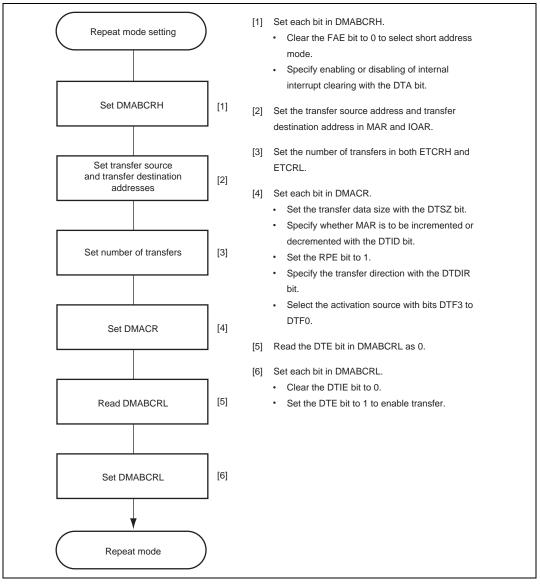

See section 8, DMA Controller (DMAC)*, and section 9, Data Transfer Controller (DTC) for more information on the interrupts that can start the DTC and DMAC*.

Figure 5.8 shows the block diagram of the DTC, DMAC*, and interrupt controller circuits.

Note: * Supported only by the H8S/2239 Group.

Transfer requests (activation sources) consist of A/D converter conversion end interrupts, external requests, SCI transmit-data-empty and receive-data-full interrupts, and TPU channel 0 to 5 compare match/input capture A interrupts. External requests can only be specified for channel B.

Figure 8.8 shows an example of the setting procedure for repeat mode.

Figure 8.8 Example of Repeat Mode Setting Procedure



Figure 9.1 Block Diagram of DTC

9.2 **Register Descriptions**

The DTC has the following registers.

- DTC mode register A (MRA)
- DTC mode register B (MRB)
- DTC source address register (SAR)
- DTC destination address register (DAR)
- DTC transfer count register A (CRA)
- DTC transfer count register B (CRB)

These six registers cannot be directly accessed from the CPU.

When activated, the DTC reads a set of register information that is stored in on-chip RAM to the corresponding DTC registers and transfers data. After the data transfer, it writes a set of updated register information back to the RAM.

Interrupt Source	Origin of Interrupt Source	Vector Number	DTC Vector Address	DTCE ^{*1}	Priority
Software	Write to DTVECR	DTVECR	H'0400 + vector number × 2		High ≜
External pin	IRQ0	16	H'0420	DTCEA7	_
	IRQ1	17	H'0422	DTCEA6	-
	IRQ2	18	H'0424	DTCEA5	-
	IRQ3	19	H'0426	DTCEA4	-
	IRQ4	20	H'0428	DTCEA3	-
	IRQ5	21	H'042A	DTCEA2	-
	IRQ6	22	H'042C	DTCEA1	-
	IRQ7	23	H'042E	DTCEA0	-
A/D converter	ADI (A/D conversion end)	28	H'0438	DTCEB6	-
TPU	TGI0A	32	H'0440	DTCEB5	_
Channel 0	TGI0B	33	H'0442	DTCEB4	-
	TGI0C	34	H'0444	DTCEB3	-
	TGI0D	35	H'0446	DTCEB2	_
TPU	TGI1A	40	H'0450	DTCEB1	_
Channel 1	TGI1B	41	H'0452	DTCEB0	-
TPU	TGI2A	44	H'0458	DTCEC7	_
Channel 2	TGI2B	45	H'045A	DTCEC6	-
TPU	TGI3A	48	H'0460	DTCEC5	-
Channel 3 ^{*4}	TGI3B	49	H'0462	DTCEC4	-
	TGI3C	50	H'0464	DTCEC3	-
	TGI3D	51	H'0466	DTCEC2	-
TPU	TGI4A	56	H'0470	DTCEC1	-
Channel 4*4	TGI4B	57	H'0472	DTCEC0	-
TPU	TGI5A	60	H'0478	DTCED5	-
Channel 5*4	TGI5B	61	H'047A	DTCED4	-
8-bit timer	CMIA0	64	H'0480	DTCED3	-
channel 0	CMIB0	65	H'0482	DTCED2	Low

Table 9.2 Interrupt Sources, DTC Vector Addresses, and Corresponding DTCEs

• P35/SCK1/SCL0/IRQ5

The pin functions are switched as shown below according to the combination of the ICE bit^{*3} in ICCR_0 of IIC_0, the C/A bit in SMR_1 of SCI_1, CKE0 and CKE1 bits in SCR_1, and the P35DDR bit. To use this port as SCL0 I/O pin, clear the C/A bit, CKE1 bit, and CKE0 bit to 0. The SCL0 functions as NMOS open drain output and the pin can drive bus directly. When this pin is specified as the P35 output pin or SCK1 output pin, it functions as NMOS push/pull output ^{*4}

output.						
ICE ^{*3}			0			1
CKE1		()		1	0
C/Ā		0		1	_	0
CKE0	0		1	—	_	0
P35DDR	0	1	—	—	_	—
Pin functions	P35 input pin	P35 output pin ^{*1}	SCK1 output pin ^{*1}	SCK1 output pin ^{*1}	SCK1 input pin	SCL0 I/O pin ^{*3}
	IRQ5 Input pin*2					

Notes: 1. When the P35ODR is set to 1, it functions as NMOS open drain output. When the P35ODR is cleared to 0, it functions as NMOS push/pull output.^{*4}

- 2. When this pin is used as an external interrupt pin, do not specify other functions.
- 3. Not available in the H8S/2237 Group and H8S/2227 Group.
- 4. It functions as CMOS output in the H8S/2237 Group and H8S/2227 Group.

• P34/RxD1/SDA0

The pin functions are switched as shown below according to the combination of the ICE bit^{*2} in ICCR_0 of IIC_0, the RE bit in SCR_1 of SCI_1, and the P34DDR bit. When this pin is specified as P34 output pin, it functions as NMOS push-pull output.^{*3} The SDA0 also functions as NMOS open drain outputs and can drive bus directly.

ICE ^{*2}	0 1					
RE	0		1	—		
P34DDR	0	1	_	—		
Pin functions	P34 input pin P34 output pin ^{*1}		RxD1 input pin	SDA0 I/O pin ^{*2}		

Notes: 1. When P34ODR is set to 1, it functions as NMOS open drain output. When the P34ODR is cleared to 0, it functions as NMOS push/pull output.^{*3}

- 2. Not available in theH8S/2237 Group and H8S/2227 Group.
- 3. It functions as CMOS output in the H8S/2237 Group and H8S/2227 Group.

Section 11 16-Bit Timer Pulse Unit (TPU)

ltem	Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
DTC activation	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
DMAC ^{*2} activation	TGRA_0 compare match or input capture	TGRA_1 compare match or input capture	TGRA_2 compare match or input capture	TGRA_3 compare match or input capture	TGRA_4 compare match or input capture	TGRA_5 compare match or input capture
A/D converter trigger	TGRA_0 compare match or input capture	TGRA_1 compare match or input capture	TGRA_2 compare match or input capture	TGRA_3 compare match or input capture	TGRA_4 compare match or input capture	TGRA_5 compare match or input capture
Interrupt	5 sources	4 sources	4 sources	5 sources	4 sources	4 sources
sources	 Compare match or input capture 0A Compare 	Compare match or input capture 1A Compare	Compare match or input capture 2A Compare	 Compare match or input capture 3A Compare 	Compare match or input capture 4A Compare	5A
	• Compare match or input capture 0B	Compare match or input capture 1B	match or	match or	Compare match or input capture 4B	Compare match or input capture 5B
	Compare match or input capture 0C	e		Compare match or input capture 3C	e	
	Compare match or input capture 0D	e		Compare match or input capture 3D	e	
	 Overflow 			 Overflow 		
		 Overflow 	• Overflow		• Overflow	Overflow
Levendu		• Underflow	• Underflow		• Underflow	Underflow

Legend:

O: Possible

--: Not possible

Notes: 1. Not available in the H8S/2227 Group.

2. Supported only by the H8S/2239 Group.

11.3.1 Timer Control Register (TCR)

The TCR registers control the TCNT operation for each channel. The TPU of the H8S/2227 Group has a total of three TCR registers, one each for channels 0 to 2. In other groups, the TPU has a total of six TCR registers, one each for channels 0 to 5. TCR register settings should be made only when TCNT operation is stopped.

Bit	Bit Name	Initial Value	R/W	Description
7	CCLR2	0	R/W	Counter Clear 2 to 0
6 5	CCLR1 CCLR0	0 0	R/W R/W	These bits select the TCNT counter clearing source. See tables 11.3 and 11.4 for details.
4	CKEG1	0	R/W	Clock Edge 1 and 0
3	CKEG0	0	R/W	These bits select the input clock edge. When the input clock is counted using both edges, the input clock period is halved (e.g. $\phi/4$ both edges = $\phi/2$ rising edge). If phase counting mode is used on channels 1, 2, 4*, and 5*, this setting is ignored and the phase counting mode setting has priority. Internal clock edge selection is valid when the input clock is $\phi/4$ or slower. When the input clock is $\phi/1$ or when overflow/underflow of another channel is selected, this setting is ignored and the falling edge of ϕ .
				00: Count at rising edge
				01: Count at falling edge
				1×: Count at both edges
				Legend: x: Don't care
2	TPSC2	0	R/W	Time Prescaler 2 to 0
1 0	TPSC1 TPSC0	0 0	R/W R/W	These bits select the TCNT counter clock. The clock source can be selected independently for each channel. See tables 11.5 to 11.10 for details.

Note: * Not available in the H8S/2227 Group.

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
4*	0	0	0	Internal clock: counts on $\phi/1$
			1	Internal clock: counts on $\phi/4$
		1	0	Internal clock: counts on $\phi/16$
			1	Internal clock: counts on \u00e6/64
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKC pin input
		1	0	Internal clock: counts on $\phi/1024$
			1	Counts on TCNT5 overflow/underflow

Table 11.9 TPSC2 to TPSC0 (Channel 4)

Notes: This setting is ignored when channel 4 is in phase counting mode.

* Not available in the H8S/2227 Group.

Table 11.10 TPSC2 to TPSC0 (Channel 5)

Channel	Bit 2 TPSC2	Bit 1 TPSC1	Bit 0 TPSC0	Description
5*	0	0	0	Internal clock: counts on $\phi/1$
			1	Internal clock: counts on
		1	0	Internal clock: counts on
		1		Internal clock: counts on
	1	0	0	External clock: counts on TCLKA pin input
			1	External clock: counts on TCLKC pin input
		1	0	Internal clock: counts on
			1	External clock: counts on TCLKD pin input

Notes: This setting is ignored when channel 5 is in phase counting mode.

* Not available in the H8S/2227 Group.

Table 1	1.16 110)KH_3								
					Description					
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	TGRB_3 Function ^{*2}	TIOCB3 Pin Function*2					
0	0	0	0	Output	Output disabled					
			1	compare register	Initial output is 0 output					
				rogiotor	0 output at compare match					
		1	0		Initial output is 0 output					
				_	1 output at compare match					
		1			Initial output is 0 output					
					Toggle output at compare match					
	1	0 0		_	Output disabled					
			1	-	Initial output is 1 output					
					0 output at compare match					
		1	0		Initial output is 1 output					
				_	1 output at compare match					
			1		Initial output is 1 output					
					Toggle output at compare match					
1	0	0	0	Input	Capture input source is TIOCB3 pin					
				capture register	Input capture at rising edge					
			1	. egiotoi	Capture input source is TIOCB3 pin					

Table 11.16 TIORH_3

Legend: ×: Don't care

1

1

×

Notes: 1. When bits TPSC2 to TPSC0 in TCR_4 are set to B'000 and $\phi/1$ is used as the TCNT_4 count clock, this setting is invalid and input capture is not generated.

down*1

Input capture at falling edge

Input capture at both edges

Capture input source is TIOCB3 pin

Capture input source is channel 4/count clock

Input capture at TCNT_4 count-up/count-

2. Not available in the H8S/2227 Group.

х

х

Field name	He	ader	Maste address f		Slave ade field		SS	Contro	l fie	ld	Mes lengt	· ·				Da	ta fi	ield		
Number	1	1	12	1	12	1	1	4	1	1	8	1	1	8	1	1		8	1	1
of bits	Start bit	Broad- cast bit	Master address	Ρ	Slave address	Р	A	Control bits	Р	A	Message length bits	Ρ	A	Data bits	Р	A		Data bits	Ρ	A
Transfer time			1												1					
Mode 0		Approximately 7330 μ s Approximately 1590 \times N μ s																		
Mode 1					Approxim	atel	y 20)90 μs						Ap	prox	kima	tely	410×№	õs	
Mode 2		Approximately 1590 μs Approximately 300 × N μs																		
	A: A W W	cknov 'hen A 'hen A	bit (1 bit) vledge bit A = 0: ACP A = 1: NAP er of bytes	Č K	pit)															

Figure 14.2 Transfer Signal Format

(1) Header

Header is comprised of a start bit and a broadcast bit.

(a) Start Bit

The start bit is a signal for informing a start of data transfer to other units. A unit, which attempts to start data transfer, outputs a low-level signal (start bit) for a specified period and then outputs the broadcast bit.

If another unit is already outputting a start bit when a unit attempts to output a start bit, the unit waits for completion of output of the start bit from the other unit without outputting the start bit, and then outputs the broadcast bit synchronized with the completion timing.

Other units enter the receive state after detecting the start bit.

(b) Broadcast Bit

The broadcast bit is a bit to identify the type of communications: broadcast or normal.

When this bit is cleared to 0, it indicates the broadcast communications. When it is set to 1, it indicates the normal communications. Broadcast communications includes group broadcast and general broadcast, which are identified by a value of the slave address. (For details of the slave address, see section 14.1.2 (3), Slave Address Field.)

Since there are multiple slave units, which are communications destination units, in the case of broadcast communications, the acknowledge bit is not returned from each field described in (2) and below.

14.3.9 IEBus Transmit Buffer Register (IETBR)

IETBR is a 1-byte buffer to which data to be transmitted in master or slave transmission is written. IETBR is empty when the TxRDY flag in IETSR is 1. Check the TxRDY flag before setting transmit data in IETBR.

Data written in IETBR is transmitted in the data field in master or slave transmission. Figure 14.6 shows the correspondence between the communications signal format and registers for IEBus data transfer.

Bit	Bit Name	Initial Value	R/W	Description
7	TBR7	0	R/W	Data to be transmitted is written to this 1-byte
6	TBR6	0	R/W	buffer.
5	TBR5	0	R/W	
4	TBR4	0	R/W	
3	TBR3	0	R/W	
2	TBR2	0	R/W	
1	TBR1	0	R/W	
0	TBR0	0	R/W	
1	TBR1	0	R/W	

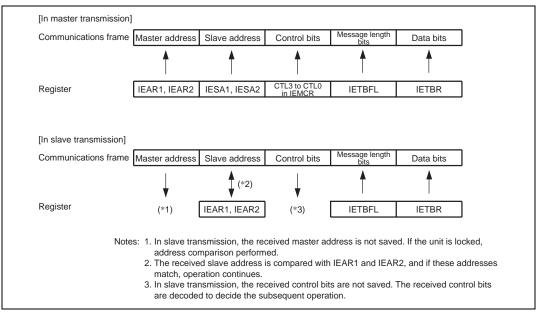


Figure 14.6 Transmission Signal Format and Registers in Data Transfer

Bit	Bit Name	Initial Value	R/W	Description
3	ACKE	0	R/W	Acknowledge Bit Judgement Selection
				0: The value of the acknowledge bit is ignored, and continuous transfer is performed. The value of the received acknowledge bit is not indicated by the ACKB bit, which is always 0.
				1: If the acknowledge bit is 1, continuous transfer is interrupted.
				In this LSI, the DTC can be used to perform continuous transfer. The DTC is activated when the IRTR interrupt flag is set to 1 (IRTR us one of two interrupt flags, the other being IRIC). When the ACKE bit is 0, the TDRE, IRIC, and IRTR flags are set on completion of data transmission, regardless of the acknowledge bit. When the ACKE bit is 1, the TDRE, IRIC, and IRTR flags are set on completion of data transmission when the acknowledge bit is 0, and the IRIC flag alone is set on completion of data transmission when the acknowledge bit is 1. When the DTC is activated, the TDRE, IRIC, and IRTR flags are cleared to 0 after the specified number of data transfers have been executed. Consequently, interrupts are not generated during continuos data transfer, but if data transmission is completed with a 1 acknowledge bit when the ACKE bit is set to 1, the DTC is not activated and an interrupt is generated, if enabled. Depending on the receiving device, the acknowledge bit may be significant, in indicating completion of processing of the received data, for instance, or may be fixed at 1 and have no significance.
2	BBSY	0	R/W	Bus Busy
				In slave mode, reading the BBSY flag enables to confirm whether the l^2C bus is occupied or released. The BBSY flag is set to 0 when the SDA level changes from high to low under the condition of SCI = high, assuming that the start condition has been issued. The BBSY flag is cleared to 0 when the SDA level changes from low to high under the condition of SCI = high, assuming that the start condition has been issued. Writing to the BBSY flag in slave mode is disabled. In master mode, the BBSY flag is used to issue start and stop conditions. Write 1 to BBSY and 0 to SCP to issue a start condition. Follow this procedure when also re-transmitting a start condition. To issue a start/stop condition, use the MOV instruction. The l^2C bus interface must be set in master transmit mode before the issue of a start condition.
				Day 6.00 Mar 19, 2010 Dags 645 of 022

17.3.2 A/D Control/Status Register (ADCSR)

ADCSR controls A/D conversion operations.

Bit	Bit Name	Initial Value	R/W	Description
7	ADF	0	R/(W)*	A/D End Flag
				A status flag that indicates the end of A/D conversion.
				[Setting conditions]
				When A/D conversion ends in single mode
				 When A/D conversion ends on all specified channels in scan mode
				[Clearing conditions]
				• When 0 is written after reading ADF = 1
				• When the data transfer controller (DTC) is
				activated by an ADI interrupt and DISEL in DTC is 0 with the transfer counter not being 0
6	ADIE	0	R/W	A/D Interrupt Enable
				A/D conversion end interrupt (ADI) request enabled when 1 is set
5	ADST	0	R/W	A/D Start
				Clearing this bit to 0 stops A/D conversion, and the A/D converter enters the wait state.
				Setting this bit to 1 starts A/D conversion. In single mode, this bit is cleared to 0 automatically when conversion on the specified channel is complete. In scan mode, conversion continues sequentially on the specified channels until this bit is cleared to 0 by software, a reset, software standby mode, hardware standby mode, or module stop mode.
				The ADST bit can be set to 1 by software, a timer conversion start trigger, or the A/D external trigger input pin (ADTRG).

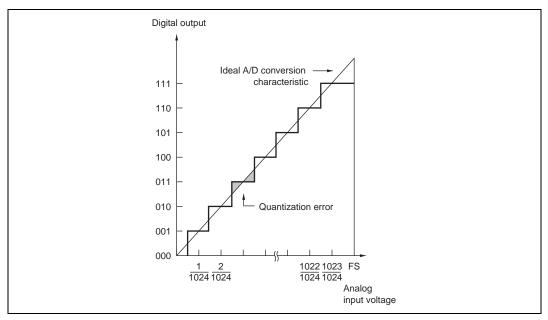


Figure 17.7 A/D Conversion Accuracy Definitions

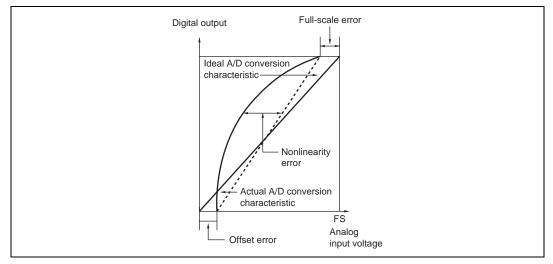


Figure 17.8 A/D Conversion Accuracy Definitions

(1) Clock Timing

Table 27.17 lists the clock timing.

Table 27.17 Clock Timing

Condition A (F-ZTAT version and masked ROM version):

 $V_{cc} = 2.7 V \text{ to } 3.6 V, AV_{cc} = 2.7 V \text{ to } 3.6 V,$ $V_{ref} = 2.7 V \text{ to } AV_{cc}, V_{ss} = AV_{ss} = 0 V, \phi = 32.768 \text{ kHz},$ 2 to 16.0 MHz, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications)

Condition B (Masked ROM version):
$$V_{cc} = 2.2 V \text{ to } 3.6 V$$
, $AV_{cc} = 2.2 V \text{ to } 3.6 V$,
 $V_{ref} = 2.2 V \text{ to } AV_{cc}$, $V_{ss} = AV_{ss} = 0 V$, $\phi = 32.768 \text{ kHz}$,
 $2 \text{ to } 6.25 \text{ MHz}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular
specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range
specifications)

Condition C (F-ZTAT version and masked ROM version):

 $V_{cc} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ AV}_{cc} = 3.0 \text{ V to } 3.6 \text{ V},$ $V_{ref} = 3.0 \text{ V to } \text{AV}_{cc}, \text{ V}_{ss} = \text{AV}_{ss} = 0 \text{ V}, \phi = 32.768 \text{ kHz},$ 10.0 to 20.0 MHz, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

		Condition A			Condition B			(Conditio	on C		Test	
Item	Symbol	Min	Тур	Мах	Min	Тур	Max	Min	Тур	Max	Unit	Conditions	
Clock cycle time	t _{cyc}	62.5	—	500	160	_	500	50	_	100	ns	Figure 27.10	
Clock high pulse width	t _{ch}	20	_	—	50	_	_	17	_		ns	_	
Clock low pulse width	t _{cL}	20	_	—	50	_	_	17	_		ns	_	
Clock rise time	t _{cr}	_		10	_		25	_		10	ns	_	
Clock fall time	t _{cf}	—	_	10		_	25		_	10	ns	_	
Oscillation stabilization time at reset (crystal)	t _{osc1}	20			40			20			ms	Figure 27.11	