

Welcome to E-XFL.COM

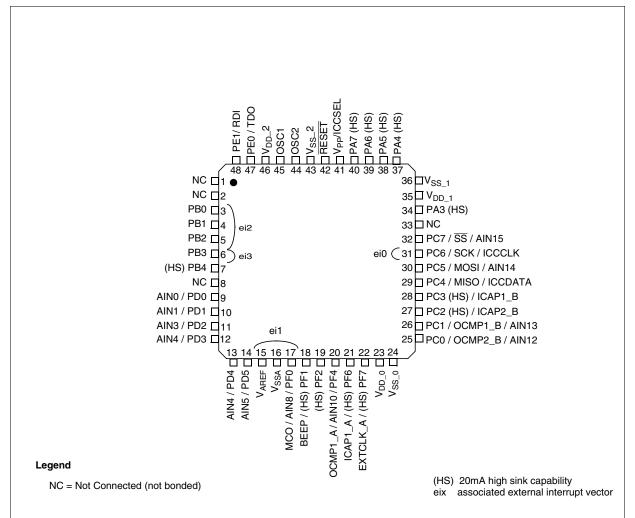
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	384 x 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324lk2t6


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 PIN DESCRIPTION

57

Figure 2. 48-Pin LQFP 7x7 Device Pinout

Address	Block	Register Label	Register Name	Reset Status	Remarks
0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh	TIMER A	TACR2 TACR1 TACSR TAIC1HR TAIC1LR TAOC1HR TAOC1LR TACHR TACHR TACLR TAACHR TAACLR TAIC2HR TAIC2LR TAIC2LR TAOC2LR	Timer A Control Register 2 Timer A Control Register 1 Timer A Control/Status Register ³⁾⁴⁾ Timer A Input Capture 1 High Register Timer A Input Capture 1 Low Register Timer A Output Compare 1 High Register Timer A Output Compare 1 Low Register Timer A Counter High Register Timer A Counter Low Register Timer A Alternate Counter High Register Timer A Alternate Counter Low Register Timer A Input Capture 2 High Register ³⁾ Timer A Input Capture 2 Low Register ⁴⁾ Timer A Output Compare 2 Low Register ⁴⁾	00h 00h xxxx x0xxb xxh 80h 00h FFh FCh FCh FCh xxh xxh 80h 00h	R/W R/W Read Only Read Only R/W Read Only Read Only
0040h		4	Reserved Area (1 Byte)		
0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Ch 004Ch 004Fh	TIMER B	TBCR2 TBCR1 TBCSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBIC2LR	Timer B Control Register 2 Timer B Control Register 1 Timer B Control/Status Register Timer B Input Capture 1 High Register Timer B Input Capture 1 Low Register Timer B Output Compare 1 High Register Timer B Output Compare 1 Low Register Timer B Counter High Register Timer B Counter High Register Timer B Alternate Counter High Register Timer B Alternate Counter Low Register Timer B Input Capture 2 High Register Timer B Input Capture 2 Low Register Timer B Output Compare 2 High Register Timer B Output Compare 2 Low Register	00h 00h xxxx x0xxb xxh 80h 00h FFh FCh FCh FCh xxh xxh 80h 00h	R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only Read Only Read Only Read Only Read Only R/W
0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h	SCI	SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR SCIETPR	SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Extended Receive Prescaler Register Reserved area SCI Extended Transmit Prescaler Register	C0h xxh 00h x000 0000h 00h 00h	Read Only R/W R/W R/W R/W R/W
0058h to 006Fh			Reserved Area (24 Bytes)		
0070h 0071h 0072h	ADC	ADCCSR ADCDRH ADCDRL	Control/Status Register Data High Register Data Low Register	00h 00h 00h	R/W Read Only Read Only
0073h 007Fh			Reserved Area (13 Bytes)		

57

FLASH PROGRAM MEMORY (Cont'd)

4.5 ICP (In-Circuit Programming)

To perform ICP the microcontroller must be switched to ICC (In-Circuit Communication) mode by an external controller or programming tool using 36-pulse mode.

Depending on the ICP code downloaded in RAM, Flash memory programming can be fully customized (number of bytes to program, program locations, or selection serial communication interface for downloading).

When using an STMicroelectronics or third-party programming tool that supports ICP and the specific microcontroller device, the user needs only to implement the ICP hardware interface on the application board (see Figure 8). For more details on the pin locations, refer to the device pinout description.

4.6 IAP (In-Application Programming)

57/

This mode uses a BootLoader program previously stored in Sector 0 by the user (in ICP mode or by plugging the device in a programming tool).

This mode is fully controlled by user software. This allows it to be adapted to the user application, (user-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored, etc.). For example, it is possible to download code from the SPI, SCI, USB or CAN interface and program it in the Flash. IAP mode can be used to program any of the Flash sectors except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation.

4.7 Related Documentation

For details on Flash programming and ICC protocol, refer to the ST7 Flash Programming Reference Manual and to the ST7 ICC Protocol Reference Manual.

4.7.1 Register Description FLASH CONTROL/STATUS REGISTER (FCSR)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	0	0

This register is reserved for use by Programming Tool software. It controls the Flash programming and erasing operations.

Table 5. Flash Control/Status Register Address and Reset Value

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0029h	FCSR Reset Value	0	0	0	0	0	0	0	0

INTERRUPTS (Cont'd)

7.5 INTERRUPT REGISTER DESCRIPTION

CPU CC REGISTER INTERRUPT BITS

Read/Write

Reset Value: 111x 1010 (xAh)

7							0
1	1	11	н	10	Ν	z	С

Bit 5, 3 = 11, 10 Software Interrupt Priority

These two bits indicate the current interrupt software priority.

Interrupt Software Priority	Level	l1	10
Level 0 (main)	Low	1	0
Level 1		0	1
Level 2	★	0	0
Level 3 (= interrupt disable*)	High	1	1

These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (ISPRx).

They can be also set/cleared by software with the RIM, SIM, HALT, WFI, IRET and PUSH/POP instructions (see "Interrupt Dedicated Instruction Set" table).

*Note: TRAP and RESET events can interrupt a level 3 program.

INTERRUPT SOFTWARE PRIORITY REGISTERS (ISPRX)

Read/Write (bit 7:4 of **ISPR3** are read only) Reset Value: 1111 1111 (FFh)

	7							0
ISPR0	l1_3	10_3	l1_2	10_2	11_1	10_1	l1_0	10_0
ISPR1	11_7	10_7	l1_6	10_6	l1_5	10_5	11_4	10_4
ISPR2	11_11	10_11	11_10	10_10	l1_9	10_9	l1_8	10_8
ISPR3	1	1	1	1	11_13	10_13	11_12	10_12

These four registers contain the interrupt software priority of each interrupt vector.

 Each interrupt vector (except RESET and TRAP) has corresponding bits in these registers where its own software priority is stored. This correspondance is shown in the following table.

Vector address	ISPRx bits
FFFBh-FFFAh	I1_0 and I0_0 bits*
FFF9h-FFF8h	I1_1 and I0_1 bits
FFE1h-FFE0h	I1_13 and I0_13 bits

Each I1_x and I0_x bit value in the ISPRx registers has the same meaning as the I1 and I0 bits in the CC register.

 Level 0 can not be written (l1_x=1, l0_x=0). In this case, the previously stored value is kept. (example: previous=CFh, write=64h, result=44h)

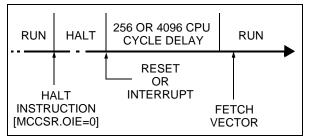
The RESET, and TRAP vectors have no software priorities. When one is serviced, the I1 and I0 bits of the CC register are both set.

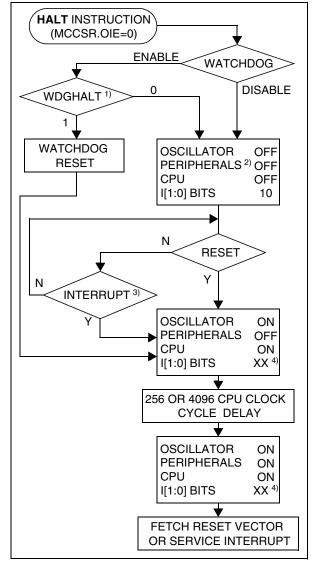
Caution: If the $I1_x$ and $I0_x$ bits are modified while the interrupt x is executed the following behaviour has to be considered: If the interrupt x is still pending (new interrupt or flag not cleared) and the new software priority is higher than the previous one, the interrupt x is re-entered. Otherwise, the software priority stays unchanged up to the next interrupt request (after the IRET of the interrupt x).

POWER SAVING MODES (Cont'd)

8.4.2 HALT MODE

The HALT mode is the lowest power consumption mode of the MCU. It is entered by executing the 'HALT' instruction when the OIE bit of the Main Clock Controller Status register (MCCSR) is cleared (see Section 10.2 on page 50 for more details on the MCCSR register).


The MCU can exit HALT mode on reception of either a specific interrupt (see Table 9, "Interrupt Mapping," on page 31) or a RESET. When exiting HALT mode by means of a RESET or an interrupt, the oscillator is immediately turned on and the 256 or 4096 CPU cycle delay is used to stabilize the oscillator. After the start up delay, the CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see Figure 25).


When entering HALT mode, the I[1:0] bits in the CC register are forced to '10b'to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately.

In HALT mode, the main oscillator is turned off causing all internal processing to be stopped, including the operation of the on-chip peripherals. All peripherals are not clocked except the ones which get their clock supply from another clock generator (such as an external or auxiliary oscillator).

The compatibility of Watchdog operation with HALT mode is configured by the "WDGHALT" option bit of the option byte. The HALT instruction when executed while the Watchdog system is enabled, can generate a Watchdog RESET (see Section 14.1 on page 140 for more details).

Notes:

1. WDGHALT is an option bit. See option byte section for more details.

2. Peripheral clocked with an external clock source can still be active.

3. Only some specific interrupts can exit the MCU from HALT mode (such as external interrupt). Refer to Table 9, "Interrupt Mapping," on page 31 for more details.

4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped.

Figure 25. HALT Mode Flow-chart

16-BIT TIMER (Cont'd)

10.3.3.3 Input Capture

In this section, the index, *i*, may be 1 or 2 because there are 2 input capture functions in the 16-bit timer.

The two 16-bit input capture registers (IC1R and IC2R) are used to latch the value of the free running counter after a transition is detected on the ICAP*i* pin (see figure 5).

	MS Byte	LS Byte
ICiR	IC <i>i</i> HR	IC <i>i</i> LR

ICiR register is a read-only register.

The active transition is software programmable through the IEDG*i* bit of Control Registers (CR*i*).

Timing resolution is one count of the free running counter: $(f_{CPU}/CC[1:0])$.

Procedure:

To use the input capture function select the following in the CR2 register:

- Select the timer clock (CC[1:0]) (see Table 17 Clock Control Bits).
- Select the edge of the active transition on the ICAP2 pin with the IEDG2 bit (the ICAP2 pin must be configured as floating input or input with pull-up without interrupt if this configuration is available).

And select the following in the CR1 register:

- Set the ICIE bit to generate an interrupt after an input capture coming from either the ICAP1 pin or the ICAP2 pin
- Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the ICAP1pin must be configured as floating input or input with pullup without interrupt if this configuration is available).

When an input capture occurs:

- ICF*i* bit is set.
- The IC*i*R register contains the value of the free running counter on the active transition on the ICAP*i* pin (see Figure 37).
- A timer interrupt is generated if the ICIE bit is set and the I bit is cleared in the CC register. Otherwise, the interrupt remains pending until both conditions become true.

Clearing the Input Capture interrupt request (i.e. clearing the ICF*i* bit) is done in two steps:

- 1. Reading the SR register while the ICF*i* bit is set.
- 2. An access (read or write) to the ICiLR register.

Notes:

- 1. After reading the IC*i*HR register, transfer of input capture data is inhibited and ICF*i* will never be set until the IC*i*LR register is also read.
- 2. The IC*i*R register contains the free running counter value which corresponds to the most recent input capture.
- 3. The 2 input capture functions can be used together even if the timer also uses the 2 output compare functions.
- 4. In One pulse Mode and PWM mode only Input Capture 2 can be used.
- 5. The alternate inputs (ICAP1 & ICAP2) are always directly connected to the timer. So any transitions on these pins activates the input capture function. Moreover if one of the ICAP*i* pins is configured as an input and the second one as an output, an interrupt can be generated if the user toggles the output pin and if the ICIE bit is set. This can be avoided if the input capture function *i* is disabled by reading the IC*i*HR (see note 1).
- 6. The TOF bit can be used with interrupt generation in order to measure events that go beyond the timer range (FFFFh).
- 7. In Flash devices, the ICAP2 registers (TAIC2HR, TAIC2LR) are not available on Timer A. The corresponding interrupts cannot be used (ICF2 is forced by hardware to 0).

16-BIT TIMER (Cont'd)

10.3.3.4 Output Compare

In this section, the index, *i*, may be 1 or 2 because there are 2 output compare functions in the 16-bit timer.

This function can be used to control an output waveform or indicate when a period of time has elapsed.

When a match is found between the Output Compare register and the free running counter, the output compare function:

- Assigns pins with a programmable value if the OCiE bit is set
- Sets a flag in the status register
- Generates an interrupt if enabled

Two 16-bit registers Output Compare Register 1 (OC1R) and Output Compare Register 2 (OC2R) contain the value to be compared to the counter register each timer clock cycle.

	MS Byte	LS Byte
OC <i>i</i> R	OC <i>i</i> HR	OC <i>i</i> LR

These registers are readable and writable and are not affected by the timer hardware. A reset event changes the OC*i*R value to 8000h.

Timing resolution is one count of the free running counter: $(f_{CPU/CC[1:0]})$.

Procedure:

To use the output compare function, select the following in the CR2 register:

- Set the OC*i*E bit if an output is needed then the OCMP*i* pin is dedicated to the output compare *i* signal.
- Select the timer clock (CC[1:0]) (see Table 17 Clock Control Bits).

And select the following in the CR1 register:

- Select the OLVL*i* bit to applied to the OCMP*i* pins after the match occurs.
- Set the OCIE bit to generate an interrupt if it is needed.

When a match is found between OCRi register and CR register:

- OCF*i* bit is set.

- The OCMP*i* pin takes OLVL*i* bit value (OCMP*i* pin latch is forced low during reset).
- A timer interrupt is generated if the OCIE bit is set in the CR1 register and the I bit is cleared in the CC register (CC).

The OC*i*R register value required for a specific timing application can be calculated using the following formula:

$$\Delta \operatorname{OC}_{iR} = \frac{\Delta t * f_{CPU}}{PRESC}$$

Where:

- Δt = Output compare period (in seconds)
- f_{CPU} = CPU clock frequency (in hertz)
- PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see Table 17 Clock Control Bits)

If the timer clock is an external clock, the formula is:

$$\Delta \text{ OC} i \text{R} = \Delta t * f_{\text{EXT}}$$

Where:

 Δt = Output compare period (in seconds)

f_{EXT} = External timer clock frequency (in hertz)

Clearing the output compare interrupt request (i.e. clearing the OCF*i* bit) is done by:

- 1. Reading the SR register while the OCF*i* bit is set.
- 2. An access (read or write) to the OCiLR register.

The following procedure is recommended to prevent the OCF*i* bit from being set between the time it is read and the write to the OC*i*R register:

- Write to the OC*i*HR register (further compares are inhibited).
- Read the SR register (first step of the clearance of the OCF*i* bit, which may be already set).
- Write to the OC*i*LR register (enables the output compare function and clears the OCF*i* bit).

16-BIT TIMER (Cont'd)

10.3.7 Register Description

Each Timer is associated with three control and status registers, and with six pairs of data registers (16-bit values) relating to the two input captures, the two output compares, the counter and the alternate counter.

CONTROL REGISTER 1 (CR1)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
ICIE	OCIE	TOIE	FOLV2	FOLV1	OLVL2	IEDG1	OLVL1

Bit 7 = ICIE Input Capture Interrupt Enable.

- 0: Interrupt is inhibited.
- 1: A timer interrupt is generated whenever the ICF1 or ICF2 bit of the SR register is set.

Bit 6 = **OCIE** *Output Compare Interrupt Enable.* 0: Interrupt is inhibited.

1: A timer interrupt is generated whenever the OCF1 or OCF2 bit of the SR register is set.

Bit 5 = **TOIE** *Timer Overflow Interrupt Enable.*

0: Interrupt is inhibited.

1: A timer interrupt is enabled whenever the TOF bit of the SR register is set.

Bit 4 = FOLV2 Forced Output Compare 2.

This bit is set and cleared by software.

- 0: No effect on the OCMP2 pin.
- 1: Forces the OLVL2 bit to be copied to the OCMP2 pin, if the OC2E bit is set and even if there is no successful comparison.

Bit 3 = FOLV1 Forced Output Compare 1.

This bit is set and cleared by software.

- 0: No effect on the OCMP1 pin.
- 1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is set and even if there is no successful comparison.

Bit 2 = OLVL2 Output Level 2.

This bit is copied to the OCMP2 pin whenever a successful comparison occurs with the OC2R register and OCxE is set in the CR2 register. This value is copied to the OCMP1 pin in One Pulse Mode and Pulse Width Modulation mode.

Bit 1 = IEDG1 Input Edge 1.

This bit determines which type of level transition on the ICAP1 pin will trigger the capture.

0: A falling edge triggers the capture.

1: A rising edge triggers the capture.

Bit 0 = **OLVL1** *Output Level 1.*

The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison occurs with the OC1R register and the OC1E bit is set in the CR2 register.

10.4 SERIAL PERIPHERAL INTERFACE (SPI)

10.4.1 Introduction

The Serial Peripheral Interface (SPI) allows fullduplex, synchronous, serial communication with external devices. An SPI system may consist of a master and one or more slaves however the SPI interface can not be a master in a multi-master system.

10.4.2 Main Features

- Full duplex synchronous transfers (on 3 lines)
- Simplex synchronous transfers (on 2 lines)
- Master or slave operation
- Six master mode frequencies (f_{CPU}/4 max.)
- f_{CPU}/2 max. slave mode frequency (see note)
- SS Management by software or hardware
- Programmable clock polarity and phase
- End of transfer interrupt flag

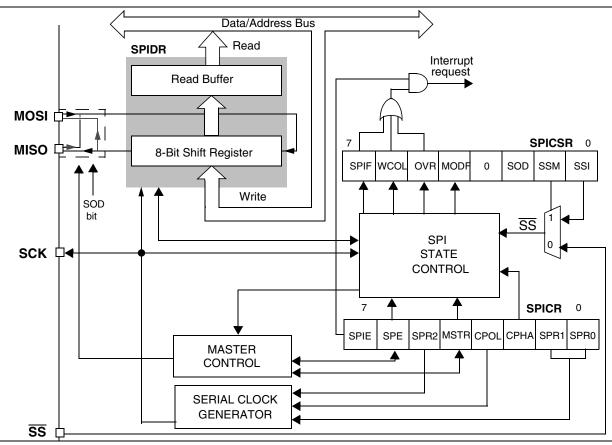
57

 Write collision, Master Mode Fault and Overrun flags

Note: In slave mode, continuous transmission is not possible at maximum frequency due to the

software overhead for clearing status flags and to initiate the next transmission sequence.

10.4.3 General Description


Figure 43 shows the serial peripheral interface (SPI) block diagram. There are 3 registers:

- SPI Control Register (SPICR)
- SPI Control/Status Register (SPICSR)
- SPI Data Register (SPIDR)

The SPI is connected to external devices through 3 pins:

- MISO: Master In / Slave Out data
- MOSI: Master Out / Slave In data
- SCK: Serial Clock out by SPI masters and input by SPI slaves
- SS: Slave select:

This input signal acts as a 'chip select' to let the SPI master communicate with slaves individually and to avoid contention on the data lines. Slave SS inputs can be driven by standard I/O ports on the master MCU.

SERIAL PERIPHERAL INTERFACE (Cont'd)

10.4.3.2 Slave Select Management

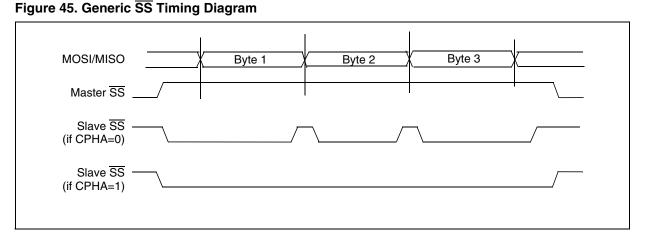
As an alternative to using the \overline{SS} pin to control the Slave Select signal, the application can choose to manage the Slave Select signal by software. This is configured by the SSM bit in the SPICSR register (see Figure 46)

In software management, the external SS pin is free for other application uses and the internal SS signal level is driven by writing to the SSI bit in the SPICSR register.

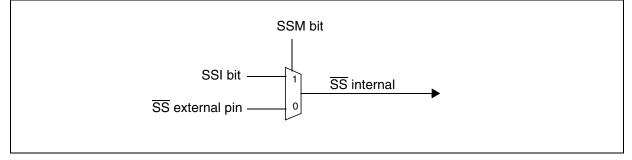
In Master mode:

57/

- SS internal must be held high continuously


In Slave Mode:

There are two cases depending on the data/clock timing relationship (see Figure 45):


- If CPHA=1 (data latched on 2nd clock edge):
 - \overline{SS} internal must be held low during the entire transmission. This implies that in single slave applications the SS pin either can be tied to V_{SS}, or <u>made</u> free for standard I/O by managing the SS function by software (SSM= 1 and SSI=0 in the in the SPICSR register)

If CPHA=0 (data latched on 1st clock edge):

 $-\overline{SS}$ internal must be held low during byte transmission and pulled high between each byte to allow the slave to write to the shift register. If SS is not pulled high, a Write Collision error will occur when the slave writes to the shift register (see Section 10.4.5.3).

Figure 46. Hardware/Software Slave Select Management

SERIAL PERIPHERAL INTERFACE (Cont'd)

57

Table 20. SPI Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0021h	SPIDR	MSB							LSB
002111	Reset Value	х	х	х	х	х	х	х	x
0022h	SPICR	SPIE	SPE	SPR2	MSTR	CPOL	CPHA	SPR1	SPR0
002211	Reset Value	0	0	0	0	х	х	х	х
0023h	SPICSR	SPIF	WCOL	OR	MODF		SOD	SSM	SSI
002311	Reset Value	0	0	0	0	0	0	0	0

10.5 SERIAL COMMUNICATIONS INTERFACE (SCI)

10.5.1 Introduction

The Serial Communications Interface (SCI) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The SCI offers a very wide range of baud rates using two baud rate generator systems.

10.5.2 Main Features

- Full duplex, asynchronous communications
- NRZ standard format (Mark/Space)
- Dual baud rate generator systems
- Independently programmable transmit and receive baud rates up to 500K baud
- Programmable data word length (8 or 9 bits)
- Receive buffer full, Transmit buffer empty and End of Transmission flags
- Two receiver wake-up modes:
 - Address bit (MSB)
 - Idle line
- Muting function for multiprocessor configurations
- Separate enable bits for Transmitter and Receiver
- Four error detection flags:
 - Overrun error
 - Noise error
 - Frame error
 - Parity error
- Five interrupt sources with flags:
 - Transmit data register empty
 - Transmission complete
 - Receive data register full
 - Idle line received
 - Overrun error detected
- Parity control:
 - Transmits parity bit
 - Checks parity of received data byte
- Reduced power consumption mode

10.5.3 General Description

The interface is externally connected to another device by two pins (see Figure 51):

- TDO: Transmit Data Output. When the transmitter and the receiver are disabled, the output pin returns to its I/O port configuration. When the transmitter and/or the receiver are enabled and nothing is to be transmitted, the TDO pin is at high level.
- RDI: Receive Data Input is the serial data input. Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise.

Through these pins, serial data is transmitted and received as frames comprising:

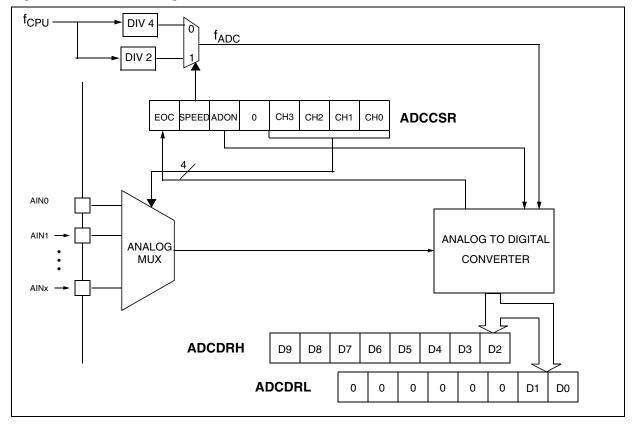
- An Idle Line prior to transmission or reception
- A start bit
- A data word (8 or 9 bits) least significant bit first
- A Stop bit indicating that the frame is complete
- This interface uses two types of baud rate generator:
- A conventional type for commonly-used baud rates
- An extended type with a prescaler offering a very wide range of baud rates even with non-standard oscillator frequencies

10.6 10-BIT A/D CONVERTER (ADC)

10.6.1 Introduction

The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit, successive approximation converter with internal sample and hold circuitry. This peripheral has up to 16 multiplexed analog input channels (refer to device pin out description) that allow the peripheral to convert the analog voltage levels from up to 16 different sources.

The result of the conversion is stored in a 10-bit Data Register. The A/D converter is controlled through a Control/Status Register.


10.6.2 Main Features

- 10-bit conversion
- Up to 16 channels with multiplexed input
- Linear successive approximation
- Data register (DR) which contains the results

47/

- Conversion complete status flag
- On/off bit (to reduce consumption)

The block diagram is shown in Figure 54.

Figure 54. ADC Block Diagram

10-BIT A/D CONVERTER (ADC) (Cont'd)

10.6.3 Functional Description

The conversion is monotonic, meaning that the result never decreases if the analog input does not and never increases if the analog input does not.

If the input voltage (V_{AIN}) is greater than V_{AREF} (high-level voltage reference) then the conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without overflow indication).

If the input voltage (V_{AIN}) is lower than V_{SSA} (low-level voltage reference) then the conversion result in the ADCDRH and ADCDRL registers is 00 00h.

The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH and AD-CDRL registers. The accuracy of the conversion is described in the Electrical Characteristics Section.

 R_{AIN} is the maximum recommended impedance for an analog input signal. If the impedance is too high, this will result in a loss of accuracy due to leakage and sampling not being completed in the alloted time.

10.6.3.1 A/D Converter Configuration

The analog input ports must be configured as input, no pull-up, no interrupt. Refer to the «I/O ports» chapter. Using these pins as analog inputs does not affect the ability of the port to be read as a logic input.

In the ADCCSR register:

- Select the CS[3:0] bits to assign the analog channel to convert.

10.6.3.2 Starting the Conversion

In the ADCCSR register:

 Set the ADON bit to enable the A/D converter and to start the conversion. From this time on, the ADC performs a continuous conversion of the selected channel.

When a conversion is complete:

- The EOC bit is set by hardware.
- The result is in the ADCDR registers.

A read to the ADCDRH resets the EOC bit.

To read the 10 bits, perform the following steps:

- 1. Poll the EOC bit
- 2. Read the ADCDRL register
- 3. Read the ADCDRH register. This clears EOC automatically.

Note: The data is not latched, so both the low and the high data register must be read before the next conversion is complete, so it is recommended to disable interrupts while reading the conversion result.

To read only 8 bits, perform the following steps:

- 1. Poll the EOC bit
- 2. Read the ADCDRH register. This clears EOC automatically.

10.6.3.3 Changing the conversion channel

The application can change channels during conversion. When software modifies the CH[3:0] bits in the ADCCSR register, the current conversion is stopped, the EOC bit is cleared, and the A/D converter starts converting the newly selected channel.

10.6.4 Low Power Modes

Note: The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced power consumption when no conversion is needed.

Mode	Description
WAIT	No effect on A/D Converter
	A/D Converter disabled.
HALT	After wakeup from Halt mode, the A/D Converter requires a stabilization time t _{STAB} (see Electrical Characteristics) before accurate conversions can be performed.

10.6.5 Interrupts

None.

INSTRUCTION SET OVERVIEW (Cont'd)

11.1.1 Inherent

All Inherent instructions consist of a single byte. The opcode fully specifies all the required information for the CPU to process the operation.

Inherent Instruction	Function
NOP	No operation
TRAP	S/W Interrupt
WFI	Wait For Interrupt (Low Pow- er Mode)
HALT	Halt Oscillator (Lowest Power Mode)
RET	Sub-routine Return
IRET	Interrupt Sub-routine Return
SIM	Set Interrupt Mask (level 3)
RIM	Reset Interrupt Mask (level 0)
SCF	Set Carry Flag
RCF	Reset Carry Flag
RSP	Reset Stack Pointer
LD	Load
CLR	Clear
PUSH/POP	Push/Pop to/from the stack
INC/DEC	Increment/Decrement
TNZ	Test Negative or Zero
CPL, NEG	1 or 2 Complement
MUL	Byte Multiplication
SLL, SRL, SRA, RLC, RRC	Shift and Rotate Operations
SWAP	Swap Nibbles

11.1.2 Immediate

5/

Immediate instructions have 2 bytes, the first byte contains the opcode, the second byte contains the operand value.

Immediate Instruction	Function
LD	Load
CP	Compare
BCP	Bit Compare
AND, OR, XOR	Logical Operations
ADC, ADD, SUB, SBC	Arithmetic Operations

11.1.3 Direct

In Direct instructions, the operands are referenced by their memory address.

The direct addressing mode consists of two submodes:

Direct (short)

The address is a byte, thus requires only one byte after the opcode, but only allows 00 - FF addressing space.

Direct (long)

The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after the opcode.

11.1.4 Indexed (No Offset, Short, Long)

In this mode, the operand is referenced by its memory address, which is defined by the unsigned addition of an index register (X or Y) with an offset.

The indirect addressing mode consists of three submodes:

Indexed (No Offset)

There is no offset, (no extra byte after the opcode), and allows 00 - FF addressing space.

Indexed (Short)

The offset is a byte, thus requires only one byte after the opcode and allows 00 - 1FE addressing space.

Indexed (long)

The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the opcode.

11.1.5 Indirect (Short, Long)

The required data byte to do the operation is found by its memory address, located in memory (pointer).

The pointer address follows the opcode. The indirect addressing mode consists of two submodes:

Indirect (short)

The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing space, and requires 1 byte after the opcode.

Indirect (long)

The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode.

12.2 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these condi-

12.2.1 Voltage Characteristics

tions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
V _{DD} - V _{SS}	Supply voltage	6.5	
V _{PP} - V _{SS}	Programming Voltage	13	v
V _{IN} ^{1) & 2)}	Input Voltage on true open drain pin	V _{SS} -0.3 to 5.5	
	Input voltage on any other pin	V_{SS} -0.3 to V_{DD} +0.3	
$ \Delta V_{DDx} $ and $ \Delta V_{SSx} $	Variations between different digital power pins	50	mV
IV _{SSA} - V _{SSx} I	Variations between digital and analog ground pins	50	IIIV
V _{ESD(HBM)}	Electro-static discharge voltage (Human Body Model)	see Section 12.7.3.1 on	nago 123
V _{ESD(MM)}	Electro-static discharge voltage (Machine Model)	See Section 12.7.3.1 011	paye 123

12.2.2 Current Characteristics

Symbol	Ratings		Maximum value	Unit
	Total current into V _{DD} power lines	32-pin devices	75	mA
IVDD	(source) ³⁾	44-pin devices	150	IIIA
h in a	Total current out of V _{SS} ground lines	32-pin devices	75	mA
I _{VSS}	(sink) for ³⁾	44-pin devices	150	IIIA
	Output current sunk by any standard I/	O and control pin	25	
I _{IO}	Output current sunk by any high sink I/O pin		50	
	Output current source by any I/Os and	control pin	- 25	
	Injected current on VPP pin		± 5	
2) & 4)	Injected current on RESET pin when not driver ternally	ot driven low in-	± 2	mA
I _{INJ(PIN)} ^{2) & 4)}	Injected current on flash device pin PB0		+ 5	
	Injected current on OSC1 and OSC2 pins		± 5	
	Injected current on any other pin ^{5) & 6)}		± 5	
ΣI _{INJ(PIN)} ²⁾	Total injected current (sum of all I/O ar	nd control pins) ⁵⁾	± 25	

Notes:

1. Directly connecting the RESET and I/O pins to V_{DD} or V_{SS} could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: $4.7k\Omega$ for RESET, $10k\Omega$ for I/Os). For the same reason, unused I/O pins must not be directly tied to V_{DD} or V_{SS}.

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

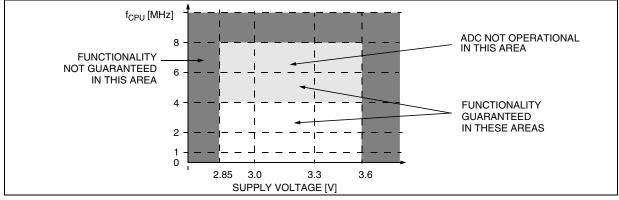
3. All power (V_{DD}) and ground (V_{SS}) lines must always be connected to the external supply.

4. Negative injection disturbs the analog performance of the device. See note in "ADC Accuracy" on page 135.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterisation with $\Sigma I_{INJ(PIN)}$ maximum current injection on four I/O port pins of the device.

6. True open drain I/O port pins do not accept positive injection.

12.2.3 Thermal Characteristics


Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature (see Section 13.2 THER	MAL CHARACTERISTIC	S)

12.3 OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Max	Unit
f	Internal clock frequency	ADC not used	0	8	MHz
f _{CPU}	Internal clock frequency	f _{ADC} max = 1 MHz.	0	4	IVITIZ
	Operating Voltage (ROM versions)		2.85	3.6	V
V_{DD}	Operating Voltage (Flash versions)	V _{PP} = 11.4 to 12.6V (for Write/ Erase operation)	2.85	3.6	v
		1 Suffix Version	0	70	
T _A	Ambient temperature range	5 Suffix Version	-10	85	°C
		6 Suffix Version	-40	85	

Warning: Do not connect 12V to V_{PP} before V_{DD} is powered on, as this may damage the device.

Figure 57. f_{CPU} Max Versus V_{DD}

<u>ل</u>حک

DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont'd)

14.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE

ROM devices can be ordered in any combination of memory size and temperature range with the types given in Figure 87 and by completing the option list on the next page. Flash devices are available only in the types listed in Table 27.

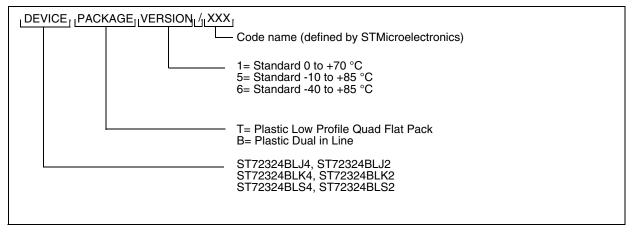

ROM customer code is made up of the ROM contents and the list of the selected options (if any). The ROM contents are to be sent with the S19 hexadecimal file generated by the development tool. All unused bytes must be set to FFh.

Figure 87. ROM Factory Coded Device Types

Refer to application note AN1635 for information on the counter listing returned by ST after code has been transferred.

The STMicroelectronics Sales Organization will be pleased to provide detailed information on contractual points.

Caution: The Readout Protection binary value is inverted between ROM and FLASH products. The option byte checksum will differ between ROM and FLASH.

DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont'd)

Table 27. Orderable Flash Device Types

57

Part Number	Package	Flash Memory (KBytes)	Temp. Range
ST72F324LK2T6		8	
ST72F324LK4T6		16	-40°C +85°C
ST72F324LK6T6	LQFP32	32	_
ST72F324LK2T5	LQFF32	8	
ST72F324LK4T5		16	-10°C +85°C
ST72F324LK6T5		32	-10 C +65 C
ST72F324LK6B5	SDIP32	32	_
ST72F324LJ2T6		8	
ST72F324LJ4T6		16	-40°C +85°C
ST72F324LJ6T6	LQFP44	32	_
ST72F324LJ2T5		8	
ST72F324LJ4T5		16	-10°C +85°C
ST72F324LJ6T5		32	
ST72F324LS2T6	LQFP48	8	-40°C +85°C
ST72F324LS4T6		16	-40 0 +03 0

	9	ST72324BL MICROCO			
Customer:		(Last update:		er 2007)	
Address:					
Contact:		•••••	• •		
Reference/ROM Code*					
*The ROM code name is ROM code must be sen	s assigne	d by STMicroelectronic	 S.		
ROM code must be sen	t in .S19 f	ormatHex extension of	cannot be	processed.	
Device Type/Memory Si					
ROM DEVICE:		16K		8K	
LQFP32:	Ι	[] ST72324BLK4T [] ST72324BLJ4T [] ST72324BLS4T	I	[] ST72324BLK2T	
LQFP44:	I	[] ST72324BLJ4T	l I	[] ST72324BLJ2T	
LQFP48:	I	[] ST72324BLS4T	I	[] ST72324BLS2T	
DIE FORM:		16K		8K	
32-pin:	I	[] [] []	I	[]	
44-pin:	Ι	[]	I.	[]	
48-pin:	Ι	[]	I	[]	
Conditioning (check onl					
Packag	ged Prod	uct	Die Pro	oduct (dice tested at 25°C only)	
[] Tape & Reel			[] Tape		
	[]		[] Inked		
		· · ·		n wafer on sticky foil	
			[] Waff		
wer Supply Range:	[12 85 tr	3.61/			
			ase refer	to datasheet for specific sales condition	ons:
Standard II					
[] 0 [] -	10°C to 1				
[] -4	40°C to +	85°C			
Charles Marking	[] N/a			" (I OEDOO 7 abox atbox blog 10 ab	
Special Marking: Authorized characters a	[] No re letters.	[] Yes " digits, '.', '-', '/' and spa	ces only.	_ " (LQFP32 7 char., other pkg. 10 ch	ar. max)
Authorized characters a	re letters,] Yes " digits, '.', '-', '/' and spa	ces only.	_ " (LQFP32 7 char., other pkg. 10 ch	ar. max)
Authorized characters a Clock Source Selection:	re letters,	digits, '.', '-', '/' and spa	ces only.		ar. max)
Authorized characters a Clock Source Selection:	ire letters, ator:	digits, '.', '-', '/' and spa [] LP: Low power res [] MP: Medium powe	ces only. onator (1	to 2 MHz)	ar. max)
Authorized characters a Clock Source Selection:	ire letters, ator:	[] LP: Low power res [] MP: Medium powe [] MS: Medium speed	ces only. onator (1 r resonate d resonate	to 2 MHz) or (2 to 4 MHz) or (4 to 8 MHz)	ar. max)
Authorized characters a Clock Source Selection: [] Resona	ator:	[] LP: Low power res [] MP: Medium powe	ces only. onator (1 r resonate d resonate	to 2 MHz) or (2 to 4 MHz) or (4 to 8 MHz)	ar. max)
Authorized characters a Clock Source Selection: [] Reson [] Interna	ator: ator: al RC:	[] LP: Low power res [] MP: Medium powe [] MS: Medium speed	ces only. onator (1 r resonate d resonate	to 2 MHz) or (2 to 4 MHz) or (4 to 8 MHz)	ar. max)
Authorized characters a Clock Source Selection: [] Reson: [] Interna [] Externa	ator: ator: al RC:	[] LP: Low power res [] MP: Medium powe [] MS: Medium speed	ces only. onator (1 r resonate d resonate	to 2 MHz) or (2 to 4 MHz) or (4 to 8 MHz)	ar. max)
Authorized characters a Clock Source Selection: [] Reson [] Interna [] Externa PLL Reset Delay	ator: ator: al RC:	 digits, `, ', ', ', ', and spa [] LP: Low power res [] MP: Medium powe [] MS: Medium speed [] HS: High speed res [] Disabled [] 256 Cycles 	ces only. onator (1 r resonato d resonator (8 sonator (8] 4096 Cy	to 2 MHz) or (2 to 4 MHz) or (4 to 8 MHz) 8 to 16 MHz) [] Enabled rcles	ar. max)
Authorized characters a Clock Source Selection: [] Reson [] Interna [] Extern: PLL Reset Delay Watchdog Selection:	ator: ator: al RC: al Clock	 digits, `, ', ', ', ', and spa [] LP: Low power res [] MP: Medium powe [] MS: Medium speed [] HS: High speed res [] Disabled [] 256 Cycles [] Software Activation 	ces only. onator (1 r resonato d resonator (8 sonator (8] 4096 Cy	to 2 MHz) or (2 to 4 MHz) or (4 to 8 MHz) 8 to 16 MHz) [] Enabled rcles [] Hardware Activation	ar. max)
Authorized characters a Clock Source Selection: [] Reson [] Interna [] Externa PLL Reset Delay Vatchdog Selection: Watchdog Reset on Hal	ator: ator: al RC: al Clock t:	 digits, `, ', ', ', ', and spa [] LP: Low power res [] MP: Medium powe [] MS: Medium speed [] HS: High speed res [] Disabled [] 256 Cycles 	ces only. onator (1 r resonato d resonator (8 sonator (8] 4096 Cy	to 2 MHz) or (2 to 4 MHz) or (4 to 8 MHz) 8 to 16 MHz) [] Enabled rcles	ar. max)
Authorized characters a Clock Source Selection: [] Reson [] Interna [] Externa PLL Reset Delay Watchdog Selection: Watchdog Reset on Hal Readout Protection (Not	ator: al RC: al Clock t: te 1):	 digits, ``, ``, '' and spa [] LP: Low power res [] MP: Medium powe [] MS: Medium speed [] HS: High speed res [] Disabled [] 256 Cycles [] Software Activation [] Reset 	ces only. onator (1 r resonate d resonator sonator (8] 4096 Cy	to 2 MHz) or (2 to 4 MHz) or (4 to 8 MHz) 8 to 16 MHz) [] Enabled rcles [] Hardware Activation [] No Reset	ar. max)
Authorized characters a Clock Source Selection: [] Reson [] Interna [] Externa PLL Reset Delay Watchdog Reset on Hal Readout Protection (Not	ator: ator: al RC: al Clock t: te 1):	digits, ', ', ', ', ', and spa [] LP: Low power res [] MP: Medium powe [] MS: Medium speed [] HS: High speed res [] Disabled [] 256 Cycles [[] Software Activation [] Reset [] Disabled	ces only. onator (1 r resonate d resonator sonator (8] 4096 Cy	to 2 MHz) or (2 to 4 MHz) or (4 to 8 MHz) 8 to 16 MHz) [] Enabled rcles [] Hardware Activation [] No Reset	ar. max)
Authorized characters a Clock Source Selection: [] Resona [] Interna [] Externa PLL Reset Delay Watchdog Selection: Watchdog Reset on Halt Readout Protection (Not Date Signature Note1: The Readout P	ator: al RC: al Clock t: te 1): rotection	digits, ', ', ', ', ', and spa [] LP: Low power res [] MP: Medium powe [] MS: Medium speed [] Disabled [] 256 Cycles [[] Software Activation [] Disabled [] Disabled [] Disabled binary value is inverted	ces only. onator (1 r resonato d resonator sonator (8] 4096 Cy	to 2 MHz) or (2 to 4 MHz) or (4 to 8 MHz) 8 to 16 MHz) [] Enabled rcles [] Hardware Activation [] No Reset	
Authorized characters a Clock Source Selection: [] Reson: [] Interna [] Extern: PLL Reset Delay Watchdog Selection: Watchdog Reset on Hal Readout Protection (Not Date Signature	ator: al RC: al Clock t: te 1): 	digits, ', ', ', ', ', and spa [] LP: Low power res [] MP: Medium powe [] MS: Medium speed [] Disabled [] 256 Cycles [[] Software Activatior [] Reset [] Disabled binary value is invertuen ROM and FLASH.	ces only. onator (1 r resonate d resonator sonator (8] 4096 Cy 1 ed betwe	to 2 MHz) or (2 to 4 MHz) or (4 to 8 MHz) 8 to 16 MHz) [] Enabled rcles [] Hardware Activation [] No Reset [] Enabled en ROM and FLASH products. The	

57