

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	H8S/2000
Core Size	16-Bit
Speed	13MHz
Connectivity	I ² C, SCI, SmartCard
Peripherals	POR, PWM, WDT
Number of I/O	72
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 6x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BFQFP
Supplier Device Package	100-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df2258fa13iv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions may occur due to the false recognition of the pin state as an input signal. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

 The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

Figure 11.34	Input Capture Input Signal Timing	
Figure 11.35	Counter Clear Timing (Compare Match)	
Figure 11.36	Counter Clear Timing (Input Capture)	
Figure 11.37	Buffer Operation Timing (Compare Match)	
Figure 11.38	Buffer Operation Timing (Input Capture)	
Figure 11.39	TGI Interrupt Timing (Compare Match)	
Figure 11.40	TGI Interrupt Timing (Input Capture)	
Figure 11.41	TCIV Interrupt Setting Timing	
Figure 11.42	TCIU Interrupt Setting Timing	
Figure 11.43	Timing for Status Flag Clearing by CPU	
Figure 11.44	Timing for Status Flag Clearing by DTC/DMAC Activation	
Figure 11.45	Phase Difference, Overlap, and Pulse Width in Phase Counting Mode.	
Figure 11.46	Contention between TCNT Write and Clear Operations	
Figure 11.47	Contention between TCNT Write and Increment Operations	
Figure 11.48	Contention between TGR Write and Compare Match	
Figure 11.49	Contention between Buffer Register Write and Compare Match	
Figure 11.50	Contention between TGR Read and Input Capture	437
Figure 11.51	Contention between TGR Write and Input Capture	
Figure 11.52	Contention between Buffer Register Write and Input Capture	
Figure 11.53	Contention between Overflow and Counter Clearing	
Figure 11.54	Contention between TCNT Write and Overflow	

Section 12 8-Bit Timers

Figure 12.1	Block Diagram of 8-Bit Timer Module	442
Figure 12.2	Example of Pulse Output	453
Figure 12.3	Count Timing for Internal Clock Input	453
Figure 12.4	Count Timing for External Clock Input	454
Figure 12.5	Timing of CMF Setting	454
Figure 12.6	Timing of Timer Output	455
Figure 12.7	Timing of Compare-Match Clear	455
Figure 12.8	Timing of Clearing by External Reset Input	456
Figure 12.9	Timing of OVF Setting	456
Figure 12.10	Contention between TCNT Write and Clear	459
Figure 12.11	Contention between TCNT Write and Increment	460
Figure 12.12	Contention between TCOR Write and Compare-Match	460

Section 13 Watchdog Timer (WDT)

Figure 13.1	Block Diagram of WDT_0 (1)	466
Figure 13.1	Block Diagram of WDT_1 (2)	467
Figure 13.2	Watchdog Timer Mode Operation	474

Table 22.2	Socket Adapters	758
Table 22.3	Mode Selection in PROM Mode	759
Table 22.4	DC Characteristics in PROM Mode	
Table 22.5	AC Characteristics in PROM Mode	

Section 23 Clock Pulse Generator

Table 23.1	Damping Resistance Value	771
Table 23.2	Crystal Resonator Characteristics	771
Table 23.3	External Clock Input Conditions (1) (H8S/2258 Group)	772
Table 23.3	External Clock Input Conditions (2) (H8S/2238B, H8S/2236B)	773
Table 23.3	External Clock Input Conditions (3) (H8S/2238R, H8S/2236R)	773
Table 23.3	External Clock Input Conditions (4) (H8S/2237 Group, H8S/2227 Group)	774
Table 23.3	External Clock Input Conditions (5) (H8S/2239 Group)	774
Table 23.4	External Clock Input Conditions (Duty Adjustment Circuit Unused) (1)	
	(H8S/2258 Group)	775
Table 23.4	External Clock Input Conditions (Duty Adjustment Circuit Unused) (2)	
	(H8S/2238B, H8S/2236B)	775
Table 23.4	External Clock Input Conditions (Duty Adjustment Circuit Unused) (3)	
	(H8S/2238R, H8S/2236R)	776
Table 23.4	External Clock Input Conditions (Duty Adjustment Circuit Unused) (4)	
	(H8S/2237 Group, H8S/2227 Group)	776
Table 23.4	External Clock Input Conditions (Duty Adjustment Circuit Unused) (5)	
	(H8S/2239 Group)	777

Section 24 Power-Down Modes

Table 24.1	LSI Internal States in Each Mode	
Table 24.2	Low Power Dissipation Mode Transition Conditions	786
Table 24.3	Oscillation Settling Time Settings	793
Table 24.4	φ Pin States in Respective Processes	800

Section 27 Electrical Characteristics

Table 27.1	Absolute Maximum Ratings	844
Table 27.2	DC Characteristics (1)	845
Table 27.2	DC Characteristics (2)	847
Table 27.2	DC Characteristics (3)	849
Table 27.3	Permissible Output Current	851
Table 27.4	Bus Driving Characteristics	852
Table 27.5	Clock Timing	854
Table 27.6	Control Signal Timing	855
Table 27.7	Bus Timing	856

		Pin No.				
Туре	Symbol	TFP-100B TFP-100B TFP-100G TFP-100GV FP-100B FP-100BV	/ FP-100A ^{*3} FP-100AV ^{*3}	BP-112 ^{*1} BP-112V ^{*1} TBP-112A ^{*4} TBP-112AV ^{*4}	-	Function
8-bit timer	TMO3 to TMO0	88 to 85	91 to 88	A7, A6, B7, C6	Output	Compare-match output pins.
	TMCI23 TMCI01	89 90	92 93	B6 D6	Input	Pins for external clock input to the counter.
	TMRI23 TMRI01	89 90	92 93	B6 D6	Input	Counter reset input pins.
Watchdog timer (WDT	BUZZ)	74	77	B11	Output	This pin outputs the pulse that is divided by watchdog timer.
Serial communi- cation interface	TxD3 TxD2 TxD1 TxD0	83 31 79 76	86 34 82 79	D7 J4 A9 A10	Output	Data output pins.
(SCI)/ smart card interface	RxD3 RxD2 RxD1 RxD0	84 32 80 77	87 35 83 80	C7 K4 C8 D8	Input	Data input pins.
	SCK3 SCK2 SCK1 SCK0	85 33 81 78	88 36 84 81	A7 L4 B8 B9	Input/ Output	Clock input/output pins. SCK1 outputs NMOS push/pull.
l ² C bus interface (IIC) (optional)	SCL1 SCL0	79 81	82 84	A9 B8	Input/ Output	I ² C clock input/output pins. These pins drive bus. The output of SCL0 is NMOS open drain.
	SDA1 SDA0	78 80	81 83	B9 C8	Input/ Output	I ² C data input/output pins. These pins drive bus. The output of SDA0 is NMOS open drain.
A/D converter	AN7 to AN0	52 to 45	55 to 48	L10, L9, K11, K10, K9, K8, J8, H7	Input	Analog input pins for the A/D converter.
	ADTRG	72	75	D9	Input	Pin for input of an external trigger to start A/D conversion.

2.2 CPU Operating Modes

The H8S/2000 CPU has two operating modes: normal and advanced. Normal mode supports a maximum 64-kbyte address space. Advanced mode supports a maximum 16-Mbyte total address space. The mode is selected by the mode pins.

2.2.1 Normal Mode

In normal mode, the exception vector table and stack have the same structure as the H8/300 CPU.

Address Space

Linear access is provided to a maximum address space of 64 kbytes.

• Extended Registers (En)

The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-bit segments of 32-bit registers. When En is used as a 16-bit register it can contain any value, even when the corresponding general register (Rn) is used as an address register. If the general register is referenced in the register indirect addressing mode with pre-decrement (@–Rn) or post-increment (@Rn+) and a carry or borrow occurs, however, the value in the corresponding extended register (En) will be affected.

Instruction Set

All instructions and addressing modes can be used. Only the lower 16 bits of effective addresses (EA) are valid.

Exception Vector Table and Memory Indirect Branch Addresses

In normal mode the top area starting at H'0000 is allocated to the exception vector table. One branch address is stored per 16 bits. Figure 2.1 shows the structure of the exception vector table in normal mode. For details of the exception vector table, see section 4, Exception Handling.

The memory indirect addressing mode (@@aa:8) employed in the JMP and JSR instructions uses an 8-bit absolute address included in the instruction code to specify a memory operand that contains a branch address. In normal mode the operand is a 16-bit word operand, providing a 16-bit branch address. Branch addresses can be stored in the top area from H'0000 to H'00FF. Note that this area is also used for the exception vector table.

Stack Structure

In normal mode, when the program counter (PC) is pushed onto the stack in a subroutine call, and the PC, condition-code register (CCR) and extended control register (EXR) are pushed onto the stack in exception handling, they are stored as shown in figure 2.2. EXR is not pushed onto the stack in interrupt control mode 0. For details, see section 4, Exception Handling.

Note: Normal mode is not available in this LSI.

Instruction Size ^{*1} F		Size ^{*1}	Function			
MOV B/W/L		B/W/L	$(EAs) \rightarrow Rd, Rs \rightarrow (EAd)$ Moves data between two general registers or between a general register and memory, or moves immediate data to a general register.			
MOVFPE		В	Cannot be used in this LSI.			
MOVTPE		В	Cannot be used in this LSI.			
POP W/L $@SP+ \rightarrow Rn$ Pops a general register from the stack. POP.W Rn is identical to @SP+, Rn. POP.L ERn is identical to MOV.L $@SP+$, ERn.			$@SP+ \rightarrow Rn$ Pops a general register from the stack. POP.W Rn is identical to MOV.W @SP+, Rn. POP.L ERn is identical to MOV.L $@SP+$, ERn.			
PUSHW/L $Rn \rightarrow @-SP$ Pushes a general register onto the stack. PUSH.W Rn is in MOV.W Rn, $@-SP$. PUSH.L ERn is identical to MOV.L EF		$Rn \rightarrow @-SP$ Pushes a general register onto the stack. PUSH.W Rn is identical to MOV.W Rn, @-SP. PUSH.L ERn is identical to MOV.L ERn, @-SP.				
LDM ^{*2}		L	@SP+ \rightarrow Rn (register list) Pops two or more general registers from the stack.			
$ \begin{array}{ccc} STM^{*_2} & L & & Rn \mbox{ (register list)} \to @-SP \\ & & Pushes two or more general registers onto the stack. \end{array} $		Rn (register list) \rightarrow @–SP Pushes two or more general registers onto the stack.				
Notes: 1.	Ref	ers to the	operand size.			
	B:	Byte				
	W:	Word				
	L:	Longwor	d			

 Table 2.3
 Data Transfer Instructions

2. Only register ER0 to ER6 should be used when using the STM/LDM instruction.

Figure 3.7 H8S/2235 and H8S/2225 Memory Map in Each Operating Mode

Renesas

Figure 6.1 Block Diagram of PC Break Controller

6.2 **Register Descriptions**

The PC break controller has the following registers.

- Break address register A (BARA)
- Break address register B (BARB)
- Break control register A (BCRA)
- Break control register B (BCRB)

6.2.1 Break Address Register A (BARA)

BARA is a 32-bit readable/writable register that specifies the channel A break address.

Bit	Bit Name	Initial Value	R/W	Description
31 to 24	—	Undefined	—	Reserved
				These bits are read as an undefined value and cannot be modified.
23 to 0	BAA23 to BAA0	All 0	R/W	Break Address 23 to 0
				These bits set the channel A PC break address.

7.2 Input/Output Pins

Table 7.1 summarizes the pins of the bus controller.

Table 7.1	Pin Configuration
-----------	-------------------

Name	Symbol	I/O	Function
Address strove	ĀS	Output	Strobe signal indicating that address output on address bus is enabled.
Read	RD	Output	Strobe signal indicating that external space is being read.
High write	HWR	Output	Strobe signal indicating that external space is to be written, and upper half (D15 to D8) of data bus is enabled.
Low write	LWR	Output	Strobe signal indicating that external space is to be written, and lower half (D7 to D0) of data bus is enabled.
Chip select 7 to 0	$\overline{\text{CS7}}$ to $\overline{\text{CS0}}$	Output	Strobe signal indicating that areas 7 to 0 are selected.
Wait	WAIT	Input	Wait request signal when accessing external 3-state access space.
Bus request	BREQ	Input	Request signal that releases bus to external device.
Bus request acknowledge	BACK	Output	Acknowledge signal indicating that bus has been released.

7.3 **Register Descriptions**

The following shows the registers of the bus controller.

- Bus width control register (ABWCR)
- Access state control register (ASTCR)
- Wait control register H (WCRH)
- Wait control register L (WCRL)
- Bus control register H (BCRH)
- Bus control register L (BCRL)
- Pin function control register (PFCR)

Renesas

ETCRB is decremented by 1 after every block transfer, and when the count reaches H'0000 the DTE bit in DMABCRL is cleared and transfer ends. If the DTIE bit in DMABCRL is set to 1 at this point, an interrupt request is sent to the CPU or DTC.

Figure 8.16 shows the operation flow in block transfer mode.

Figure 8.16 Operation Flow in Block Transfer Mode

Rev. 6.00 Mar. 18, 2010 Page 254 of 982 REJ09B0054-0600

8.5.10 DMA Transfer (Single Address Mode) Bus Cycles

Single Address Mode (Read): Figure 8.27 shows a transfer example in which $\overline{\text{TEND}}$ output is enabled and byte-size single address mode transfer (read) is performed from external 8-bit, 2-state access space to an external device.

Figure 8.27 Example of Single Address Mode Transfer (Byte Read)

9.5 Operation

Register information is stored in on-chip RAM. When activated, the DTC reads register information in on-chip RAM and transfers data. After the data transfer, the DTC writes updated register information back to the memory.

The pre-storage of register information in memory makes it possible to transfer data over any required number of channels. The transfer mode can be specified as normal, repeat, and block transfer mode. Setting the CHNE bit in MRB to 1 makes it possible to perform a number of transfers with a single activation source (chain transfer).

The 24-bit SAR designates the DTC transfer source address, and the 24-bit DAR designates the transfer destination address. After each transfer, SAR and DAR are independently incremented, decremented, or left fixed depending on its register information.

Figure 9.5 shows the flowchart of DTC operation.

Figure 9.5 Flowchart of DTC Operation

Renesas

Table 11.26	TIOR_4
-------------	--------

				Description							
Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	TGRA_4 Function [*]	TIOCA4 Pin Function*						
0	0	0	0	Output	Output disabled						
			1	compare register	Initial output is 0 output						
				register	0 output at compare match						
		1	0	Initial output is 0 output							
				1 output at compare match							
			1	_	Initial output is 0 output						
					Toggle output at compare match						
	1	0	0	_	Output disabled						
			1	_	Initial output is 1 output						
				0 output at compare match							
		1	0	Initial output is 1 output							
					1 output at compare match						
			1	-	Initial output is 1 output						
					Toggle output at compare match						
1	0	0	0	Input	Capture input source is TIOCA4 pin						
				capture Input capture at rising edge							
			1		Capture input source is TIOCA4 pin						
					Input capture at falling edge						
		1	×	_	Capture input source is TIOCA4 pin						
				_	Input capture at both edges						
	1	×	×	Capture input source is TGRA_3 compa match/input capture							
					Input capture at generation of TGRA_3 compare match/input capture						

Legend: x: Don't care

Note: * Not available in the H8S/2227 Group.

11.10.9 Contention between TGR Write and Input Capture

If the input capture signal is generated in the T_2 state of a TGR write cycle, the input capture operation takes precedence and the write to TGR is not performed.

Figure 11.51 shows the timing in this case.

Figure 11.51 Contention between TGR Write and Input Capture

11.10.10 Contention between Buffer Register Write and Input Capture

If the input capture signal is generated in the T_2 state of a buffer register write cycle, the buffer operation takes precedence and the write to the buffer register is not performed.

Figure 11.52 shows the timing in this case.

• Programmer mode

Flash memory can be programmed/erased in programmer mode using a PROM programmer, as well as in on-board programming mode.

• Emulation function for flash memory in RAM

The real-time emulation for programming of flash memory is possible by overlapping the flash memory to a part of RAM.

Figure 20.1 Block Diagram of Flash Memory

20.2 Mode Transitions

When the mode pins and the FWE pin are set in the reset state and a reset-start is executed, this LSI enters an operating mode as shown in figure 20.2. In user mode, flash memory can be read but not programmed or erased.

The boot, user program and programmer modes are provided as modes to write and erase the flash memory.

20.5.6 Flash Memory Power Control Register (FLPWCR)

FLPWCR enables/disables transition to power-down modes for the flash memory when this LSI enters sub-active mode.

Bit	Bit Name	Initial Value	R/W	Description				
7	PDWND	0	R/W	Power Down Disable				
				Enables/disables transition to power-down modes for the flash memory when this LSI enters sub-active mode.				
				0: Transition to power-down modes for the flash memory enabled.				
				1: Transition to power-down modes for the flash memory disabled.				
6 to		All 0	R	Reserved				
0				These bits are always read as 0.				

20.5.7 Serial Control Register X (SCRX)

SCRX performs register access control.

Bit	Bit Name	Initial Value	R/W	Description
7	_	0	R/W	Reserved
				Only 0 should be written to this bit.
6	IICX1	0	R/W	I ² C Transfer Select 1, 0
5	IICX0	0	R/W	For details, see section 16.3.5, Serial Control Register X (SCRX).
4	IICE	0	R/W	I ² C Master Enable
				For details, see section 16.3.5, Serial Control Register X (SCRX).

20.8.2 Erase/Erase-Verify

When erasing flash memory, the erase/erase-verify flowchart shown in figure 20.12 should be followed.

- 1. Prewriting (setting erase block data to all 0) is not necessary.
- 2. Erasing is performed in block units. Make only a single-bit specification in the erase block register 1 and 2 (EBR1 and EBR2). To erase multiple blocks, each block must be erased in turn.
- 3. The time during which the E1 bit is set to 1 is the flash memory erase time.
- 4. The watchdog timer (WDT) is set to prevent overprogramming due to program runaway, etc. Set a value greater than $(t_{sesu} + t_{se} + t_{cesu})$ ms as the WDT overflow period.
- 5. For a dummy write to a verify address, write 1-byte data H'FF to an address whose lower 1 bit are B'0. Verify data can be read in words from the address to which a dummy write was performed.
- 5. If the read data is not erased successfully, set erase mode again, and repeat the erase/erase-verify sequence as before. The maximum number of repetitions of the erase/erase-verify sequence is (N).

Table 27.22 I²C Bus Timing

Conditions: $V_{cc} = 2.7$ V to 3.6 V, $V_{ss} = 0$ V, $\phi = 5$ MHz to maximum operating frequency, $T_a = -20^{\circ}$ C to $+75^{\circ}$ C

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
SCL input cycle time	t _{scl}	12 t _{cyc}		_	ns	Figure 27.34
SCL input high pulse width	t _{sclh}	3 t _{cyc}		_	ns	_
SCL input low pulse width	t _{scll}	5 t _{cyc}		_	ns	
SCL, SDA input rise time	t _{sr}	_		7.5 t _{cyc} *	ns	
SCL, SDA input fall time	t _{sr}	_		300	ns	
SCL, SDA input spike pulse delete time	t _{sp}		_	1 t _{cyc}	ns	_
SDA input bus free time	t _{BUF}	5 t _{cyc}		_	ns	—
Operating condition input hold time	t _{stah}	3 t _{cyc}	_		ns	_
Retransmitting operating condition input setup time	t _{stas}	3 t _{cyc}	_		ns	_
Stop condition input setup time	t _{stos}	3 t _{cyc}	_	—	ns	_
Data input setup time	t _{sdas}	0.5 t _{cyc}		_	ns	—
Data input hold time	t _{sdah}	0			ns	
SCL, SDA capacitor load	C _b			400	pF	_

Note: * Maximum SCL and SDA input rise time 7.5 t_{cyc} or 17.5 t_{cyc} can be selected depending on the clock that is used in the l²C module. For detail, see section 16.6, Usage Notes.

(4) Timing of On-Chip Peripheral Modules

Table 27.45 lists the timing of on-chip peripheral modules. Table 27.46 lists the I²C bus timing.

Table 27.45 Timing of On-Chip Peripheral Modules

Condition A (F-ZTAT version and masked ROM version):

$$\begin{split} V_{cc} &= 2.7 \text{ V to } 3.6 \text{ V}, \text{AV}_{cc} = 2.7 \text{ V to } 3.6 \text{ V}, \\ V_{ref} &= 2.7 \text{ V to } \text{AV}_{cc}, \text{V}_{ss} = \text{AV}_{ss} = 0 \text{ V}, \\ \phi &= 32.768 \text{ kHz}, 2 \text{ to } 13.5 \text{ MHz}, \\ T_a &= -20^{\circ}\text{C to } +75^{\circ}\text{C} \text{ (regular specifications)}, \\ T_a &= -40^{\circ}\text{C to } +85^{\circ}\text{C} \text{ (wide-range specifications)} \end{split}$$

Condition B (F-ZTAT version):

$$\begin{split} V_{cc} &= 2.2 \ V \ to \ 3.6 \ V, \ AV_{cc} = 2.2 \ V \ to \ 3.6 \ V, \\ V_{ref} &= 2.2 \ V \ to \ AV_{cc}, \ V_{ss} = AV_{ss} = 0 \ V, \\ \varphi &= 32.768 \ kHz, \ 2 \ to \ 6.25 \ MHz, \\ T_a &= -20^\circ C \ to \ +75^\circ C \ (regular \ specifications) \end{split}$$

Condition C (Masked ROM version):
$$V_{cc} = 2.2 \text{ V}$$
 to 3.6 V, $AV_{cc} = 2.2 \text{ V}$ to 3.6 V,
 $V_{ref} = 2.2 \text{ V}$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 \text{ V}$,
 $\phi = 32.768 \text{ kHz}$, 2 to 6.25 MHz,
 $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications),
 $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

				Condition A		Con	ditions B, C		Test
Item		Symbol	Min	Max	Min	Max	Unit	Conditions	
I/O port*	Output data	Output data delay time		_	100	_	150	ns	Figure 27.24
	Input data se	etup time	t _{PRS}	50		80	_		
	Input data ho	old time	t _{PRH}	50	_	80	—	_	
TPU	Timer output delay time		t _{TOCD}	_	100	_	150	ns	Figure 27.25
	Timer input setup time		t _{rics}	40		60	—		
Timer clock input se time		nput setup	$t_{\rm TCKS}$	40	_	60	_	ns	Figure 27.26
	Timer clock	Single edge	t _{тскwн}	1.5	_	1.5	_	t _{cyc}	_
	pulse width	Both edges	t _{TCKWL}	2.5	_	2.5	_	_	
TMR	Timer output delay time		t _{mod}	_	100	_	150	ns	Figure 27.27
	Timer reset input setup time		\mathbf{t}_{TMRS}	50	_	80	—	ns	Figure 27.29
	Timer clock i time	nput setup	$\mathbf{t}_{_{\mathrm{TMCS}}}$	50		80		ns	Figure 27.28

Section 27 Electrical Characteristics

		Condi	tion A	n A Conditio		on B Condition C			Test
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
External clock output stabilization delay time	t	500	_	500	_	1000	_	μs	Figure 27.11
Subclock oscillation stabilization time	t _{osc3}		2		2		3	S	
Subclock oscillator frequency	f _{sub}	32.768	32.768	32.768	32.768	32.768	32.768	kHz	
Subclock ($\phi_{_{SUB}}$) cycle time	t _{sub}	30.5	30.5	30.5	30.5	30.5	30.5	μs	-

