

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f324lk4t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3. Hardware Register Map

Address	Block	Register Label	Register Name	Reset Status	Remarks
0000h	Port A ²⁾	PADR	Port A Data Register	00h ¹⁾	R/W
0001h		PADDR	Port A Data Direction Register	00h	R/W
0002h		PAOR	Port A Option Register	00h	R/W
0003h	Port B ²⁾	PBDR	Port B Data Register	00h ¹⁾	R/W
0004h		PBDDR	Port B Data Direction Register	00h	R/W
0005h		PBOR	Port B Option Register	00h	R/W
0006h	Port C	PCDR	Port C Data Register	00h ¹⁾	R/W
0007h		PCDDR	Port C Data Direction Register	00h	R/W
0008h		PCOR	Port C Option Register	00h	R/W
0009h	Port D ²⁾	PDADR	Port D Data Register	00h ¹⁾	R/W
000Ah		PDDDR	Port D Data Direction Register	00h	R/W
000Bh		PDOR	Port D Option Register	00h	R/W
000Ch	Port E ²⁾	PEDR	Port E Data Register	00h ¹⁾	R/W
000Dh		PEDDR	Port E Data Direction Register	00h	R/W ²⁾
000Eh		PEOR	Port E Option Register	00h	R/W ²⁾
000Fh	Port F ²⁾	PFDR	Port F Data Register	00h ¹⁾	R/W
0010h		PFDDR	Port F Data Direction Register	00h	R/W
0011h		PFOR	Port F Option Register	00h	R/W
0012h to 0020h			Reserved Area (15 Bytes)		
0021h	SPI	SPIDR	SPI Data I/O Register	xxh	R/W
0022h		SPICR	SPI Control Register	0xh	R/W
0023h		SPICSR	SPI Control/Status Register	00h	R/W
0024h	ITC	ISPR0	Interrupt Software Priority Register 0	FFh	R/W
0025h		ISPR1	Interrupt Software Priority Register 1	FFh	R/W
0026h		ISPR2	Interrupt Software Priority Register 2	FFh	R/W
0027h		ISPR3	Interrupt Software Priority Register 3	FFh	R/W
00201	ELAGH	ECSP	Elach Control/Status Pagister	00h	
002911		WDCCP	Watchdog Control Pagister	ZEb	
00286			Beserved Area (1 Buto)	/111	
002Dh	MCC	MCCSR	Main Clock Control / Status Register	00h	R/W
002Dh		MCCBCR	Main Clock Controller: Beep Control Register	00h	R/W
002Eh to 0030h	Reserved Area (3 Bytes)				

INTERRUPTS (Cont'd)

7.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
IS11	IS10	IPB	IS21	IS20	IPA	0	0

Bit 7:6 = IS1[1:0] ei2 and ei3 sensitivity The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to the following external interrupts: - ei2 (port B3..0)

IS11 IS10		External Interrupt Sensitivity			
		IPB bit =0	IPB bit =1		
0	0	Falling edge & low level	Rising edge & high level		
0	1	Rising edge only	Falling edge only		
1	0	Falling edge only	Rising edge only		
1	1	Rising and falling edge			

- ei3 (port B7..4)

IS11	IS10	External Interrupt Sensitivity	
0	0	Falling edge & low level	
0	1	Rising edge only	
1	0	Falling edge only	
1	1	Rising and falling edge	

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

Bit 5 = **IPB** Interrupt polarity for port B

This bit is used to invert the sensitivity of the port B [3:0] external interrupts. It can be set and cleared by software only when I1 and I0 of the CC register are both set to 1 (level 3).

0: No sensitivity inversion

1: Sensitivity inversion

Bit 4:3 = **IS2[1:0]** ei0 and ei1 sensitivity The interrupt sensitivity, defined using the IS2[1:0] bits, is applied to the following external interrupts:

- ei0 (port A3..0)

1921 1920	1620	External Interrupt Sensitivity			
1521 1520		IPA bit =0	IPA bit =1		
0	0	Falling edge & low level	Rising edge & high level		
0	1	Rising edge only	Falling edge only		
1	0	Falling edge only	Rising edge only		
1	1	Rising and falling edge			

- ei1 (port F2..0)

IS21	IS20	External Interrupt Sensitivity	
0	0	Falling edge & low level	
0	1	Rising edge only	
1	0	Falling edge only	
1	1	Rising and falling edge	

These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3).

Bit 2 = **IPA** Interrupt polarity for port A

This bit is used to invert the sensitivity of the port A [3:0] external interrupts. It can be set and cleared by software only when I1 and I0 of the CC register are both set to 1 (level 3). 0: No sensitivity inversion

1: Sensitivity inversion

Bits 1:0 = Reserved, must always be kept cleared.

I/O PORTS (Cont'd)

CAUTION: The alternate function must not be activated as long as the pin is configured as input with interrupt, in order to avoid generating spurious interrupts.

Analog alternate function

When the pin is used as an ADC input, the I/O must be configured as floating input. The analog multiplexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail which is connected to the ADC input.

It is recommended not to change the voltage level or loading on any port pin while conversion is in progress. Furthermore it is recommended not to have clocking pins located close to a selected analog pin.

WARNING: The analog input voltage level must be within the limits stated in the absolute maximum ratings.

9.3 I/O PORT IMPLEMENTATION

5/

The hardware implementation on each I/O port depends on the settings in the DDR and OR registers and specific feature of the I/O port such as ADC Input or true open drain.

Switching these I/O ports from one state to another should be done in a sequence that prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 27 on page 43. Other transitions are potentially risky and should be avoided, since they are likely to present unwanted side-effects such as spurious interrupt generation.

Figure 27. Interrupt I/O Port State Transitions

01 🗲	▶ 00 ←	▶ 10 ←	▶ 11
INPUT floating/pull-up interrupt	INPUT floating (reset state)	OUTPUT open-drain	OUTPUT push-pull
		XX =	DDR, OR

9.4 LOW POWER MODES

Mode	Description
WAIT	No effect on I/O ports. External interrupts cause the device to exit from WAIT mode.
HALT	No effect on I/O ports. External interrupts cause the device to exit from HALT mode.

9.5 INTERRUPTS

The external interrupt event generates an interrupt if the corresponding configuration is selected with DDR and OR registers and the interrupt mask in the CC register is not active (RIM instruction).

Interrupt Event	Event Flag	Enable Control Bit	Exit from Wait	Exit from Halt
External interrupt on selected external event	-	DDRx ORx	Ye	es

WATCHDOG TIMER (Cont'd)

Figure 30. Exact Timeout Duration (tmin and tmax)

WHERE:

IF CNT < $\left[\frac{MSB}{4}\right]$

 $t_{min0} = (LSB + 128) \times 64 \times t_{OSC2}$ $t_{max0} = 16384 \times t_{OSC2}$ $t_{OSC2} = 125$ ns if f_{OSC2} =8 MHz

CNT = Value of T[5:0] bits in the WDGCR register (6 bits)

MSB and LSB are values from the table below depending on the timebase selected by the TB[1:0] bits in the MCCSR register

TB1 Bit (MCCSR Reg.)	TB0 Bit (MCCSR Reg.)	Selected MCCSR Timebase	MSB	LSB
0	0	2ms	4	59
0	1	4ms	8	53
1	0	10ms	20	35
1	1	25ms	49	54

To calculate the minimum Watchdog Timeout (t_{min}):

THEN $t_{min} = t_{min0} + 16384 \times CNT \times t_{osc2}$

ELSE
$$t_{min} = t_{min0} + \left[16384 \times \left(CNT - \left[\frac{4CNT}{MSB} \right] \right) + (192 + LSB) \times 64 \times \left[\frac{4CNT}{MSB} \right] \right] \times t_{osc2}$$

Δγ/

To calculate the maximum Watchdog Timeout (t_{max}):

$$\begin{aligned} \text{IF } \text{CNT} \leq \left[\frac{\text{MSB}}{4}\right] & \text{THEN} \quad t_{\text{max}} = t_{\text{max0}} + 16384 \times \text{CNT} \times t_{\text{osc2}} \\ & \text{ELSE} \quad t_{\text{max}} = t_{\text{max0}} + \left[16384 \times \left(\text{CNT} - \left[\frac{4\text{CNT}}{\text{MSB}}\right]\right) + (192 + \text{LSB}) \times 64 \times \left[\frac{4\text{CNT}}{\text{MSB}}\right]\right] \times t_{\text{osc2}} \end{aligned}$$

Note: In the above formulae, division results must be rounded down to the next integer value. **Example:**

With 2ms timeout selected in MCCSR register

Value of T[5:0] Bits in WDGCR Register (Hex.)	Min. Watchdog Timeout (ms) t _{min}	Max. Watchdog Timeout (ms) t _{max}
00	1.496	2.048
3F	128	128.552

10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC)

The Main Clock Controller consists of three different functions:

- a programmable CPU clock prescaler
- a clock-out signal to supply external devices
- a real time clock timer with interrupt capability

Each function can be used independently and simultaneously.

10.2.1 Programmable CPU Clock Prescaler

The programmable CPU clock prescaler supplies the clock for the ST7 CPU and its internal peripherals. It manages SLOW power saving mode (See Section 8.2 SLOW MODE for more details).

The prescaler selects the f_{CPU} main clock frequency and is controlled by three bits in the MCCSR register: CP[1:0] and SMS.

10.2.2 Clock-out Capability

The clock-out capability is an alternate function of an I/O port pin that outputs a f_{OSC2} clock to drive

external devices. It is controlled by the MCO bit in the MCCSR register.

CAUTION: When selected, the clock out pin suspends the clock during ACTIVE-HALT mode.

10.2.3 Real Time Clock Timer (RTC)

The counter of the real time clock timer allows an interrupt to be generated based on an accurate real time clock. Four different time bases depending directly on f_{OSC2} are available. The whole functionality is controlled by four bits of the MCC-SR register: TB[1:0], OIE and OIF.

When the RTC interrupt is enabled (OIE bit set), the ST7 enters ACTIVE-HALT mode when the HALT instruction is executed. See Section 8.4 AC-TIVE-HALT AND HALT MODES for more details.

10.2.4 Beeper

The beep function is controlled by the MCCBCR register. It can output three selectable frequencies on the BEEP pin (I/O port alternate function).

457/

Figure 31. Main Clock Controller (MCC/RTC) Block Diagram

MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK (Cont'd)

Bit 0 = **OIF** Oscillator interrupt flag

This bit is set by hardware and cleared by software reading the MCCSR register. It indicates when set that the main oscillator has reached the selected elapsed time (TB1:0).

0: Timeout not reached

1: Timeout reached

CAUTION: The BRES and BSET instructions must not be used on the MCCSR register to avoid unintentionally clearing the OIF bit.

MCC BEEP CONTROL REGISTER (MCCBCR)

Read/Write

Reset Value: 0000 0000 (00h)

7							0
0	0	0	0	0	0	BC1	BC0

Bit 7:2 = Reserved, must be kept cleared.

Bit 1:0 = **BC[1:0]** Beep control

These 2 bits select the PF1 pin beep capability.

BC1	BC0	Beep mode with f _{OSC2} =8MHz							
0	0	C	off						
0	1	~2-KHz	Output						
1	0	~1-KHz	Beep signal						
1	1	~500-Hz	~50% duty cycle						

The beep output signal is available in ACTIVE-HALT mode but has to be disabled to reduce the consumption.

47/

Table 16. Main Clock Controller Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
002Ch	MCCSR Reset Value	MCO 0	CP1 0	CP0 0	SMS 0	TB1 0	TB0 0	OIE 0	OIF 0
002Dh	MCCBCR Reset Value	0	0	0	0	0	0	BC1 0	BC0 0

10.3 16-BIT TIMER

10.3.1 Introduction

The timer consists of a 16-bit free-running counter driven by a programmable prescaler.

It may be used for a variety of purposes, including pulse length measurement of up to two input signals (*input capture*) or generation of up to two output waveforms (*output compare* and *PWM*).

Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the CPU clock prescaler.

Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and do not share any resources. They are synchronized after a MCU reset as long as the timer clock frequencies are not modified.

This description covers one or two 16-bit timers. In ST7 devices with two timers, register names are prefixed with TA (Timer A) or TB (Timer B).

10.3.2 Main Features

- Programmable prescaler: f_{CPU} divided by 2, 4 or 8.
- Overflow status flag and maskable interrupt
- External clock input (must be at least 4 times slower than the CPU clock speed) with the choice of active edge
- 1 or 2 Output Compare functions each with:
 - 2 dedicated 16-bit registers
 - 2 dedicated programmable signals
 - 2 dedicated status flags
 - 1 dedicated maskable interrupt
- 1 or 2 Input Capture functions each with:
 - 2 dedicated 16-bit registers
 - 2 dedicated active edge selection signals
 - 2 dedicated status flags
 - 1 dedicated maskable interrupt
- Pulse width modulation mode (PWM)
- One pulse mode
- Reduced Power Mode
- 5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)*

The Block Diagram is shown in Figure 32.

*Note: Some timer pins may not be available (not bonded) in some ST7 devices. Refer to the device pin out description.

When reading an input signal on a non-bonded pin, the value will always be '1'.

10.3.3 Functional Description

10.3.3.1 Counter

The main block of the Programmable Timer is a 16-bit free running upcounter and its associated 16-bit registers. The 16-bit registers are made up of two 8-bit registers called high & low.

Counter Register (CR):

- Counter High Register (CHR) is the most significant byte (MS Byte).
- Counter Low Register (CLR) is the least significant byte (LS Byte).

Alternate Counter Register (ACR)

- Alternate Counter High Register (ACHR) is the most significant byte (MS Byte).
- Alternate Counter Low Register (ACLR) is the least significant byte (LS Byte).

These two read-only 16-bit registers contain the same value but with the difference that reading the ACLR register does not clear the TOF bit (Timer overflow flag), located in the Status register, (SR), (see note at the end of paragraph titled 16-bit read sequence).

Writing in the CLR register or ACLR register resets the free running counter to the FFFCh value.

Both counters have a reset value of FFFCh (this is the only value which is reloaded in the 16-bit timer). The reset value of both counters is also FFFCh in One Pulse mode and PWM mode.

The timer clock depends on the clock control bits of the CR2 register, as illustrated in Table 17 Clock Control Bits. The value in the counter register repeats every 131072, 262144 or 524288 CPU clock cycles depending on the CC[1:0] bits.

The timer frequency can be $f_{CPU}/2$, $f_{CPU}/4$, $f_{CPU}/8$ or an external frequency.

Caution: In Flash devices, Timer A functionality has the following restrictions:

- TAOC2HR and TAOC2LR registers are write only
- Input Capture 2 is not implemented
- The corresponding interrupts cannot be used (ICF2, OCF2 forced by hardware to zero)

57

16-BIT TIMER (Cont'd)

10.3.3.6 Pulse Width Modulation Mode

Pulse Width Modulation (PWM) mode enables the generation of a signal with a frequency and pulse length determined by the value of the OC1R and OC2R registers.

Pulse Width Modulation mode uses the complete Output Compare 1 function plus the OC2R register, and so this functionality can not be used when PWM mode is activated.

In PWM mode, double buffering is implemented on the output compare registers. Any new values written in the OC1R and OC2R registers are taken into account only at the end of the PWM period (OC2) to avoid spikes on the PWM output pin (OCMP1).

Procedure

To use pulse width modulation mode:

- 1. Load the OC2R register with the value corresponding to the period of the signal using the formula in the opposite column.
- 2. Load the OC1R register with the value corresponding to the period of the pulse if (OLVL1=0 and OLVL2=1) using the formula in the opposite column.
- 3. Select the following in the CR1 register:
 - Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after a successful comparison with the OC1R register.
 - Using the OLVL2 bit, select the level to be applied to the OCMP1 pin after a successful comparison with the OC2R register.
- 4. Select the following in the CR2 register:
 - Set OC1E bit: the OCMP1 pin is then dedicated to the output compare 1 function.
 - Set the PWM bit.
 - Select the timer clock (CC[1:0]) (see Table 17 Clock Control Bits).

If OLVL1=1 and OLVL2=0 the length of the positive pulse is the difference between the OC2R and OC1R registers.

If OLVL1=OLVL2 a continuous signal will be seen on the OCMP1 pin.

The OC*i*R register value required for a specific timing application can be calculated using the following formula:

$$OC/R Value = \frac{t \cdot f_{CPU}}{PRESC} - 5$$

Where:

t = Signal or pulse period (in seconds)

 $f_{CPU} = CPU \operatorname{clock} \operatorname{frequency} (\operatorname{in} \operatorname{hertz})$

PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see Table 17)

If the timer clock is an external clock the formula is:

$$OC/R = t * f_{EXT} - 5$$

Where:

t

= Signal or pulse period (in seconds)

f_{EXT} = External timer clock frequency (in hertz)

The Output Compare 2 event causes the counter to be initialized to FFFCh (See Figure 42)

Notes:

- 1. After a write instruction to the OC*i*HR register, the output compare function is inhibited until the OC*i*LR register is also written.
- 2. The OCF1 and OCF2 bits cannot be set by hardware in PWM mode therefore the Output Compare interrupt is inhibited.
- 3. The ICF1 bit is set by hardware when the counter reaches the OC2R value and can produce a timer interrupt if the ICIE bit is set and the I bit is cleared.
- 4. In PWM mode the ICAP1 pin can not be used to perform input capture because it is disconnected to the timer. The ICAP2 pin can be used to perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take care that the counter is reset each period and ICF1 can also generates interrupt if ICIE is set.
- 5. When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the PWM mode is the only active one.
- 6. In Flash devices, the TAOC2HR, TAOC2LR registers in Timer A are "write only". A read operation returns an undefined value.

7. In Flash devices, the ICAP2 registers (TAIC2HR, TAIC2LR) are not available in Timer A. The ICF2 bit is forced by hardware to 0.

47/

16-BIT TIMER (Cont'd)

OUTPUT COMPARE 2 HIGH REGISTER (OC2HR)

Read/Write

Reset Value: 1000 0000 (80h)

This is an 8-bit register that contains the high part of the value to be compared to the CHR register.

7				0
MSB				LSB

Note: In Flash devices, the Timer A OC2HR register is write-only.

OUTPUT COMPARE 2 LOW REGISTER (OC2LR)

Read/Write

Reset Value: 0000 0000 (00h)

This is an 8-bit register that contains the low part of the value to be compared to the CLR register.

7				0
MSB				LSB

Note: In Flash devices, the Timer A OC2LR register is write-only.

COUNTER HIGH REGISTER (CHR)

Read Only

Reset Value: 1111 1111 (FFh)

This is an 8-bit register that contains the high part of the counter value.

7				0	
MSB				LSB	

COUNTER LOW REGISTER (CLR)

Read Only Reset Value: 1111 1100 (FCh)

This is an 8-bit register that contains the low part of the counter value. A write to this register resets the counter. An access to this register after accessing the CSR register clears the TOF bit.

7				0
MSB				LSB

16-BIT TIMER (Cont'd)

Table 18. 16-Bit Timer Register Map and Reset Values

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
Timer A: 32	CR1	ICIE	OCIE	TOIE	FOLV2 ¹	FOLV1	OLVL2	IEDG1	OLVL1
Timer B: 42	Reset Value	0	0	0	0	0	0	0	0
Timer A: 31	CR2	OC1E	OC2E ¹	OPM	PWM	CC1	CC0	IEDG2 ¹	EXEDG
Timer B: 41	Reset Value	0	0	0	0	0	0	0	0
Timer A: 33	CSR	ICF1	OCF1	TOF	ICF2 ²	OCF2 ²	TIMD	-	-
Timer B: 43	Reset Value	х	х	х	х	х	0	х	х
Timer A: 34	IC1HR	MSB							LSB
Timer B: 44	Reset Value	х	х	х	х	х	х	х	х
Timer A: 35	IC1LR	MSB							LSB
Timer B: 45	Reset Value	х	х	х	х	х	х	х	х
Timer A: 36	OC1HR	MSB							LSB
Timer B: 46	Reset Value	1	0	0	0	0	0	0	0
Timer A: 37	OC1LR	MSB							LSB
Timer B: 47	Reset Value	0	0	0	0	0	0	0	0
Timer A: 3E ³	OC2HR	MSB							LSB
Timer B: 4E	Reset Value	1	0	0	0	0	0	0	0
Timer A: 3F ³	OC2LR	MSB							LSB
Timer B: 4F	Reset Value	0	0	0	0	0	0	0	0
Timer A: 38	CHR	MSB							LSB
Timer B: 48	Reset Value	1	1	1	1	1	1	1	1
Timer A: 39	CLR	MSB							LSB
Timer B: 49	Reset Value	1	1	1	1	1	1	0	0
Timer A: 3A	ACHR	MSB							LSB
Timer B: 4A	Reset Value	1	1	1	1	1	1	1	1
Timer A: 3B	ACLR	MSB							LSB
Timer B: 4B	Reset Value	1	1	1	1	1	1	0	0
Timer A: 3C ⁴	IC2HR	MSB							LSB
Timer B: 4C	Reset Value	х	х	х	х	х	х	х	х
Timer A: 3D ⁴	IC2LR	MSB							LSB
Timer B: 4D	Reset Value	х	х	х	х	х	х	х	х

¹ In Flash devices, these bits are not used in Timer A and must be kept cleared.

² In Flash devices, these bits are forced by hardware to 0 in Timer A

³ In Flash devices, the TAOC2HR and TAOC2LR Registers are write only, reading them will return undefined values

⁴ In Flash devices, the TAIC2HR and TAIC2LR registers are not present.

SERIAL PERIPHERAL INTERFACE (Cont'd)

10.4.3.1 Functional Description

A basic example of interconnections between a single master and a single slave is illustrated in Figure 44.

The MOSI pins are connected together and the MISO pins are connected together. In this way data is transferred serially between master and slave (most significant bit first).

The communication is always initiated by the master. When the master device transmits data to a slave device via MOSI pin, the slave device re-

Figure 44. Single Master/ Single Slave Application

sponds by sending data to the master device via the MISO pin. This implies full duplex communication with both data out and data in synchronized with the same clock signal (which is provided by the master device via the SCK pin).

To use a single data line, the MISO and MOSI pins must be connected at each node (in this case only simplex communication is possible).

Four possible data/clock timing relationships may be chosen (see Figure 47) but master and slave must be programmed with the same timing mode.

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.4 Functional Description

The block diagram of the Serial Control Interface, is shown in Figure 50 It contains six dedicated registers:

- Two control registers (SCICR1 & SCICR2)
- A status register (SCISR)
- A baud rate register (SCIBRR)
- An extended prescaler receiver register (SCIER-PR)
- An extended prescaler transmitter register (SCI-ETPR)

Refer to the register descriptions in Section 10.5.7for the definitions of each bit.

10.5.4.1 Serial Data Format

Word length may be selected as being either 8 or 9 bits by programming the M bit in the SCICR1 register (see Figure 50).

The TDO pin is in low state during the start bit.

The TDO pin is in high state during the stop bit.

An Idle character is interpreted as an entire frame of "1"s followed by the start bit of the next frame which contains data.

A Break character is interpreted on receiving "0"s for some multiple of the frame period. At the end of the last break frame the transmitter inserts an extra "1" bit to acknowledge the start bit.

Transmission and reception are driven by their own baud rate generator.

9-bit W	ord l	ength C	(M bi t Data Fr	t is se ame	t)			Possible Parity Bit			Next Data Frame Next
Start Bit	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6	Bit7	Bit8	Stop Bit	Start Bit
 		lo	dle Fra	me							Start Bit
		E	Break F	rame							Extra Start '1' Bit
 8-bit Word length (M bit is reset) Data Frame Start Bit Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6							Poss Par Bi 6 Bit	ible ity t t7 Sto Bit	Ne p Sta Bi	Next Data Frame	
 Idle Frame										Sta Bi	t
 Break Frame										Ext '1	ra Start Bit

Figure 51. Word Length Programming

SERIAL COMMUNICATIONS INTERFACE (Cont'd)

10.5.4.3 Receiver

The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9 bits and the MSB is stored in the R8 bit in the SCICR1 register.

Character reception

During a SCI reception, data shifts in least significant bit first through the RDI pin. In this mode, the SCIDR register consists or a buffer (RDR) between the internal bus and the received shift register (see Figure 50).

Procedure

- Select the M bit to define the word length.
- Select the desired baud rate using the SCIBRR and the SCIERPR registers.
- Set the RE bit, this enables the receiver which begins searching for a start bit.

When a character is received:

- The RDRF bit is set. It indicates that the content of the shift register is transferred to the RDR.
- An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.
- The error flags can be set if a frame error, noise or an overrun error has been detected during reception.

Clearing the RDRF bit is performed by the following software sequence done by:

- 1. An access to the SCISR register
- 2. A read to the SCIDR register.

The RDRF bit must be cleared before the end of the reception of the next character to avoid an overrun error.

Break Character

When a break character is received, the SCI handles it as a framing error.

Idle Character

When a idle frame is detected, there is the same procedure as a data received character plus an interrupt if the ILIE bit is set and the I bit is cleared in the CCR register.

Overrun Error

An overrun error occurs when a character is received when RDRF has not been reset. Data can not be transferred from the shift register to the RDR register as long as the RDRF bit is not cleared.

When an overrun error occurs:

- The OR bit is set.
- The RDR content is not lost.
- The shift register is overwritten.
- An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register.

The OR bit is reset by an access to the SCISR register followed by a SCIDR register read operation.

Noise Error

Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise. Normal data bits are considered valid if three consecutive samples (8th, 9th, 10th) have the same bit value, otherwise the NF flag is set. In the case of start bit detection, the NF flag is set on the basis of an algorithm combining both valid edge detection and three samples (8th, 9th, 10th). Therefore, to prevent the NF flag getting set during start bit reception, there should be a valid edge detection as well as three valid samples.

When noise is detected in a frame:

- The NF flag is set at the rising edge of the RDRF bit.
- Data is transferred from the Shift register to the SCIDR register.
- No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt.

The NF flag is reset by a SCISR register read operation followed by a SCIDR register read operation.

During reception, if a false start bit is detected (e.g. 8th, 9th, 10th samples are 011,101,110), the frame is discarded and the receiving sequence is not started for this frame. There is no RDRF bit set for this frame and the NF flag is set internally (not accessible to the user). This NF flag is accessible along with the RDRF bit when a next valid frame is received.

Note: If the application Start Bit is not long enough to match the above requirements, then the NF Flag may get set due to the short Start Bit. In this case, the NF flag may be ignored by the application software when the first valid byte is received.

See also Section 10.5.4.10.

SERIAL COMMUNICATION INTERFACE (Cont'd)

	Table 23.	SCI F	Register	Мар	and	Reset	Values
--	-----------	-------	----------	-----	-----	-------	--------

57

Address (Hex.)	Register Label	7	6	5	4	3	2	1	0
0050h	SCISR	TDRE	TC	RDRF	IDLE	OR	NF	FE	PE
005011	Reset Value	1	1	0	0	0	0	0	0
0051b	SCIDR	MSB							LSB
005111	Reset Value	х	х	х	х	х	х	х	х
0052h	SCIBRR	SCP1	SCP0	SCT2	SCT1	SCT0	SCR2	SCR1	SCR0
0052h	Reset Value	0	0	0	0	0	0	0	0
0052h	SCICR1	R8	T8	SCID	М	WAKE	PCE	PS	PIE
005511	Reset Value	х	0	0	0	0	0	0	0
0054h	SCICR2	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
005411	Reset Value	0	0	0	0	0	0	0	0
0055h	SCIERPR	MSB							LSB
00550	Reset Value	0	0	0	0	0	0	0	0
0057h	SCIPETPR	MSB							LSB
005711	Reset Value	0	0	0	0	0	0	0	0

12.4 SUPPLY CURRENT CHARACTERISTICS

The following current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total device consumption, the two current values must be added (except for HALT mode for which the clock is stopped).

12.4.1 CURRENT CONSUMPTION

Symbol	Doromotor	Conditions	Flash I	Devices	ROM D)evices	Unit
Symbol	Parameter	Conditions	Тур	Max ¹⁾	Тур	Max ¹⁾	Unit
	Supply current in RUN mode ²⁾	$\begin{array}{l} f_{OSC}=2MHz, \ f_{CPU}=1MHz\\ f_{OSC}=4MHz, \ f_{CPU}=2MHz\\ f_{OSC}=8MHz, \ f_{CPU}=4MHz\\ f_{OSC}=16MHz, \ f_{CPU}=8MHz \end{array}$	0.9 1.4 2.5 4.7	1.35 2.1 3.8 7.0	0.23 0.45 0.88 1.8	0.5 1.0 2.0 4.0	mA
	Supply current in SLOW mode ²⁾	$\begin{array}{l} f_{OSC}=2MHz, \ f_{CPU}=62.5kHz\\ f_{OSC}=4MHz, \ f_{CPU}=125kHz\\ f_{OSC}=8MHz, \ f_{CPU}=250kHz\\ f_{OSC}=16MHz, \ f_{CPU}=500kHz \end{array}$	350 400 500 700	500 600 750 1000	15 40 80 170	45 90 180 350	μA
I _{DD}	Supply current in WAIT mode ²⁾	$\begin{array}{l} f_{OSC}=2MHz, \ f_{CPU}=1MHz\\ f_{OSC}=4MHz, \ f_{CPU}=2MHz\\ f_{OSC}=8MHz, \ f_{CPU}=4MHz\\ f_{OSC}=16MHz, \ f_{CPU}=8MHz \end{array}$	0.7 1.0 1.8 3.2	1.0 1.5 2.7 4.8	0.12 0.22 0.42 0.83	0.25 0.5 1 2	mA
	Supply current in SLOW WAIT mode ²⁾	$\begin{array}{l} f_{OSC}=2MHz, \ f_{CPU}=62.5kHz\\ f_{OSC}=4MHz, \ f_{CPU}=125kHz\\ f_{OSC}=8MHz, \ f_{CPU}=250kHz\\ f_{OSC}=16MHz, \ f_{CPU}=500kHz \end{array}$	330 370 440 570	500 550 650 900	10 20 50 100	31 63 125 250	μA
s r s	Supply current in HALT mode ³⁾		<1	10	<1	10	μA
	Supply current in ACTIVE- HALT mode ⁴⁾	f _{OSC} = 16 MHz	350	Not guaran- teed	45	100	μA

Notes:

1. Data based on characterization results, tested in production at V_{DD} max. and f_{CPU} max.

2. Measurements are done in the following conditions:

- Progam executed from RAM, CPU running with RAM access. The increase in consumption when executing from Flash is 50%.

- All I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals in reset state.
- Clock input (OSC1) driven by external square wave.

- In SLOW and SLOW WAIT mode, f_{CPU} is based on f_{OSC} divided by 32.

To obtain the total current consumption of the device, add the clock source (Section 12.5.3) and the peripheral power consumption (Section 12.4.3).

3. All I/O pins in push-pull 0 mode (when applicable) with a static value at V_{DD} or V_{SS} (no load). Data based on characterization results, tested in production at V_{DD} max. and f_{CPU} max.

4. Data based on characterisation results, not tested in production. All I/O pins in push-pull 0 mode (when applicable) with a static value at V_{DD} or V_{SS} (no load); clock input (OSC1) driven by external square wave. To obtain the total current consumption of the device, add the clock source consumption (Section 12.5.3).

12.10 TIMER PERIPHERAL CHARACTERISTICS

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{OSC}},\,\text{and}\,\,T_{\text{A}}$ unless otherwise specified.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output...).

12.10.1 16-Bit Timer

57

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{w(ICAP)in}	Input capture pulse time		1			t _{CPU}
t _{res(PWM)}	PWM resolution time		2			t _{CPU}
		f _{CPU} =8MHz	250			ns
f _{EXT}	Timer external clock frequency		0		f _{CPU} /4	MHz
f _{PWM}	PWM repetition rate		0		f _{CPU} /4	MHz
Res _{PWM}	PWM resolution				16	bit

COMMUNICATION INTERFACE CHARACTERISTICS (Cont'd)

Figure 76. SPI Slave Timing Diagram with CPHA=1¹⁾

Figure 77. SPI Master Timing Diagram 1)

Notes:

<u>ل</u>حک

1. Measurement points are done at CMOS levels: $0.3 x V_{DD}$ and $0.7 x V_{DD}.$

2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends of the I/O port configuration.

12.12 10-BIT ADC CHARACTERISTICS

Subject to general operating conditions for V_{DD}, f_{CPU}, and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{ADC}	ADC clock frequency		0.4		1	MHz
V _{AREF}	Analog reference voltage 1)		V_{DD}		V _{DD}	V
V _{AIN}	Conversion voltage range ²⁾		V _{SSA}		V _{AREF}	v
l _{lkg}	Positive input leakage current for analog input	-40°C≤T _A ≤85°C range			1	μA
	ROM devices: negative input leakage current on analog pins ⁵⁾	V_{IN} < $V_{SS,}$ I_{IN} < 400 μ A on adjacent analog pin		5	6	μA
R _{AIN}	External input impedance				see	kΩ
C _{AIN}	External capacitor on analog input				Figure 78	pF
f _{AIN}	Variation freq. of analog input signal				Figure 79 ²⁾³⁾⁴⁾	Hz
C _{ADC}	Internal sample and hold capacitor			12		pF
t _{ADC}	Conversion time (Sample+Hold) f _{CPU} =4MHz, SPEED=0 f _{ADC} =1MHz			15		μs
t _{ADC}	- No of sample capacitor loading cycles - No. of Hold conversion cycles			4 11		1/f _{ADC}

Figure 78. R_{AIN} max. vs f_{ADC} with C_{AIN}=0pF³⁾

Figure 79. Recommended C_{AIN} & R_{AIN values}.⁴⁾

Notes:

1. When V_{AREF} and V_{SSA} pins are not available on the pinout, the ADC refers to V_{DD} and V_{SS} .

2. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than $10k\Omega$). Data based on characterization results, not tested in production.

C_{PARASITIC} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3pF). A high C_{PARASITIC} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.
This graph shows that depending on the input signal variation (f_{AIN}), C_{AIN} can be increased for stabilization time and decreased to allow the use of a larger serial resistor (R_{AIN}).

5. The analog inputs of ROM devices are designed to be negative current tolerant. On Flash devices, injecting negative current on any of the analog input pins significantly reduces the accuracy of any conversion being performed on any analog input.

Analog pins can be protected against negative injection by adding a Schottky diode (pin to ground). Injecting negative current on digital input pins degrades ADC accuracy especially if performed on a pin close to the analog input pins. Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 12.8 does not affect the ADC accuracy.

PACKAGE MECHANICAL DATA (Cont'd)

57/

Figure 85. 32-Pin Low Profile Quad Flat Package

DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont'd)

Table 27. Orderable Flash Device Types

57

Part Number	Package	Flash Memory (KBytes)	Temp. Range
ST72F324LK2T6		8	
ST72F324LK4T6	LQFP32	16	-40°C +85°C
ST72F324LK6T6		32	
ST72F324LK2T5		8	
ST72F324LK4T5		16	-10°C +85°C
ST72F324LK6T5		32	10 C +05 C
ST72F324LK6B5	SDIP32	32	
ST72F324LJ2T6		8	
ST72F324LJ4T6	LQFP44	16	-40°C +85°C
ST72F324LJ6T6		32	-
ST72F324LJ2T5		8	
ST72F324LJ4T5		16	-10°C +85°C
ST72F324LJ6T5		32	-
ST72F324LS2T6	LQFP48	8	-40°C +85°C
ST72F324LS4T6		16	-40 0 +05 0