

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1782-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The PIC16(L)F1782/3 are described within this data sheet. The block diagram of these devices are shown in Figure 1-1. The available peripherals are shown in Table 1-1, and the pin out descriptions are shown in Table 1-2.

	TABLE 1-1:	DEVICE	PERIPHERAL	SUMMARY
--	------------	--------	------------	---------

Peripheral	PIC16(L)F1782	PIC16(L)F1783	PIC16(L)F1784	PIC16(L)F1786	PIC16(L)F1787	PIC16(L)F1788	PIC16(L)F1789	
Analog-to-Digital Converter (ADC	C)	٠	•	•	٠	•	•	•
Fixed Voltage Reference (FVR)		•	•	•	•	•	•	•
Reference Clock Module		٠	•	•	٠	•	•	•
Temperature Indicator		٠	•	•	٠	•	•	•
Capture/Compare/PWM (CCP/E	CCP) Modules							
	CCP1	٠	•	•	٠	•	•	•
	CCP2	•	•	•	•	•	•	•
	CCP3			•	٠	•	•	•
Comparators								
	C1	•	•	•	•	•	•	•
	C2	٠	•	•	•	•	•	•
	C3	٠	•	•	•	•	•	•
	C4			•	•	•	•	•
Digital-to-Analog Converter (DAC	C)					-		
	(8-bit DAC) D1	٠	•	•	•	•	•	•
	(5-bit DAC) D2							•
							•	
	(5-bit DAC) D4							•
Enhanced Universal Synchronous	s/Asynchronous F	Receiver/	/Transmi	tter (EUS	SART)			
	EUSART	٠	•	•	•	•	•	•
Master Synchronous Serial Ports	6							
	MSSP	•	•	•	•	•	•	•
Op Amp								
	Op Amp 1	•	•	•	•	•	•	•
	Op Amp 2	٠	•	•	•	•	•	•
	Op Amp 3			•		•		•
Programmable Switch Mode Cor	ntroller (PSMC)							
	PSMC1	٠	•	•	•	•	•	•
	PSMC2	٠	•	•	٠	•	•	•
	PSMC3			•	•	•	•	•
	PSMC4						•	•
Timers			1					
	Timer0	٠	•	•	٠	•	•	•
	Timer1	٠	•	•	•	•	•	•
	Timer2	•	•	•	•	•	•	•

TABLE 1-2: PIC16(L)F1782/3 PINOUTDESCRIPTION (CONTINUED)

RB0/AN12/C2IN1+/PSMC1IN/ PSMC2IN/CCP1 ⁽¹⁾ (INT RB0 TTL/ST CMOS General purpose I/O. PSMC2IN/CCP1 ⁽¹⁾ (INT AN12 AN — A/D Channel 12 input. C2IN14 AN ST — PSMC1 Event Trigger input. PSMC2IN/CCP1 ⁽¹⁾ (INT ST — PSMC2 Event Trigger input. CCP1 ST CMOS Gapture/Compare/PWM1. CND AN12 AN — External interrupt. RB1/AN10/C1IN3-/C2IN3-/ C3IN3-/OPA2OUT RB1 TTL/ST CMOS General purpose I/O. C3IN3-/OPA2OUT RB1 AN — Comparator C2 negative input. C2IN3- AN — Comparator C2 negative input. C3IN3-/OPA2IN-/CLKR RB2 TTL/ST CMOS General purpose I/O. RB2/AN8/OPA2IN-/CLKR RB2 TTL/ST CMOS General purpose I/O. RB3/AN9/C1IN2-/C2IN2-/ C3IN2- RB3 TTL/ST CMOS General purpose I/O. C3IN2-/OPA2IN-/CLKR RB3 TTL/ST CMOS General purpose I/O. C3IN2-/O	Name	Function	Input Type	Output Type	Description
PSMC2IN/CCP1 ¹¹ /INT AN12 AN1 — A/D Channel 12 input. C2IN14 AN — Comparator C2 positive input. PSMC2IN ST — PSMC2 Event Trigger input. CCP1 ST — PSMC2 Event Trigger input. CCP1 ST — External interrupt. RB1/AN10/C1IN3-/C2IN3-/ RB1 TL/ST CMOS General purpose I/O. C3IN3-/OPA2OUT RB1 TL/ST CMOS General purpose I/O. C3IN3-/OPA2OUT RB1 AN — Comparator C1 negative input. C2IN3- AN — Comparator C2 negative input. C3IN3-/OPA2IN-/CLKR RB2 TL/ST CMOS General purpose I/O. RB3/AN9/C1IN2-/CLKR RB2 TL/ST CMOS General purpose I/O. RB3/AN9/C1IN2-/CLKR RB3 TL/ST CMOS General purpose I/O. C3IN2- (OPA2IN+/CCP2 ⁽¹⁾) AN — Operational Amplifier 2 noverting input. C2IN2- AN — Comparator C1 negative input.	RB0/AN12/C2IN1+/PSMC1IN/	RB0	TTL/ST	CMOS	General purpose I/O.
Result AN	PSMC2IN/CCP1 ⁽¹⁾ /INT	AN12	AN	_	A/D Channel 12 input.
PSMC1IN ST — PSMC1 Event Trigger input. PSMC2IN ST — PSMC2 Event Trigger input. CCP1 ST CMOS Capture/Compare/PWM1. INT ST — External interrupt. RB1/AN10/C1IN3-/C2IN3-/ C3IN3-/OPA20UT RB1 TTL/ST CMOS General purpose I/O. C3IN3-/OPA20UT ANI — Comparator C1 negative input. C2IN3- AN — Comparator C2 negative input. C2IN3- AN — Comparator C2 negative input. C2IN3- AN — Comparator C3 negative input. C2IN3- AN — Comparator C3 negative input. C2IN3- AN — Comparator C3 negative input. C2IN3- AN — ANO Channel 3 input. C4NN AN — Operational Amplifier 2 output. C3IN2-/OPA2IN+/CLK2R RB3 TTL/ST CMOS General purpose I/O. C3IN2-/OPA2IN+/CCP2 ⁽¹⁾ RN — Comparator C3 negative input. C1IN2- <tr< td=""><td></td><td>C2IN1+</td><td>AN</td><td>_</td><td>Comparator C2 positive input.</td></tr<>		C2IN1+	AN	_	Comparator C2 positive input.
PSMC2IN ST — PSMC2 Event Trigger input. CCP1 ST CMCS Capture/Compare/PWM1. INT ST — External interrupt. RB1/AN10/C1N3-/C2IN3-/ C3IN3-/OPA2OUT RB1 TTUST CMOS General purpose I/O. C3IN3-/OPA2OUT AN10 AN — Comparator C1 negative input. C2IN3- AN — Comparator C3 negative input. C3IN3-/OPA2OUT — AN Operational Amplifier 2 output. C3IN3-/OPA2IN-/CLKR RB2 TTUST CMOS General purpose I/O. CARNO/CALVE/ RB2 TTUST CMOS General purpose I/O. AN8 AN — Operational Amplifier 2 output. CLKR — CMOS Glock output. RB3/AN9/C1N2-/C2IN2-/ C3IN2-/OPA2IN+/CCP2 ⁽¹⁾ RB3 TTUST CMOS Glock output. C3IN2-/OPA2IN+/CCP2 ⁽¹⁾ RB3 TTUST CMOS Glock output. C3IN2-/OPA2IN+/CCP2 ⁽¹⁾ AN — Comparator C1 negative input. C2IN2-		PSMC1IN	ST		PSMC1 Event Trigger input.
CCP1 ST CMOS Capture/Compare/PWM1. INT ST - External interrupt. RB1/AN10/C1IN3//C2IN3/ RB1 TTL/ST CMOS General purpose I/O. C3IN3-/OPA2OUT AN10 AN - A/D Channel 10 input. C1IN3- AN - Comparator C1 negative input. C2IN3- AN - Comparator C3 negative input. OPA2UT - AN Operational Amplifier 2 output. RB2/ANB/OPA2IN-/CLKR RB2 TTL/ST CMOS General purpose I/O. RB3/ANB/C1IN2-/CZIN2-/ AN8 AN - AD Channel 8 input. OPA2IN- AN - CMOS clock output. RB3/ANB/C1IN2-/CZIN2-/ AN AN - Operational Amplifier 2 inverting input. C1IN2- AN - Comparator C1 negative input. Clock output. C3IN2-/OPA2IN+/CCP2 ⁽¹⁾ RB3 TTL/ST CMOS General purpose I/O. C3IN2-/OPA2IN+/CCP2 ⁽¹⁾ RB3 AN - Comparator C3 negative input. <		PSMC2IN	ST	_	PSMC2 Event Trigger input.
INT ST — External interrupt. RB1/AN10/C1IN3-/C2IN3-/ C3IN3-/OPA2OUT RB1 TTLST CMOS General purpose I/O. C3IN3-/OPA2OUT AN10 AN — A/D Channel 10 input. C1IN3- AN — Comparator C1 negative input. C2IN3- AN — Comparator C3 negative input. C3IN3- AN — Comparator C1 negative input. C3IN3- AN — Comparator C1 negative input. C3IN3- AN — Comparator C1 negative input. C3IN3- AN — A/D Channel B input. OPA2IN- AN — Operational Amplifier 2 niverting input. C1IN2- AN — Operational Amplifier 2 niverting input. C2IN2- AN — Comparator C1 negative input. C3IN2-/OPA2IN+/CCP2 ⁽¹⁾ RB3 TTLST CMOS General purpose I/O. C3IN2- AN — Comparator C1 negative input. Comparator C1 negative input. C2IN2- AN — <t< td=""><td></td><td>CCP1</td><td>ST</td><td>CMOS</td><td>Capture/Compare/PWM1.</td></t<>		CCP1	ST	CMOS	Capture/Compare/PWM1.
RB1/AN10/C1IN3-/C2IN3-/ C3IN3-/OPA2OUT RB1 TTL/ST CMOS General purpose I/O. C3IN3-/OPA2OUT AN10 AN - AD Channel 10 input. C1IN3- AN - Comparator C1 negative input. C2IN3- AN - Comparator C3 negative input. C3IN3- AN - Operational Amplifier 2 output. RB2/AN8/OPA2IN-/CLKR RB2 TTL/ST CMOS General purpose I/O. RB3/AN9/C1IN2-/C2IN2-/ C3IN2-/OPA2IN+/CCP2 ⁽¹⁾ RB3 TTL/ST CMOS General purpose I/O. C3IN2-/OPA2IN+/CCP2 ⁽¹⁾ RB3 TTL/ST CMOS General purpose I/O. C3IN2-/OPA2IN+/CCP2 ⁽¹⁾ RB3 TTL/ST CMOS General purpose I/O. C3IN2-/OPA2IN+/CCP2 ⁽¹⁾ RB3 AN - Comparator C1 negative input. C1IN2- AN - Com		INT	ST		External interrupt.
	RB1/AN10/C1IN3-/C2IN3-/	RB1	TTL/ST	CMOS	General purpose I/O.
	C3IN3-/OPA2OUT	AN10	AN		A/D Channel 10 input.
C2IN3-ANComparator C2 negative input.C3IN3-ANComparator C3 negative input.C9IN3-ANANOperational Amplifier 2 output.RB2/AN8/OPA2IN-/CLKRRB2TTL/STCMOSGeneral purpose I/O.ADANAD Channel 8 input.OPA2IN-ANAD Channel 9 input.CLKRCMOSClock output.RB3/AN9/C1IN2-/C2IN2-/RB3TTL/STCMOSGIN2-/OPA2IN+/CCP2 ⁽¹⁾ RB3TTL/STCMOSC2IN2-ANComparator C1 negative input.C2IN2-ANComparator C2 negative input.C2IN2-ANComparator C3 negative input.C2N2-STCMOSGeneral purpose I/O.AN11/C3IN1+RB4TTL/STCMOSRB4/AN11/C3IN1+RB4TTL/STC30UTCMOSC30UT/T1G/SD0 ⁽¹⁾ RB5TTL/STCMOSGeneral purpose I/O.RB5/AN13/C3OUT/T1G/SD0 ⁽¹⁾ RB5TTL/STCMOSComparator C3 positive input.C30UTCMOSC30UTCMOSC30UTCMOSC30UTCMOSC30UT <td></td> <td>C1IN3-</td> <td>AN</td> <td>_</td> <td>Comparator C1 negative input.</td>		C1IN3-	AN	_	Comparator C1 negative input.
		C2IN3-	AN		Comparator C2 negative input.
OPA20UTANOperational Amplifier 2 output.RB2/AN8/OPA2IN-/CLKRRB2TTL/STCMOSGeneral purpose I/O.AN8ANA/D Channel 8 input.OPA2IN-ANOperational Amplifier 2 inverting input.CB/AN9/C1IN2-/C2IN2-/ C3IN2-/OPA2IN+/CCP2 ⁽¹⁾ RB3TTL/STCMOSGeneral purpose I/O.AN9ANA/D Channel 9 input.C1IN2-AN9ANA/D Channel 9 input.C1IN2-ANComparator C1 negative input.C2IN2-ANComparator C2 negative input.C2IN2-ANComparator C2 negative input.C2IN2-ANOperational Amplifier 2 non-inverting input.C2IN2-ANComparator C2 negative input.C2IN2-ANComparator C3 positive input.RB4/AN11/C3IN1+RB4TTL/STCMOSRB4/AN11/C3IN1+RB5TTL/STCMOSRB5/AN13/C3OUT/T1G/SD0 ⁽¹⁾ RB5TTL/STC3OUTCMOSComparator C3 output.T1GSTCMOSC3OUTCMOSC3OUTCMOSC3PCLKTXC3NCM		C3IN3-	AN		Comparator C3 negative input.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		OPA2OUT	—	AN	Operational Amplifier 2 output.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RB2/AN8/OPA2IN-/CLKR	RB2	TTL/ST	CMOS	General purpose I/O.
$ \begin{array}{ c c c c c } \hline PA2IN- AN - Operational Amplifier 2 inverting input. \\ \hline CLKR - CMOS Clock output. \\ \hline CLKR - CMOS Clock output. \\ \hline CLKR - CMOS General purpose I/O. \\ \hline CIN2-/OPA2IN+/CCP2^{(1)} & AN - A/D Channel 9 input. \\ \hline C1N2- AN - Comparator C1 negative input. \\ \hline C2IN2- AN - Comparator C2 negative input. \\ \hline C2IN2- AN - Comparator C3 negative input. \\ \hline C2IN2- AN - Comparator C3 negative input. \\ \hline C3IN2- AN - Comparator C3 negative input. \\ \hline C3IN2- AN - Operational Amplifier 2 non-inverting input. \\ \hline COPA2IN+ AN - Operational Amplifier 2 non-inverting input. \\ \hline CCP2 ST CMOS General purpose I/O. \\ \hline AN11 AN - A/D Channel 1 input. \\ \hline CCP2 ST CMOS General purpose I/O. \\ \hline AN11 AN - A/D Channel 1 input. \\ \hline C3IN1+ AN - Comparator C3 positive input. \\ \hline C3IN1+ AN - Comparator C3 positive input. \\ \hline C3IN1+ AN - A/D Channel 1 input. \\ \hline C3IN1+ AN - A/D Channel 1 input. \\ \hline C3OUT - CMOS General purpose I/O. \\ \hline AN13 AN - A/D Channel 1 input. \\ \hline C3OUT - CMOS General purpose I/O. \\ \hline AN13 AN - A/D Channel 1 input. \\ \hline C3OUT - CMOS General purpose I/O. \\ \hline AN13 AN - A/D Channel 1 input. \\ \hline C3OUT - CMOS Comparator C3 output. \\ \hline T1G ST - Timer1 gate input. \\ \hline C3OUT - CMOS SPI data output. \\ \hline RB6/TX^{(1)}/CK^{(1)}SDI^{(1)}/SDA^{(1)}/ RB6 TTL/ST CMOS General purpose I/O. \\ \hline AKB TL/ST CMOS General purpose I/O. \\ \hline AKB TL/ST CMOS General purpose I/O. \\ \hline CK ST CMOS USART asynchronous transmit. \\ \hline CK ST CMOS USART asynchronous clock. \\ \hline SDI ST - SPI data input. \\ \hline CK ST CMOS USART synchronous clock. \\ \hline SDI ST - SPI data input. \\ \hline CSPCLK ST - \\ \hline $		AN8	AN		A/D Channel 8 input.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		OPA2IN-	AN	_	Operational Amplifier 2 inverting input.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CLKR	—	CMOS	Clock output.
$ \begin{array}{cccc} \text{C3IN2-/OPA2IN+/CCP2}^{(1)} & \text{AN9} & \text{AN} & - & \text{A/D Channel 9 input.} \\ \hline \text{C1IN2-} & \text{AN} & - & \text{Comparator C1 negative input.} \\ \hline \text{C2IN2-} & \text{AN} & - & \text{Comparator C2 negative input.} \\ \hline \text{C2IN2-} & \text{AN} & - & \text{Comparator C3 negative input.} \\ \hline \text{C3IN2-} & \text{AN} & - & \text{Operational Amplifier 2 non-inverting input.} \\ \hline \text{CPA2IN+} & \text{AN} & - & \text{Operational Amplifier 2 non-inverting input.} \\ \hline \text{CCP2} & \text{ST} & \text{CMOS} & \text{Capture/Compare/PWM2.} \\ \hline \text{RB4/AN11/C3IN1+} & \text{RB4} & \text{TTL/ST} & \text{CMOS} & \text{General purpose I/O.} \\ \hline \text{AN11} & \text{AN} & - & \text{A/D Channel 11 input.} \\ \hline \text{C3IN1+} & \text{AN} & - & \text{Comparator C3 positive input.} \\ \hline \text{C3IN1+} & \text{AN} & - & \text{Comparator C3 positive input.} \\ \hline \text{RB5/AN13/C3OUT/T1G/SD0}^{(1)} & \text{RB5} & \text{TTL/ST} & \text{CMOS} & \text{General purpose I/O.} \\ \hline \text{AN13} & \text{AN} & - & \text{A/D Channel 13 input.} \\ \hline \text{C3OUT} & - & \text{CMOS} & \text{Comparator C3 output.} \\ \hline \text{T1G} & \text{ST} & - & \text{Timer1 gate input.} \\ \hline \text{C3OUT} & - & \text{CMOS} & \text{SPI data output.} \\ \hline \text{RB6/TX}^{(1)}/\text{CK}^{(1)}\text{SDI}^{(1)}\text{SDA}^{(1)} & \text{RB6} & \text{TTL/ST} & \text{CMOS} & \text{General purpose I/O.} \\ \hline \text{RB6/TX}^{(1)}\text{CK}^{(1)}\text{SDI}^{(1)}\text{SDA}^{(1)} & \text{RB6} & \text{TTL/ST} & \text{CMOS} & \text{SPI data output.} \\ \hline \text{CK} & \text{ST} & - & \text{CMOS} & \text{SPI data output.} \\ \hline \text{CK} & \text{ST} & \text{CMOS} & \text{USART asynchronous transmit.} \\ \hline \text{CK} & \text{ST} & \text{CMOS} & \text{USART synchronous clock.} \\ \hline \text{SDA} & \text{I}^2 \text{C} & \text{OD} & \text{I}^2 \text{CM} \text{ data input/output.} \\ \hline \ \text{ICSPCLK} & \text{ST} & - & \text{SPI data input.} \\ \hline \ \text{CK} & \text{ST} & - & \text{SPI data input.} \\ \hline \ \ \text{CK} & \text{ST} & - & \text{SPI data input.} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	RB3/AN9/C1IN2-/C2IN2-/	RB3	TTL/ST	CMOS	General purpose I/O.
C1IN2-ANComparator C1 negative input.C2IN2-ANComparator C2 negative input.C3IN2-ANComparator C3 negative input.OPA2IN+ANOperational Amplifier 2 non-inverting input.CCP2STCMOSCapture/Compare/PWM2.RB4/AN11/C3IN1+RB4TTL/STCMOSC3IN1+ANA/D Channel 11 input.C3IN1+ANComparator C3 positive input.RB5/AN13/C3OUT/T1G/SDO ⁽¹⁾ RB5TTL/STCMOSRB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ /RB5TTL/STCMOSComparator C3 output.T1GSTTimer1 gate input.RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ /RB6TTL/STCKSTCMOSGeneral purpose I/O.RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ /RB6TTL/STCMOSSPI data output.RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ /RB6CKSTCMOSCMOSSPI data output.CKKSTCMOSSDAI ² CODI ² C TM data input/output.CSPCLKSTSDAI ² CODSerial Programming Clock.	C3IN2-/OPA2IN+/CCP2 ⁽¹⁾	AN9	AN	_	A/D Channel 9 input.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C1IN2-	AN	_	Comparator C1 negative input.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		C2IN2-	AN	_	Comparator C2 negative input.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		C3IN2-	AN		Comparator C3 negative input.
CCP2 ST CMOS Capture/Compare/PWM2. RB4/AN11/C3IN1+ RB4 TTL/ST CMOS General purpose I/O. AN11 AN - A/D Channel 11 input. C3IN1+ AN - Comparator C3 positive input. RB5/AN13/C3OUT/T1G/SDO ⁽¹⁾ RB5 TTL/ST CMOS General purpose I/O. AN13 AN - A/D Channel 13 input. C3OUT - CMOS Comparator C3 output. T1G ST - Timer1 gate input. SDO - CMOS SPI data output. RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ / RB6 TTL/ST CMOS ICSPCLK TX - CMOS General purpose I/O. CK ST CMOS SPI data output. RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ / RB6 TTL/ST CMOS General purpose I/O. ICSPCLK ST CMOS USART asynchronous transmit. CK SDA I ² C OD I ² CTM data input. SPI data input.		OPA2IN+	AN		Operational Amplifier 2 non-inverting input.
RB4/AN11/C3IN1+ RB4 TTL/ST CMOS General purpose I/O. AN11 AN — A/D Channel 11 input. C3IN1+ AN — Comparator C3 positive input. RB5/AN13/C3OUT/T1G/SDO ⁽¹⁾ RB5 TTL/ST CMOS General purpose I/O. AN13 AN — A/D Channel 13 input. C3OUT — CMOS Comparator C3 output. T1G ST — A/D Channel 13 input. C3OUT — CMOS Comparator C3 output. T1G ST — Timer1 gate input. SDO — CMOS SPI data output. RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ / RB6 TTL/ST CMOS ICSPCLK TX — CMOS General purpose I/O. ICSPCLK ST — CMOS USART asynchronous transmit. CK ST CMOS USART synchronous clock. SDI ST — SPI data input. SDA I ² C OD I ² C™ data input/output. ICSPCLK ST — Serial Pro		CCP2	ST	CMOS	Capture/Compare/PWM2.
AN11 AN — A/D Channel 11 input. C3IN1+ AN — Comparator C3 positive input. RB5/AN13/C3OUT/T1G/SDO ⁽¹⁾ RB5 TTL/ST CMOS General purpose I/O. AN13 AN — A/D Channel 13 input. C3OUT — CMOS Comparator C3 output. T1G ST — Timer1 gate input. SDO — CMOS SPI data output. RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ / RB6 TTL/ST CMOS General purpose I/O. ICSPCLK TX — CMOS SPI data output. SDI ST — CMOS USART asynchronous transmit. CK ST CMOS USART synchronous clock. SDI ST — SPI data input. SDA I ² C OD I ² C TM data input. ICSPCLK ST — Serial Programming Clock.	RB4/AN11/C3IN1+	RB4	TTL/ST	CMOS	General purpose I/O.
C3IN1+ AN — Comparator C3 positive input. RB5/AN13/C3OUT/T1G/SDO ⁽¹⁾ RB5 TTL/ST CMOS General purpose I/O. AN13 AN — A/D Channel 13 input. C3OUT — CMOS Comparator C3 output. T1G ST — Timer1 gate input. SDO — CMOS SPI data output. RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDA ⁽¹⁾ / RB6 TTL/ST CMOS ICSPCLK TX — CMOS SDI ST CMOS SPI data output. CK ST CMOS USART asynchronous transmit. CK ST CMOS USART synchronous clock. SDI ST — SPI data input. SDA I ² C OD I ² C™ data input/output. ICSPCLK ST — Serial Programming Clock.		AN11	AN		A/D Channel 11 input.
RB5/AN13/C3OUT/T1G/SDO ⁽¹⁾ RB5 TTL/ST CMOS General purpose I/O. AN13 AN — A/D Channel 13 input. C3OUT — CMOS Comparator C3 output. T1G ST — Timer1 gate input. SDO — CMOS SPI data output. RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ / RB6 TTL/ST CMOS General purpose I/O. ICSPCLK TX — CMOS General purpose I/O. CK ST CMOS USART asynchronous transmit. CK ST CMOS USART synchronous clock. SDI ST — SPI data input. SDA I ² C OD I ² C™ data input/output. ICSPCLK ST — Serial Programming Clock.		C3IN1+	AN	_	Comparator C3 positive input.
AN13 AN — A/D Channel 13 input. C3OUT — CMOS Comparator C3 output. T1G ST — Timer1 gate input. SDO — CMOS SPI data output. RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ / RB6 TTL/ST CMOS General purpose I/O. ICSPCLK TX — CMOS USART asynchronous transmit. CK ST CMOS USART synchronous clock. SDI ST — SPI data input. SDA I ² C OD I ² C TM data input/output. ICSPCLK ST — Serial Programming Clock.	RB5/AN13/C3OUT/T1G/SDO ⁽¹⁾	RB5	TTL/ST	CMOS	General purpose I/O.
C3OUT — CMOS Comparator C3 output. T1G ST — Timer1 gate input. SDO — CMOS SPI data output. RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ / RB6 TTL/ST CMOS General purpose I/O. ICSPCLK TX — CMOS USART asynchronous transmit. CK ST CMOS USART synchronous clock. SDI ST — SPI data input. SDA I ² C OD I ² CT [™] data input/output. ICSPCLK ST — Serial Programming Clock.		AN13	AN		A/D Channel 13 input.
T1G ST — Timer1 gate input. SDO — CMOS SPI data output. RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ / RB6 TTL/ST CMOS General purpose I/O. ICSPCLK TX — CMOS USART asynchronous transmit. CK ST CMOS USART synchronous clock. SDI ST — SPI data input. SDA I ² C OD I ² C TM data input/output. ICSPCLK ST — Serial Programming Clock.		C3OUT		CMOS	Comparator C3 output.
SDO — CMOS SPI data output. RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ / RB6 TTL/ST CMOS General purpose I/O. ICSPCLK TX — CMOS USART asynchronous transmit. CK ST CMOS USART synchronous clock. SDI ST — SPI data input. SDA I ² C OD I ² C TM data input/output. ICSPCLK ST — Serial Programming Clock.		T1G	ST	_	Timer1 gate input.
RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ / RB6 TTL/ST CMOS General purpose I/O. ICSPCLK TX — CMOS USART asynchronous transmit. CK ST CMOS USART synchronous clock. SDI ST — SPI data input. SDA I ² C OD I ² C™ data input/output. ICSPCLK ST — Serial Programming Clock.		SDO	_	CMOS	SPI data output.
ICSPCLK TX — CMOS USART asynchronous transmit. CK ST CMOS USART synchronous clock. SDI ST — SPI data input. SDA I ² C OD I ² C™ data input/output. ICSPCLK ST — Serial Programming Clock.	RB6/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /SDA ⁽¹⁾ /	RB6	TTL/ST	CMOS	General purpose I/O.
CK ST CMOS USART synchronous clock. SDI ST — SPI data input. SDA I ² C OD I ² C [™] data input/output. ICSPCLK ST — Serial Programming Clock.	ICSPCLK	ТХ	—	CMOS	USART asynchronous transmit.
SDI ST — SPI data input. SDA I ² C OD I ² C [™] data input/output. ICSPCLK ST — Serial Programming Clock.		СК	ST	CMOS	USART synchronous clock.
SDA I ² C OD I ² C [™] data input/output. ICSPCLK ST — Serial Programming Clock.		SDI	ST		SPI data input.
ICSPCLK ST — Serial Programming Clock.		SDA	l ² C	OD	I ² C™ data input/output.
		ICSPCLK	ST		Serial Programming Clock.

Legend:AN = Analog input or outputCMOS = CMOS compatible input or outputOD= Open DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I²CHV = High VoltageXTAL = CrystalLevelsLevels

Note 1: Pin functions can be assigned to one of two locations via software. See Register 13-1.

2: All pins have Interrupt-on-Change functionality.

6.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to all external Oscillator modes (LP, XT, HS, EC, Timer1 Oscillator and RC).

Clock Monitor Latch Clock St Q Clock St Q Clock St Q Clock R Q Clock Clock Clock Clock Clock Failure Clock Clock Clock	FIGURE 6-9:	FSCM BLOCK DIAGRAM
	External Clock	Clock Monitor Latch St Q + 64 (~2 ms) Clock

6.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC by 64. See Figure 6-9. Inside the fail detector block is a latch. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A failure is detected when an entire half-cycle of the sample clock elapses before the external clock goes low.

6.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR2 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE2 register is also set. The device firmware can then take steps to mitigate the problems that may arise from a failed clock. The system clock will continue to be sourced from the internal clock source until the device firmware successfully restarts the external oscillator and switches back to external operation.

The internal clock source chosen by the FSCM is determined by the IRCF<3:0> bits of the OSCCON register. This allows the internal oscillator to be configured before a failure occurs.

6.5.3 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, executing a SLEEP instruction or changing the SCS bits of the OSCCON register. When the SCS bits are changed, the OST is restarted. While the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared after successfully switching to the external clock source. The OSFIF bit should be cleared prior to switching to the external clock source. If the Fail-Safe condition still exists, the OSFIF flag will again become set by hardware.

6.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an oscillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating.

Note: Due to the wide range of oscillator start-up times, the Fail-Safe circuit is not active during oscillator start-up (i.e., after exiting Reset or Sleep). After an appropriate amount of time, the user should check the Status bits in the OSCSTAT register to verify the oscillator start-up and that the system clock switchover has successfully completed.

REGISTER 8-7: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
		PSMC2TIF	PSMC1TIF		_	PSMC2SIF	PSMC1SIF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplement	ed: Read as '	0'				
bit 5	PSMC2TIF: F	SMC2 Time B	ase Interrupt F	-lag bit			
	1 = Interrupt i	s pending					
bit 4		S NOL PERUING	ana Intorrunt [-log bit			
DIL 4	1 = Interrunt i		ase interrupt i	lag bit			
	0 = Interrupt i	s not pending					
bit 3-2	Unimplement	ed: Read as '	0'				
bit 1	PSMC2SIF: F	SMC2 Auto-sh	nutdown Flag	bit			
	1 = Interrupt i	s pending					
	0 = Interrupt i	s not pending					
bit 0	t 0 PSMC1SIF: PSMC1 Auto-shutdown Flag bit						
1 = Interrupt is pending							
Note: Interrupt flag bits are set when an interrupt							
condition occurs, regardless of the state of							
Ena	able bit. GIE. o	f the INTCON	register.				
Use	er software	should ensu	ure the				
apr	appropriate interrupt flag bits are clear						
pric	prior to enabling an interrupt.						

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	79
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		174
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	80
PIE2	OSEIE	C2IE	C1IE	EEIE	BCL1IE		C3IE	CCP2IE	81
—	Unimplement	ed							
PIE4	—		PSMC2TIE	PSMC1TIE			PSMC2SIE	PSMC1SIE	82
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	83
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF		C3IF	CCP2IF	84
—	Unimplement	ted							
PIR4	_	_	PSMC2TIF	PSMC1TIF	_	_	PSMC2SIF	PSMC1SIF	85

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

REGISTER 13-7: ODCO NA: PORTA OPEN DRAIN CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared							

bit 7-0 ODA<7:0>: PORTA Open Drain Enable bits For RA<7:0> pins, respectively 1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 13-8: SLRCONA: PORT A SLEW RATE CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRA7 | SLRA6 | SLRA5 | SLRA4 | SLRA3 | SLRA2 | SLRA1 | SLRA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRA<7:0>: PORTA Slew Rate Enable bits For RA<7:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

REGISTER 13-9: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLA7 | INLVLA6 | INLVLA5 | INLVLA4 | INLVLA3 | INLVLA2 | INLVLA1 | INLVLA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

INLVLA<7:0>: PORTA Input Level Select bits

For RA<7:0> pins, respectively

 $\ensuremath{\mathtt{1}}$ = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

14.0 INTERRUPT-ON-CHANGE

All pins on all ports can be configured to operate as Interrupt-On-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual pin, or combination of pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- · Individual pin configuration
- Rising and falling edge detection
- Individual pin interrupt flags

Figure 14-1 is a block diagram of the IOC module.

14.1 Enabling the Module

To allow individual pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

14.2 Individual Pin Configuration

For each pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting the associated bits in both of the IOCxP and IOCxN registers.

14.3 Interrupt Flags

The bits located in the IOCxF registers are status flags that correspond to the Interrupt-on-change pins of each port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCxF bits.

14.4 Clearing Interrupt Flags

The individual status flags, (IOCxF register bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 14-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

14.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the affected IOCxF register will be updated prior to the first instruction executed out of Sleep.

17.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

- Note 1: The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.
 - 2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

17.1.6 RESULT FORMATTING

The 10-bit and 12-bit ADC conversion results can be supplied in two formats: 2's complement or sign-magnitude. The ADFM bit of the ADCON1 register controls the output format. Sign magnitude is left justified with the sign bit in the LSb position. Negative numbers are indicated when the sign bit is '1'.

Two's complement is right justified with the sign extended into the most significant bits.

Figure 17-3 shows the two output formats. Table 17-2 shows conversion examples.

FIGURE 17-3: ADC CONVERSION RESULT FORMAT

	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	'0'	'0'	'0'	Sign
ADFM = 0 ADRMD = 0	bit 7	II		I	I	I	I	bit 0	bit 7		I	1	I	<u>. </u>	<u> </u>	bit 0
					12-bit	ADC I	Result					L	oaded	with '	·0'	ر ا
12-bit 2's com	pliment															
	Bit 12	Bit 12	Bit 12	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADFM = 1 ADRMD = 0	bit 7							bit 0	bit 7							bit 0
	<u> </u>									\checkmark						
		Load	ed wit	h Sigr	ı bits'					12-bit	ADC	Result				
10-bit sign and	d magnitu	ıde														
10-bit sign and	d magnitu Bit 9	Ide Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	'0'	·0'	·0'	'0'	·0'	Sign
10-bit sign and ADFM = 0 ADRMD = 1	d magnitu Bit 9 bit 7	Ide Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 bit 0	Bit 1 bit 7	Bit 0	'0'	ʻ0'	'0'	'0'	·0'	Sign bit 0
10-bit sign and ADFM = 0 ADRMD = 1	d magnitu Bit 9 bit 7	Ide Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 bit 0	Bit 1 bit 7	Bit 0	'0'	'0'	ʻ0'	'0'	·0'	Sign bit 0
10-bit sign and ADFM = 0 ADRMD = 1	d magnitu Bit 9 bit 7	Ide Bit 8	Bit 7	Bit 6	Bit 5 10-bit	Bit 4	Bit 3	Bit 2 bit 0	Bit 1 bit 7	Bit 0	ʻ0'	'0' L	'0' oaded	'0' I with '	·0'	Sign bit 0
10-bit sign and ADFM = 0 ADRMD = 1 10-bit 2's com	d magnitu Bit 9 bit 7	Ide Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 bit 0	Bit 1 bit 7	Bit 0	·0'	'0'	'0' oaded	'0' I with '	·0'	Sign bit 0
10-bit sign and ADFM = 0 ADRMD = 1 10-bit 2's com	d magnitu Bit 9 bit 7 pliment Bit 10	Ide Bit 8 Bit 10	Bit 7 Bit 10	Bit 6 Bit 10	Bit 5 10-bit Bit 10	Bit 4 ADC	Bit 3 Result Bit 9	Bit 2 bit 0 Bit 8	Bit 1 bit 7 Bit 7	Bit 0 Bit 6	'0' Bit 5	'0'	°0' oaded Bit 3	'0' with ' Bit 2	'0' '0' Bit 1	Sign bit 0
10-bit sign and ADFM = 0 ADRMD = 1 10-bit 2's com ADFM = 1 ADRMD = 1	d magnitu Bit 9 bit 7 pliment Bit 10 bit 7	Bit 8	Bit 7 Bit 10	Bit 6	Bit 5	Bit 4 ADC	Bit 3 Result Bit 9	Bit 2 bit 0 Bit 8 bit 0	Bit 1 bit 7 Bit 7 bit 7	Bit 0 Bit 6	'0' Bit 5	'0' L	°0' oaded Bit 3	°0' with ' Bit 2	'0' '0' Bit 1	Sign bit 0 Bit 0 bit 0
10-bit sign and ADFM = 0 ADRMD = 1 10-bit 2's com ADFM = 1 ADRMD = 1	d magnitu Bit 9 bit 7 pliment Bit 10 bit 7	Ide Bit 8 Bit 10	Bit 7 Bit 10	Bit 6	Bit 5	Bit 4 ADC	Bit 3 Result Bit 9	Bit 2 bit 0 Bit 8 bit 0	Bit 1 bit 7 Bit 7 bit 7	Bit 0	'0' Bit 5	'0' L Bit 4	°0' oaded Bit 3	'0'	'0' '0' Bit 1	Sign bit 0 Bit 0 bit 0

1

REGISTER 17-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
	ADS	SIGN			AD<	11:8>		
bit 7							bit 0	
Legend:								
R = Readable b	it	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-4	ADSIGN : Extended AD Result Sign bit
bit 3-0	AD<11:8>: ADC Result Register bits
	Most Significant 4 bits of 12-bit conversion result

REGISTER 17-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM =

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
	AD<7:0>						
bit 7	bit 7 bit 0						

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 AD<7:0>: ADC Result Register bits Least Significant 8 bits of 12-bit conversion result

19.6 Register Definitions: DAC Control

REGISTER 19-1:	DACCONO: VOLTAGE RE	FERENCE CONTROL REGISTER O	

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	
DACEN	—	DACOE1	DACOE2	DACPS	SS<1:0>	—	DACNSS	
bit 7		•					bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplem	ented bit, read a	as '0'		
u = Bit is uncha	inged	x = Bit is unkno	own	-n/n = Value a	t POR and BOR	/Value at all ot	ner Resets	
'1' = Bit is set		'0' = Bit is clea	red					
bit 7	Dit 7 DACEN: DAC Enable bit 1 = DAC is enabled 0 = DAC is disabled							
bit 6	Unimplemente	ed: Read as '0'						
bit 5	DACOE1: DAC 1 = DAC volta 0 = DAC volta	C Voltage Outpu age level is also age level is disc	it 1 Enable bit an output on t onnected from	he DACOUT1 p the DACOUT1	in pin			
bit 4	DACOE2: DAC 1 = DAC volta 0 = DAC volta	C Voltage Outpu age level is also age level is disc	it 2 Enable bit an output on t onnected from	he DACOUT2 p the DACOUT2	in pin			
bit 3-2 DACPSS<1:0>: DAC Positive Source Select bits 11 = Reserved, do not use 10 = FVR Buffer2 output 01 = VREF+ pin 00 = VDD								
bit 1	Unimplement	ed: Read as '0'	_					
bit 0	DACNSS: DAC Negative Source Select bits 1 = VREF- pin 0 = Vss							

REGISTER 19-2: DACCON1: VOLTAGE RE FERENCE CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			DACF	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bi	it	W = Writable bi	t	U = Unimplem	ented bit, read a	as 'O'	
u = Bit is unchanged x = Bit is unknown			wn	-n/n = Value a	t POR and BOR	/Value at all oth	er Resets
'1' = Bit is set		'0' = Bit is clear	ed				

bit 7-0 DACR<7:0>: DAC Voltage Output Select bits

20.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- Programmable Speed/Power optimization
- · PWM shutdown
- · Programmable and fixed voltage reference

20.1 Comparator Overview

A single comparator is shown in Figure 20-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

The comparators available for this device are located in Table 20-1.

TABLE 20-1: COMPARATOR AVAILABILITY PER DEVICE

Device	C1	C2	С3
PIC16(L)F1782	•	•	•
PIC16(L)F1783	•	•	•

REGISTER 24-9: PSMCxREBS: PSMC RI SING EDGE BLANKED SOURCE REGISTER

R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
PxREBSIN	—	_	—	PxREBSC3	PxREBSC2	PxREBSC1	—
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable bit	:	U = Unimpleme	ented bit, read as '()'	
u = Bit is unchan	iged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/Va	lue at all other Re	esets
'1' = Bit is set		'0' = Bit is cleare	ed				
bit 7 PxREBSIN: PSMCx Rising Edge Event Blanked from PSMCxIN pin 1 = PSMCxIN pin cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = PSMCxIN pin is not blanked						NK register	
bit 6-4	Unimplemente	d: Read as '0'					
bit 3	PxREBSC3: PS 1 = sync_C30 0 = sync_C30	SMCx Rising Edge OUT cannot caus OUT is not blanke	e Event Blanked e a rising or fall ed	d from sync_C3O ing event for the c	UT duration indicated	by the PSMCxBL	NK register
bit 2	bit 2 PxREBSC2: PSMCx Rising Edge Event Blanked from sync_C2OUT 1 = sync_C2OUT cannot cause a rising or falling event for the duration indicated by the PSMCxBLNK register 0 = sync_C2OUT is not blanked						NK register
bit 1	PxREBSC1: PSMCx Rising Edge Event Blank 1 = sync_C1OUT cannot cause a rising or f 0 = sync_C1OUT is not blanked			d from sync_C1O ing event for the c	UT duration indicated	by the PSMCxBL	NK register
bit 0	Unimplemented: Read as '0'						

REGISTER 24-10: PSMCxFEBS: PSMC FALLING EDGE BLANKED SOURCE REGISTER

R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
PxFEBSIN	—	—	—	PxFEBSC3	PxFEBSC2	PxFEBSC1	—
bit 7	-	-				-	bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchan	ged x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	
bit 7	PxFEBSIN: PSMCx Falling Edge Event Blanked 1 = PSMCxIN pin cannot cause a rising or fall 0 = PSMCxIN pin is not blanked	d from PSMCxIN pin ing event for the duration indicated by the PSMCxBLNK register
bit 6-4	Unimplemented: Read as '0'	
bit 3	PxFEBSC3: PSMCx Falling Edge Event Blanke 1 = sync_C3OUT cannot cause a rising or fall 0 = sync_C3OUT is not blanked	d from sync_C3OUT ing event for the duration indicated by the PSMCxBLNK register
bit 2	PxFEBSC2: PSMCx Falling Edge Event Blanke 1 = sync_C2OUT cannot cause a rising or fall 0 = sync_C2OUT is not blanked	d from sync_C2OUT ing event for the duration indicated by the PSMCxBLNK register
bit 1	PxFEBSC1: PSMCx Falling Edge Event Blanke 1 = sync_C1OUT cannot cause a rising or fall 0 = sync_C1OUT is not blanked	d from sync_C1OUT ing event for the duration indicated by the PSMCxBLNK register
bit 0	Unimplemented: Read as '0'	

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
PxTOVIE	PxTPHIE	PxTDCIE	PxTPRIE	PxTOVIF	PxTPHIF	PxTDCIF	PxTPRIF			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is cleared								
bit 7	PxTOVIE : PS	SMC Time Base	e Counter Ove	erflow Interrupt	Enable bit					
	1 = Time ba	ise counter ove	oflow interrup	ts are enabled						
	0 = Time ba	ise counter ove	rflow interrup	ts are disabled						
bit 6	PxTPHIE : PS	MC Time Base	e Phase Interr	upt Enable bit						
	1 = Time ba	ise phase mato	h interrupts a	re enabled						
	0 = Time ba	ise phase matc	h interrupts a	re disabled						
bit 5	PxTDCIE : PSMC Time Base Duty Cycle Interrupt Enable bit									
	1 = Ime ba	ise duty cycle n	natch interrup	ts are enabled						
hit 4	U = Time base duty cycle match interrupts are disabled									
DIL 4	TATERIE - FOWD TIME Dase Pendu Interrupt Enable bit									
	0 = Time ba	 If the base period match interrupts are enabled Time base period match interrupts are disabled 								
bit 3	PxTOVIF : PSMC Time Base Counter Overflow Interrupt Flag bit									
	1 = The 16-bit PSMCxTMR has overflowed from FFFFh to 0000h									
	0 = The 16-	bit PSMCxTMF	R counter has	not overflowed						
bit 2	PxTPHIF : PSMC Time Base Phase Interrupt Flag bit									
	1 = The 16-bit PSMCxTMR counter has matched PSMCxPH<15:0>									
	0 = The 16-	bit PSMCxTMF	R counter has	not matched P	SMCxPH<15:0	>				
bit 1	PxTDCIF : PSMC Time Base Duty Cycle Interrupt Flag bit									
	1 = The 16-	bit PSMCxTMF	R counter has	matched PSM	CxDC<15:0>					
	0 = The 16-		R counter has	not matched P	SMCxDC<15:0	>				
Dit Ü	PXTPRIF : PS	MC Time Base	Period Interr	upt Flag bit						
	1 = 1 Ine 16 I		counter has	matched PSM	UXPR<15:0> SMCvDD<15:0	`				
			Counter nas	not matched P		-				

REGISTER 24-32: PSMCxINT: PSMC TIME BASE INTERRUPT CONTROL REGISTER

26.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSPCON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

26.5.6.1 Normal Clock Stretching

Following an \overline{ACK} if the R/ \overline{W} bit of SSPSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPBUF with data to transfer to the master. If the SEN bit of SSPCON2 is set, the slave hardware will always stretch the clock after the \overline{ACK} sequence. Once the slave is ready; CKP is set by software and communication resumes.

- Note 1: The BF bit has no effect on if the clock will be stretched or not. This is different than previous versions of the module that would not stretch the clock, clear CKP, if SSPBUF was read before the 9th falling edge of SCL.
 - 2: Previous versions of the module did not stretch the clock for a transmission if SSPBUF was loaded before the 9th falling edge of SCL. It is now always cleared for read requests.

26.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSPADD.

Note:	Previous versions of the module did not								
	stretch the clock if the second address byte								
	did not match.								

26.5.6.3 Byte NACKing

When AHEN bit of SSPCON3 is set; CKP is cleared by hardware after the 8th falling edge of SCL for a received matching address byte. When DHEN bit of SSPCON3 is set; CKP is cleared after the 8th falling edge of SCL for received data.

Stretching after the 8th falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

26.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 26-22).

FIGURE 26-23: CLOCK SYNCHRONIZATION TIMING

26.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 26-29).

26.6.8.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

26.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSP1IF bit is set (Figure 26-30).

26.6.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 26-30: ACKNOWLEDGE SEQUEN CE WAVEFORM

REGISTER 26-3: SSPCON2: SSP CONTROL REGISTER 2

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

Legend:								
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cleared	HC = Cleared by hardware S = User set					
bit 7	GCEN: Gene 1 = Enable in 0 = General c	ral Call Enable bit (in I ² C SI terrupt when a general call a all address disabled	ave mode only) address (0x00 or 00h) is received in the SSPSR					
bit 6	ACKSTAT: Acknowledge Status bit (in I ² C mode only) 1 = Acknowledge was not received 0 = Acknowledge was received							
bit 5	ACKDT: Acknowledge Data bit (in I ² C mode only) In Receive mode: Value transmitted when the user initiates an Acknowledge sequence at the end of a receive							
	1 = Not Acknowledge 0 = Acknowledge							
bit 4	ACKEN: Acknowledge Sequence Enable bit (in I ² C Master mode only)							
	<u>In Master Rec</u> 1 = Initiate A Automati 0 = Acknowle	<u>ceive mode:</u> Acknowledge sequence or cally cleared by hardware. edge sequence idle	n SDA and SCL pins, and transmit ACKDT data bit.					
bit 3	RCEN: Receive Enable bit (in I ² C Master mode only) 1 = Enables Receive mode for I ² C							
hit 2	PEN: Stop Co	une Andition Enable bit (in I ² C M	aster mode only)					
	SCKMSSP R	elease Control						
	1 = Initiate Sto 0 = Stop conc	op condition on SDA and SO lition Idle	CL pins. Automatically cleared by hardware.					
bit 1	RSEN: Repea 1 = Initiate R	ated Start Condition Enable epeated Start condition on S	bit (in I ² C Master mode only) SDA and SCL pins. Automatically cleared by hardware.					
	0 = Repeated	d Start condition Idle						
bit 0	SEN: Start Co	ondition Enable/Stretch Ena	ble bit					
	In Master mod 1 = Initiate Sta 0 = Start cond	<u>de:</u> art condition on SDA and S0 Jition Idle	CL pins. Automatically cleared by hardware.					
	In Slave mode 1 = Clock stre 0 = Clock stre	<u>e:</u> etching is enabled for both s etching is disabled	lave transmit and slave receive (stretch enabled)					
Note 1. Fra			the 1 ² C module is not in the Idle mode, this hit means the					

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit O	Register on Page
APFCON	C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	111
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	322
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	79
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	80
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	83
RCREG	EUSART Receive Data Register								
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	321
SPBRGL	BRG<7:0>								
SPBRGH	BRG<15:8>								
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	125
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	320
				<u>-</u>					

TABLE 27-2: SUMMARY OF REGISTERS ASSO CIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception.

* Page provides register information.

FIGURE 28-3: TYPICAL CONNECT ION FOR ICSP PROGRAMMING

