

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H85/2000
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, SCI, SmartCard
Peripherals	DMA, POR, PWM, WDT
Number of I/O	72
Program Memory Size	384КВ (384К × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2239tf20v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ltem	Page	Re	vision (See I	Manu	ual for	Details)		
16.3.6 I ² C Bus Control	644	Та	ble ame	nded					
Register (ICCR)		Bit	Bit Name	Initial Value	R/W	Descriptio	on		
		7	ICE	0	R/W	I ² C Bus In When this enabled to connected accessed. SCL and S enabled)	terface Enable bit is set to 1, the I ² C bus i o send/receive data and dri t to the SCL and SDA pins. SDA output is disabled (and when this bit is cleared to 0	interface m ive the bus . ICMR and d input to S). SAR and	odule is since it is d ICDR can be SCL and SDA is SARX can be
16.4.6 Slave Transmit	670	De	scription	n add	-d	accessed.			
Operation		1.	 Initialize slave receive mode and wait for slave address reception. When making initial settings for slave receive mode, set the ACKE bit in ICCR to 1. This is necessary in order to enable reception of the acknowledge bit after entering slave transmit mode. 						
		Description amended							
		4.	The ma and ret the AC is store determ succes	ister c urns a KE bit d in th ine wl sfully.	levic an ac in I(ne A(nethe	e drives knowle CSR is CKB bit er the tr	s SDA low at the dge signal. Whe 1, the acknowle , so the ACKB t ansfer operation	e 9th c en the dge si oit can n was	lock pulse, value of gnal state be used to performed
	671	De	scription	n add	ed				
		10	When is char BBSY ICSR 1. If th To res initial s	the s nged flag i is set e IRI(start s setting	top c from n ICC to 1. C flao lave gs or	ondition low to CR is cl At the g has bo transmince aga	n is detected, th high when SCL eared to 0 and same time, the een set, it is cle it mode operatio in.	at is, v is high the ST IRIC f ared to on, ma	vhen SDA 1, the OP flag in lag is set to 5 0. ke the
16.6 Usage Notes	677	Та	ble ame	nded					
Table 16.7 I ² C Bus Timing		Item				Symbol	Output Timing	Unit	Notes
(SCL and SDA Output)		SCL SCL SCL	output cycle output high p output low p	time oulse widt ulse width	h	t _{SCLO} t _{SCLHO}	28 t _{oyc} to 256 t _{oyc} 0.5 t _{SCLO} 0.5 t _{SCLO}	ns ns ns	Fígure 27. <u>34</u>

Figure 2.9	General Register Data Formats (2)	77
Figure 2.10	Memory Data Formats	78
Figure 2.11	Instruction Formats (Examples)	90
Figure 2.12	Branch Address Specification in Memory Indirect Mode	93
Figure 2.13	State Transitions	9 7
Figure 2.14	Flowchart for Access Methods for Registers That Include Write-Only Bits10)1

Section 3 MCU Operating Modes

Figure 3.1	H8S/2258 Memory Map in Each Operating Mode	
Figure 3.2	H8S/2256 Memory Map in Each Operating Mode	110
Figure 3.3	H8S/2239 Memory Map in Each Operating Mode	111
Figure 3.4	H8S/2238B and H8S/2238R Memory Map in Each Operating Mode	112
Figure 3.5	H8S/2236B and H8S/2236R Memory Map in Each Operating Mode	113
Figure 3.6	H8S/2237 and H8S/2227 Memory Map in Each Operating Mode	114
Figure 3.7	H8S/2235 and H8S/2225 Memory Map in Each Operating Mode	115
Figure 3.8	H8S/2224 Memory Map in Each Operating Mode	116
Figure 3.9	H8S/2233 and H8S/2223 Memory Map in Each Operating Mode	117

Section 4 Exception Handling

Figure 4.1	Reset Sequence (Mode 4)	122
Figure 4.2	Stack Status after Exception Handling (Advanced Mode)	125
Figure 4.3	Operation When SP Value Is Odd	126

Section 5 Interrupt Controller

Figure 5.1	Block Diagram of Interrupt Controller	128
Figure 5.2	Block Diagram of IRQn Interrupts	135
Figure 5.3	Set Timing for IRQnF	136
Figure 5.4	Block Diagram of Interrupt Control Operation	143
Figure 5.5	Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 0.	146
Figure 5.6	Flowchart of Procedure Up to Interrupt Acceptance in Control Mode 2	148
Figure 5.7	Interrupt Exception Handling	149
Figure 5.8	DTC and DMAC Interrupt Control	152
Figure 5.9	Contention between Interrupt Generation and Disabling	155

Section 6 PC Break Controller (PBC)

Figure 6.1	Block Diagram of PC Break Controller	158
Figure 6.2	Operation in Power-Down Mode Transitions	162

Section 7 Bus Controller

Figure 7.1	Block Diagram of Bus Controlle	r166
------------	--------------------------------	------

Table 27.42	Clock Timing	916
Table 27.43	Control Signal Timing	917
Table 27.44	Bus Timing	918
Table 27.45	Timing of On-Chip Peripheral Modules	
Table 27.46	I ² C Bus Timing	922
Table 27.47	A/D Conversion Characteristics	
Table 27.48	D/A Conversion Characteristics	924
Table 27.49	Flash Memory Characteristics	925
Table 27.50	Absolute Maximum Ratings	927
Table 27.51	DC Characteristics (1)	
Table 27.51	DC Characteristics (2)	930
Table 27.51	DC Characteristics (3)	
Table 27.51	DC Characteristics (4)	934
Table 27.52	Permissible Output Currents	936
Table 27.53	Clock Timing	937
Table 27.54	Control Signal Timing	939
Table 27.55	Bus Timing	940
Table 27.56	Timing of On-Chip Peripheral Modules	942
Table 27.57	A/D Conversion Characteristics	944
Table 27.58	D/A Conversion Characteristics	945
Table 27.59	Flash Memory Characteristics	946

Appendix B Product Codes

Table B.1	Product Codes of H8S/2258 Group	.968
Table B.2	Product Codes of H8S/2239 Group	.969
Table B.3	Product Codes of H8S/2238 Group	.970
Table B.4	Product Codes of H8S/2237 Group and H8S/2227 Group	.972

- Interrupt priority register J (IPRJ)
- Interrupt priority register K (IPRK)
- Interrupt priority register L (IPRL)
- Interrupt priority register O (IPRO)

5.3.1 Interrupt Priority Registers A to L, and O (IPRA to IPRL, IPRO)

The IPR registers are thirteen 8-bit readable/writable registers that set priorities (levels 7 to 0) for interrupt sources other than NMI. The correspondence between interrupt sources and IPR settings is shown in table 5.2. Setting a value in the range from H'0 to H'7 in the 3-bit groups of bits 0 to 2 and 4 to 6 sets the priority of the corresponding interrupt.

Bit	Bit Name	Initial Value	R/W	Description
7		0	_	Reserved
				This bit is always read as 0, and cannot be modified.
6	IPR6	1	R/W	Sets the priority of the corresponding interrupt source
5	IPR5	1	R/W	000: Priority level 0 (Lowest)
4	IPR4	1	R/W	001: Priority level 1
				010: Priority level 2
				011: Priority level 3
				100: Priority level 4
				101: Priority level 5
				110: Priority level 6
				111: Priority level 7 (Highest)
3		0		Reserved
				This bit is always read as 0, and cannot be modified.
2	IPR2	1	R/W	Sets the priority of the corresponding interrupt source.
1	IPR1	1	R/W	000: Priority level 0 (Lowest)
0	IPR0	1	R/W	001: Priority level 1
				010: Priority level 2
				011: Priority level 3
				100: Priority level 4
				101: Priority level 5
				110: Priority level 6
				111: Priority level 7 (Highest)

10.7.3 Port B Register (PORTB)

Bit	Bit Name	Initial Value	R/W	Description
7	PB7	*	R	If these bits are read while the corresponding PBDDR
6	PB6	*	R	bits are set to 1, the PBDR value is read. If these bits are read while PBDDR bits are cleared to 0, the pin
5	PB5	*	R	states are read.
4	PB4	*	R	
3	PB3	*	R	
2	PB2	*	R	
1	PB1	*	R	
0	PB0	*	R	

PORTB shows the pin states and cannot be modified.

Note: * Determined by the states of pins PB7 to PB0.

10.7.4 Port B Pull-Up MOS Control Register (PBPCR)

Bit	Bit Name	Initial Value	R/W	Description
7	PB7PCR	0	R/W	When a pin is specified as an input port, setting the
6	PB6PCR	0	R/W	corresponding bit to 1 turns on the input pull-up MOS for that pin
5	PB5PCR	0	R/W	
4	PB4PCR	0	R/W	-
3	PB3PCR	0	R/W	-
2	PB2PCR	0	R/W	-
1	PB1PCR	0	R/W	-
0	PB0PCR	0	R/W	-

PBPCR controls the on/off state of port B input pull-up MOS.

10.7.5 Pin Functions

Port B pins also function as TPU I/O pins (TPU_3*, TPU_4*, and TPU_5*) and address output pins. The values of register and pin functions are shown bellow.

Note: * Not available in the H8S/2227 Group.

Table 11.13 TIORL_0

					Description			
Bit 7 IOD3	Bit 6 IOD2	Bit 5 IOD1	Bit 4 IOD0	TGRD_0 Function	TIOCD0 Pin Function			
0	0	0	0	Output	Output disabled			
			1	compare	Initial output is 0 output			
				register	0 output at compare match			
		1	0	_	Initial output is 0 output			
					1 output at compare match			
			1	_	Initial output is 0 output			
					Toggle output at compare match			
	1	0	0	_	Output disabled			
			1	_	Initial output is 1 output			
					0 output at compare match			
		1	0	_	Initial output is 1 output			
					1 output at compare match			
			1	_	Initial output is 1 output			
					Toggle output at compare match			
1	0	0	0	Input	Capture input source is TIOCD0 pin			
				capture	Input capture at rising edge			
			1		Capture input source is TIOCD0 pin			
				_	Input capture at falling edge			
		1	×	_	Capture input source is TIOCD0 pin			
					Input capture at both edges			
	1	×	×	_	Capture input source is channel 1/count clock			
					Input capture at TCNT_1 count-up/count- down ^{*1*3}			

Legend: ×: Don't care

Notes: 1. When bits TPSC2 to TPSC0 in TCR_1 are set to B'000 and $\phi/1$ is used as the TCNT_1 count clock, this setting is invalid and input capture is not generated.

- 2. When the BFB bit in TMDR_0 is set to 1 and TGRD_0 is used as a buffer register, this setting is invalid and input capture/output compare is not generated.
- 3. Not available in the H8S/2227 Group.

Table 11.19 TIOR_5

				Description					
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	TGRB_5 Function [*]	TIOCB5 Pin Function*				
0	0	0	0	Output	Output disabled				
			1	compare register	Initial output is 0 output				
				regiotor	0 output at compare match				
		1	0		Initial output is 0 output				
				_	1 output at compare match				
			1	_	Initial output is 0 output				
					Toggle output at compare match				
	1	0	0		Output disabled				
			1		Initial output is 1 output				
					0 output at compare match				
		1	0	_	Initial output is 1 output				
					1 output at compare match				
			1	_	Initial output is 1 output				
					Toggle output at compare match				
1	×	0	0	Input	Capture input source is TIOCB5 pin				
				capture	Input capture at rising edge				
			1		Capture input source is TIOCB5 pin				
					Input capture at falling edge				
		1	×	_	Capture input source is TIOCB5 pin				
					Input capture at both edges				

Legend: x: Don't care

Note: * Not available in the H8S/2227 Group.

TGF Flag Setting Timing in Case of Input Capture: Figure 11.40 shows the timing for setting of the TGF flag in TSR by input capture occurrence, and the TGI interrupt request signal timing.

Figure 11.40 TGI Interrupt Timing (Input Capture)

TCFV Flag/TCFU Flag Setting Timing: Figure 11.41 shows the timing for setting of the TCFV flag in TSR by overflow occurrence, and the TCIV interrupt request signal timing.

Figure 11.42 shows the timing for setting of the TCFU flag in TSR by underflow occurrence, and the TCIU interrupt request signal timing.

Figure 11.41 TCIV Interrupt Setting Timing

- 3. When the first data is received, the RxRDY flag is set to 1. A DTC transfer request by IERxI occurs, and the DTC loads data from the IEBus receive buffer register (IERBR) and clears the RxRDY flag.
- 4. Similarly, the data field reception and load are repeated.
- 5. When the last data is received, the DTC completes the data transfer for the specified number of bytes after loading the receive data to the RAM. In this case, the DTC does not clear the RxRDY flag. It, however, clears the DTC enable register G (DTCEG). Accordingly, hereafter, no transfer request will be issued to the DTC.
- 6. When the DTC transfer has been completed, an RxRDY interrupt (IERxI) is issued to the CPU. In this interrupt handling routine, the RxRDY flag is cleared.
- When the last data is received, a receive normal completion (RxF) interrupt (IERSI) occurs. In this case, the CPU clears the RxF flag in order to complete the normal completion interrupt. The SRE flag is cleared to 0.
- Notes: 1. As a receive status interrupt (IERSI), the receive error termination (RxE) interrupt as well as the receive start detection (RxS) and receive normal completion (RxF) interrupts must be enabled. If an error termination interrupt is disabled, no interrupt is generated even if the reception is terminated by an error.
 - 2. The interrupt occurs after the DTC transfer has been completed. Accordingly, the interrupt described in item 6 actually occurs after item 7 above.

Bit	Bit Name	Initial Value	R/W	Description
5	ORER	0	R/(W)*1	Overrun Error
				Indicates that an overrun error occurred during reception, causing abnormal termination.
				[Setting condition]
				When the next serial reception is completed while RDRF = 1
				The receive data prior to the overrun error is retained in RDR, and the data received subsequently is lost. Also, subsequent serial cannot be continued while the ORER flag is set to 1. In clocked synchronous mode, serial transmission cannot be continued, either.
				[Clearing condition]
				When 0 is written to ORER after reading ORER = 1
				The ORER flag is not affected and retains its previous state when the RE bit in SCR is cleared to 0.
4	ERS	0	R/(W)*1	Error Signal Status
				Indicates that the status of an error signal returned from the receiving end at reception
				[Setting condition]
				When the low level of the error signal is sampled
				[Clearing condition]
				When 0 is written to ERS after reading ERS = 1
				The ERS flag is not affected and retains its previous state when the TE bit in SCR is cleared to 0.

- [1] Clear the TRS bit in ICCR to 0 to switch from transmit mode to receive mode. Clear the ACKB bit in ICSR to 0 (acknowledge data setting). Clear the IRIC flag to 0, then set the WAIT bit in ICMR to 1.
- [2] When ICDR is read (dummy data read), reception is started, and the receive clock is output, and data received, in synchronization with the internal clock.
- [3] The IRIC flag is set to 1 by the following two conditions. At that point, an interrupt request is issued to the CPU if the IEIC bit in ICCR is set to 1.
 - (1) The flag is set at the falling edge of the 8th clock cycle of the receive clock for 1 frame. SCL is automatically held low, in synchronization with the internal clock, until the IRIC flag is cleared.
 - (2) The flag is set at the rising edge of the 9th clock cycle of the receive clock for 1 frame. The IRTR flag is set to 1, indicating that reception of 1 frame of data has ended. The master device continues to output the receive clock for the receive data.
- [4] Read the IRTR flag in ICSR. If the IRTR flag value is 0, the wait state is cancelled by clearing the IRIC flag as described in step [6] below. If the IRTR flag value is 1 and the next receive data is the final receive data, perform the end processing described in step [7] below.
- [5] If the IRTR flag value is 1, read the ICDR receive data.
- [6] Clear the IRIC flag to 0. The reading of the ICDR flag described in step [5] and the clearing of the IRIC flag to 0 should be performed consecutively, with no interrupt processing occurring between them. During wait operation, clear the IRIC flag to 0 when the value of counter BC2 to BC0 is 2 or greater. If the IRIC flag is cleared to 0 when the value of counter BC2 to BC0 is 1 or 0, it will not be possible to determine when the transfer has completed. If condition [3]-1 is true, the master device drives SDA to low level and returns an acknowledge signal when the receive clock outputs the 9th clock cycle. Further data can be received by repeating steps [3] through [6].

[7] Set the ACKB bit in ICSR to 1 to set the acknowledge data for the final receive.

- [8] Wait for at least 1 clock cycle after the IRIC flag is set to 1 and then wait for the rising edge of the 1st clock cycle of the next receive data.
- [9] Set the TSR bit in ICCR to 1 to switch from the receive mode to the transmit mode. The TSR bit setting value at this point becomes valid when the rising edge of the next 9th clock cycle is input.
- [10] Read the ICDR receive data.
- [11] Clear the IRIC flag to 0. As in step [6], read the ICDR flag and clear the IRIC flag to 0 consecutively, with no interrupt processing occurring between them. During wait operation, clear the IRIC flag to 0 when the value of counter BC2 to BC0 is 2 or greater.
- [12] The IRIC flag is set to 1 by the following two conditions.

The differences between boot mode and user program mode are shown in table 20.1.

Figure 20.3 shows the operation flow for boot mode and figure 20.4 shows that for user program mode.

Figure 20.2 Flash Memory State Transitions

Table 20.1 Differences between Boot Mode and User Program Mode

	Boot Mode	User Program Mode
Total erase	Yes	Yes
Block erase	No	Yes
Programming control program*	Program/program-verify	Program/program-verify/erase/ erase-verify/emulation
	· · · · · · · · · · · · · · · · · · ·	1 1 1 10

Note: * To be provided by the user, in accordance with the recommended algorithm.

EB0	H'000000	H'000001	H'000002	- Programming unit: 128 bytes	H'00007F
Erase unit	\approx	1 	1 1 1	1 1 1	
4 KDytes		1 	1 1 1	 	H'000FFF
EB1	H'001000	H'001001	H'001002	← Programming unit: 128 bytes →	H'00107F
Erase unit	\approx	1	1 1 1		- 7
4 Kbytes		1	 	 	H'001FFF
EB2	H'002000	H'002001	H'002002	← Programming unit: 128 bytes →	H'00207F
Erase unit	\approx	1	1	1	- 2
4 kbytes		1	1 1 1	 	H'002FFF
EB3	H'003000	H'003001	H'003002	← Programming unit: 128 bytes →	H'00307F
Erase unit	\approx	1	1	1	
4 kbytes		1			H'003FFF
EB4	H'004000	H'004001	H'004002	← Programming unit: 128 bytes →	H'00407F
Erase unit	~	1	1		2
4 kbytes			1 1		H'004FFF
EB5	H'005000	H'005001	H'005002	- Programming unit: 128 bytes -	H'00507F
Erase unit	~		1		2
4 kbytes		1	1		H'005FFF
EB6	H'006000	H'006001	H'006002	- Programming unit: 128 bytes -	H'00607E
Erase unit	*	1 1 1	 		- 2
4 kbytes		1 1 1	1 1 1	! ! !	H'006FFF
EB7	H'007000	H'007001	H'007002	Programming unit: 128 bytes ->	H'00707F
Erase unit	\approx	1	11007002	 	
4 kbytes	_	 	1 1 1	 	H'007FFF
EB8	H'008000	H'008001	H'008002	Programming unit: 128 bytes ->	H'00807F
Erase unit				 	2
32 kbytes	_	 	1 1 1	 	H'00FFFF
EB9	H'010000	H'010001	H'010002	- Programming unit: 128 bytes -	H'01007E
Erase unit		1		· · · · · · · · · · · · · · · · · · ·	2
64 kbytes		 	1 	 	H'01FFFF
EB10	H'020000	H'020001	H'020002	- Programming unit: 128 bytes -	H'02007F
Erase unit		1	1		
64 kbytes	<u> </u>	I I I	1 1 1	<u> </u> 	H'02FFFF
EB11	H,030000	H'030001	H'030003	- Programming unit: 128 bytes	H'03007F
Erase unit		11030001	11030002		: 2
64 kbytes	<u> </u>	I I	I I	 	H'03FFFF
EB12	1 110 40000				
Erase unit	H'040000	H'040001	H'040002	- Programming unit: 128 bytes -	H104007F
64 kbytes	٦Ĕ				
		1	!		, п∪4FFFF
EP12	1.00000000	LUOFOOO	LUOFOOD		
EB13 Frase unit	H'050000	H'050001	H'050002	← Programming unit: 128 bytes →	H'05007F

Figure 20.5 Block Configuration of 384-kbyte Flash Memory

Section 24 Power-Down Modes

• N	ISTPCRC			
Bit	Bit Name	Initial Value	R/W	Target Module
7	MSTPC7	1	R/W	Serial communication interface 3 (SCI_3)
6	MSTPC6 ^{*1}	1	R/W	
5	MSTPC5	1	R/W	D/A converter ^{*4}
4	MSTPC4	1	R/W	PC break controller (PBC)
3	MSTPC3	1	R/W	IEBus controller (IEB)*5
2	MSTPC2*1	1	R/W	
1	MSTPC1*1	1	R/W	
0	MSTPC0 ^{*1}	1	R/W	

Notes: 1. Bits MSTPA3, MSTPA2, MSTPB5, MSTPB2 to MSTPB0, MSTPC6, MSTPC2 to MSTPC0 are readable/writable. The initial value of them is 1. The write value should always be 1.

- 2. Supported only by the H8S/2239 Group.
- 3. Not available in the H8S/2237 Group and H8S/2227 Group.
- 4. Not available in the H8S/2227 Group.
- 5. Supported only by the H8S/2258 Group.

24.2 Medium-Speed Mode

In high-speed mode, when the SCK2 to SCK0 bits in SCKCR are set to 1, the operating mode changes to medium-speed mode as soon as the current bus cycle ends. In medium-speed mode, the CPU operates on the operating clock ($\phi/2$, $\phi/4$, $\phi/8$, $\phi/16$, or $\phi/32$) specified by the SCK2 to SCK0 bits. The bus masters other than the CPU (DMAC* and DTC) also operate in medium-speed mode.

On-chip peripheral modules other than the bus masters always operate on the high-speed clock (ϕ).

In medium-speed mode, a bus access is executed in the specified number of states with respect to the bus master operating clock. For example, if $\phi/4$ is selected as the operating clock, on-chip memory is accessed in 4 states, and internal I/O registers in 8 states.

Medium-speed mode is cleared by clearing all of bits SCK2 to SCK0 to 0. A transition is made to high-speed mode and medium-speed mode is cleared at the end of the current bus cycle.

If a SLEEP instruction is executed when the SSBY bit in SBYCR is cleared to 0, and LSON bit in LPWRCR is cleared to 0, a transition is made to sleep mode. When sleep mode is cleared by an interrupt, medium-speed mode is restored.

Section 26 List of Registers

26.2 Register Bits

Register addresses and bit names of the on-chip peripheral modules are described below.

Each line covers eight bits, and 16-bit register is shown as 2 lines.

Register	Reaiste	ər
----------	---------	----

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module
MRA	SM1	SM0	DM1	DM0	MD1	MD0	DTS	Sz	DTC
SAR	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
MRB	CHNE	DISEL	_	_	_	_	_	_	
DAR	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16	
	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CRA	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
CRB	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	
	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
IECTR	IEE	IOL	DEE	СК	RE	LUEE	_	—	IEB
IECMR	_	_	_	_	_	CMD2	CMD1	CMD0	
IEMCR	SS	RN2	RN1	RN0	CTL3	CTL2	CTL1	CTL0	
IEAR1	IAR3	IAR2	IAR1	IAR0	IMD1	IMD0	_	STE	
IEAR2	IAR11	IAR10	IAR9	IAR8	IAR7	IAR6	IAR5	IAR4	
IESA1	ISA3	ISA2	ISA1	ISA0	_	_	_	_	
IESA2	ISA11	ISA10	ISA9	ISA8	ISA7	ISA6	ISA5	ISA4	
IETBFL	TBFL7	TBFL6	TBFL5	TBFL4	TBFL3	TBFL2	TBFL1	TBFL0	
IETBR	TBR7	TBR6	TBR5	TBR4	TBR3	TBR2	TBR1	TBR0	
IEMA1	IMA3	IMA2	IMA1	IMA0	_	_	_	_	
IEMA2	IMA11	IMA10	IMA9	IMA8	IMA7	IMA6	IMA5	IMA4	
IERCTL	_	_	_	_	RCTL3	RCTL2	RCTL1	RCTL0	
IERBFL	RBFL7	RBFL6	RBFL5	RBFL4	RBFL3	RBFL2	RBFL1	RBFL0	
IERBR	RBR7	RBR6	RBR5	RBR4	RBR3	RBR2	RBR1	RBR0	
IELA1	ILA7	ILA6	ILA5	ILA4	ILA3	ILA2	ILA1	ILA0	-

Rev. 6.00 Mar. 18, 2010 Page 818 of 982 REJ09B0054-0600

27.4.3 AC Characteristics

Figure 27.9 shows the test conditions for the AC characteristics.

Figure 27.9 Output Load Circuit

Table 27.41 Bus Driving Characteristics

Conditions: $V_{cc} = 2.7 \text{ V}$ to 3.6 V, $AV_{cc} = 2.7 \text{ V}$ to 3.6 V, $V_{ref} = 2.7 \text{ V}$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 \text{ V}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)*, Objective pins: SCL1 and 0 and SDA1 and 0

ltem	Symbol	Min	Тур	Max	Unit	Test Conditions					
Schmitt trigger	VT ⁻	$V_{cc} imes 0.3$	_	_	V	V_{cc} = 2.7 V to 3.6 V					
input voltage	VT⁺	_		$V_{cc} imes 0.7$	V	$V_{cc} = 2.7 \text{ V to } 3.6 \text{ V}$					
	$VT^{+} - VT^{-}$	$V_{cc} imes 0.05$		_	V	$V_{cc} = 2.7 \text{ V to } 3.6 \text{ V}$					
Input high voltage	$V_{\rm IH}$	$V_{cc} imes 0.7$		V _{cc} + 0.5	V	V_{cc} = 2.7 V to 3.6 V					
Input low voltage	V _{IL}	-0.5		$V_{cc} imes 0.3$	V	$V_{cc} = 2.7 \text{ V to } 3.6 \text{ V}$					
Output low	V _{ol}	_	_	0.5	V	$I_{\rm oL}$ = 6 mA, $V_{\rm cc}$ = 3.0 V to 3.6 V					
voltage		_	_	0.4	V	I _{oL} = 3 mA					
Input	C _{in}	_	_	20	pF	$V_{in} = 0 V$					
capacitance						f = 1 MHz					
						T _a = 25 °C					
Three states leakage current (off)	_{tsi}			1.0	μA	$V_{\rm in}$ = 0.5 V to $V_{\rm cc}$ – 0.5 V					
SCL, SDA output falling time	t _{of}	20 + 0.1 Cb		250	ns	V_{cc} = 2.7 V to 3.6 V					
Note: * <u>If th</u> Eve sup	Note: * If the A/D or D/A converter is not used, the AV_{cc} , V_{ret} and AV_{ss} pins should not be open. Even if the A/D or D/A converter is not used, connect the AV_{cc} and V_{ret} pins to V_{cc} and supply 2.0 V to 3.6 V. In this case, $V_{cs} \leq AV_{cs}$										

27.5.3 AC Characteristics

Figure 27.8 shows the test conditions for the AC characteristics.

(1) Clock Timing

Table 27.42 lists the clock timing.

27.6.2 DC Characteristics

Table 27.51 lists the DC characteristics. Table 27.52 lists the permissible output currents.

Table 27.51 DC Characteristics (1)

Conditions (ZTAT version and F-ZTAT version):

$$\begin{split} V_{\rm cc} &= 2.7 \text{ V to } 3.6 \text{ V}, \text{AV}_{\rm cc} = 2.7 \text{ V to } 3.6 \text{ V}, \\ V_{\rm ref} &= 2.7 \text{ V to } \text{AV}_{\rm cc}, \text{V}_{\rm ss} = \text{AV}_{\rm ss} = 0 \text{ V}, \\ T_{\rm a} &= -20^{\circ}\text{C to } +75^{\circ}\text{C} \text{ (regular specifications)}, \\ T_{\rm a} &= -40^{\circ}\text{C to } +85^{\circ}\text{C} \text{ (wide-range specifications)}^{*1} \end{split}$$

Conditions (Masked ROM version):

$$\begin{split} V_{cc} &= 2.2 \text{ V to } 3.6 \text{ V}, \text{AV}_{cc} = 2.2 \text{ V to } 3.6 \text{ V}, \\ V_{ref} &= 2.2 \text{ V to } \text{AV}_{cc}, \text{V}_{ss} = \text{AV}_{ss} = 0 \text{ V}, \\ T_a &= -20^{\circ}\text{C to } +75^{\circ}\text{C} \text{ (regular specifications)}, \\ T_a &= -40^{\circ}\text{C to } +85^{\circ}\text{C} \text{ (wide-range specifications)}^{*1} \end{split}$$

Teet

Item		Symbol	Min	Тур	Мах	Unit	Conditions
Schmitt trigger	IRQ0 to IRQ7	VT	$V_{cc} imes 0.2$	_	_	V	
input voltage		VT⁺	_	_	$V_{cc} \times 0.8$	V	—
		VT⁺ – VT⁻	$V_{cc} \times 0.07$	_	—	V	ZTAT version, masked ROM version
		$VT^{+} - VT^{-}$	$V_{cc} imes 0.05$	_	_	V	F-ZTAT version
Input high voltage	RES, STBY, NMI, MD2 to MD0, FWE	V _{IH}	$V_{cc} \times 0.9$	_	V _{cc} + 0.3	V	
	EXTAL, Ports 1, 3, 7, and A to G	-	$V_{cc} \times 0.8$	_	V _{cc} + 0.3	V	
	Ports 4 ^{*5} and 9	-	$V_{cc} \times 0.8$	_	AV _{cc} + 0.3 ^{*5}	V	—
Input low voltage	RES, STBY, FWE, MD2 to MD0	V _{IL}	-0.3	_	$V_{cc} \times 0.1$	V	
	NMI, EXTAL, Ports 1, 3, 4, 7, 9, and A to G	-	-0.3	—	$V_{cc} imes 0.2$	V	_
Output high	All output pins	V _{OH}	$V_{cc} - 0.5$	_		V	I _{oH} = -200 μA
voltage			V _{cc} – 1.0	_	—	V	I _{он} = -1 mA ^{*2}
Output low voltage	All output pins	V _{ol}	_	_	0.4	V	$I_{oL} = 0.4 \text{ mA}$
					0.4	V	$I_{oL} = 0.8 \text{ mA}^{*2}$

ltem		Symbol	Min	Тур	Max	Unit	Test Conditions
Erase	Wait time after SWE1 bit setting ^{*1}	t _{sswe}	1	1	—	μs	
	Wait time after ESU1 bit setting ^{*1}	t _{sesu}	100	100	—	μs	
	Wait time after E1 bit setting ^{*1≉₅}	t _{se}	10	10	100	ms	
	Wait time after E1 bit clear ^{*1}	t _{ce}	10	10	_	μs	
	Wait time after ESU1 bit clear ^{*1}	t _{cesu}	10	10	_	μs	
	Wait time after EV1 bit setting ^{*1}	t _{sev}	20	20	_	μs	
	Wait time after H'FF dummy write ^{*1}	t _{sevr}	2	2	_	μs	
	Wait time after EV1 bit clear ^{*1}	t _{cev}	4	4	—	μs	
	Wait time after SWE1 bit clear	t_{cswe}	100	100		μs	
	Maximum erase count*1	*⁵N		_	100	Times	

Notes: 1. Make each time setting in accordance with the program/program-verify flowchart or erase/erase-verify flowchart.

- 2. Programming time per 128 bytes (Shows the total period for which the P1 bit in the flash memory control register 1 (FLMCR1) is set. It does not include the program verification time.)
- 3. Block erase time (Shows the total period for which the E1 bit in FLMCR1 is set. It does not include the erase verification time.)
- 4. Maximum programming time value $t_p(max) =$ Wait time after P1 bit setting $(t_{sp}) \times$ maximum program count (N) $(t_{sp30} + t_{sp10}) \times 6 + (t_{sp200}) \times 994$
- Relationship among the maximum erase time (t_E (max)), the wait time after E1 bit setting (t_{se}), and the maximum erase count (N) is shown below.
 t_E (max) = Wait time after E1 bit setting (t_{se}) × maximum erase count (N)
- 6. The minimum times that all characteristics after reprogramming are guaranteed. (The range between 1 and a minimum value is guaranteed.)
- 7. Reference value at 25°C. (Normally, it is a reference that rewriting is enabled up to this value.)
- 8. Data hold characteristics are when reprogramming is performed within the range of specifications including a minimum value.

27.7.3 Bus Timing

Figures 27.14 to 27.19 show the bus timing.

Figure 27.14 Basic Bus Timing (Two-State Access)