

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1782-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-5: PIC16(L)F1782/3 MEMORY MAP (BANK 16 DETAILS)

	BANK 16		BANK 16
811h	PSMC1CON	831h	PSMC2CON
812h	PSMC1MDL	832h	PSMC2MDL
813h	PSMC1SYNC	833h	PSMC2SYNC
814h	PSMC1CLK	834h	PSMC2CLK
815h	PSMC10EN	835h	PSMC2OEN
816h	PSMC1POL	836h	PSMC2POL
817h	PSMC1BLNK	837h	PSMC2BLNK
818h	PSMC1REBS	838h	PSMC2REBS
819h	PSMC1FEBS	839h	PSMC2FEBS
81Ah	PSMC1PHS	83Ah	PSMC2PHS
81Bh	PSMC1DCS	83Bh	PSMC2DCS
81Ch	PSMC1PRS	83Ch	PSMC2PRS
81Dh	PSMC1ASDC	83Dh	PSMC2ASD0
81Eh	PSMC1ASDD	83Eh	PSMC2ASDE
81Fh	PSMC1ASDS	83Fh	PSMC2ASDS
820h	PSMC1INT	840h	PSMC2INT
821h	PSMC1PHL	841h	PSMC2PHL
822h	PSMC1PHH	842h	PSMC2PHH
823h	PSMC1DCL	843h	PSMC2DCL
824h	PSMC1DCH	844h	PSMC2DCH
825h	PSMC1PRL	845h	PSMC2PRL
826h	PSMC1PRH	846h	PSMC2PRH
827h	PSMC1TMRL	847h	PSMC2TMRI
828h	PSMC1TMRH	848h	PSMC2TMRH
829h	PSMC1DBR	849h	PSMC2DBR
82Ah	PSMC1DBF	84Ah	PSMC2DBF
82Bh	PSMC1BLKR	84Bh	PSMC2BLKF
82Ch	PSMC1BLKF	84Ch	PSMC2BLKF
82Dh	PSMC1FFA	84Dh	PSMC1FFA
82Eh	PSMC1STR0	84Eh	PSMC2STR0
82Fh	PSMC1STR1	84Fh	PSMC2STR1
830h		840h	
		-	Unimplemente
			Read as '0'
		86Fh	

Legend: Unimplemented data memory locations, read as '0'.

PSMC2CON
PSMC2MDL
PSMC2SYNC
PSMC2CLK
PSMC2OEN
PSMC2POL
PSMC2BLNK
PSMC2REBS
PSMC2FEBS
PSMC2PHS
PSMC2DCS
PSMC2PRS
PSMC2ASDC
PSMC2ASDD
PSMC2ASDS
PSMC2INT
PSMC2PHL
PSMC2PHH
PSMC2DCL
PSMC2DCH
PSMC2PRL
PSMC2PRH
PSMC2TMRL
PSMC2TMRH
PSMC2DBR
PSMC2DBF
PSMC2BLKR
PSMC2BLKF
PSMC1FFA
PSMC2STR0
PSMC2STR1
Unimplemented

TABLE 3-6: PIC16(L)F1782/3 MEMORY MAP (BANK 31 DETAILS)

BANK 31

F8Ch FE3h	Unimplemented Read as '0'
	STATUS SHAD
FE411	01/100_011/2
FE5h	WREG_SHAD
FE6h	BSR_SHAD
FE7h	PCLATH_SHAD
FE8h	FSR0L_SHAD
FE9h	FSR0H_SHAD
FEAh	FSR1L_SHAD
FEBh	FSR1H_SHAD
FECh	_
FEDh	STKPTR
FEEh	TOSL
FEFh	TOSH

Legend: Unimplemented data memory locations, read as '0'.

IAB	LE 3-8:	SPECIAL	FUNCTIO	ON REGIS	IER SUMM	ARY (CC	NIINUEL))			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 4										
20Ch	WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	1111 1111	1111 1111
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	1111 1111	1111 1111
20Fh	_	Unimplemente	ed							—	—
210h	WPUE	_	—	—	-	WPUE3	—	_	_	1	1
211h	SSP1BUF	Synchronous	Serial Port Re	ceive Buffer/Tr	ansmit Register	•				XXXX XXXX	uuuu uuuu
212h	SSP1ADD		ADD<7:0>							0000 0000	0000 0000
213h	SSP1MSK				MSK<	:7:0>				1111 1111	1111 1111
214h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPN	/<3:0>		0000 0000	0000 0000
216h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h 21Fh	_	Unimplemente	ed							_	_
Ban	k 5	_								_	
28Ch	ODCONA	Open Drain Co	ontrol for POF	ATA						0000 0000	0000 0000
28Dh	ODCONB	Open Drain Co	ontrol for POF	RTB						0000 0000	0000 0000
28Eh	ODCONC	Open Drain C	ontrol for POF	RTC						0000 0000	0000 0000
28Fh	—	Unimplemente	ed							—	—
290h	—	Unimplemente	ed							—	—
291h	CCPR1L	Capture/Comp	bare/PWM Re	gister 1 (LSB)						XXXX XXXX	uuuu uuuu
292h	CCPR1H	Capture/Comp	pare/PWM Re	gister 1 (MSB)		1				XXXX XXXX	uuuu uuuu
293h	CCP1CON	—		DC1E	3<1:0>		CCP1	M<3:0>		00 0000	00 0000
294h 297h	_	Unimplemente	ed							_	—
298h	CCPR2L	Capture/Comp	oare/PWM Re	gister 2 (LSB)						XXXX XXXX	uuuu uuuu
299h	CCPR2H	Capture/Comp	bare/PWM Re	gister 2 (MSB)						XXXX XXXX	uuuu uuuu
29Ah	CCP2CON	-	_	DC2E	3<1:0>		CCP2	M<3:0>		00 0000	00 0000
29Bh 29Fh	_	Unimplemente	ed							_	_
Ban	k 6										
30Ch	SLRCONA	Slew Rate Co	ntrol for PORT	TA						0000 0000	0000 0000
30Dh	SLRCONB	Slew Rate Co	ntrol for PORT	ГВ						0000 0000	0000 0000
30Eh	SLRCONC	Slew Rate Co	ntrol for PORT	ſC						0000 0000	0000 0000

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. These registers can be addressed from any bank. Unimplemented, read as '1'. PIC16F1782/3 only. Legend:

Note

Unimplemented

1:

2: 3:

30Fh

31Fh

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 FOSC<2:0>: Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin
 - 110 = ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin
 - 101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin
 - 100 = INTOSC oscillator: I/O function on CLKIN pin
 - 011 = EXTRC oscillator: External RC circuit connected to CLKIN pin
 - 010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins
 - 001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins
 - 000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins
- **Note 1:** The entire data EEPROM will be erased when the code protection is turned off during an erase.Once the Data Code Protection bit is enabled, (CPD = 0), the Bulk Erase Program Memory Command (through ICSP) can disable the Data Code Protection (CPD =1). When a Bulk Erase Program Memory Command is executed, the entire Program Flash Memory, Data EEPROM and configuration memory will be erased.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
BORCON	SBOREN	BORFS			_	_	_	BORRDY	47		
PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	51		
STATUS	—	_	_	TO	PD	Z	DC	С	18		
WDTCON	—			WDTPS<4:0>					94		

TABLE 5-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

REGISTER 13-27: WPUE: WEAK PULL-UP PORTE REGISTER

U-0	U-0	U-0	U-0	R/W-1/1	U-0	U-0	U-0		
—	—	—	_	WPUE3	—	_	_		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-4	Unimplemen	ted: Read as '	0'						
bit 3	t 3 WPUE3: Weak Pull-up Register bit								
1 = Pull-up enabled									
	0 = Pull-up di	sabled							

bit 2-0 Unimplemented: Read as '0'

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 13-28: INLVLE: PORTE INPUT LEVEL CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-1/1	U-0	U-0	U-0
_	_	—	—	INLVLE3	_	—	—
bit 7		•				•	bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'
bit 3	INLVLE3: PORTE Input Level Select bit ⁽¹⁾
	1 = ST input used for PORT reads and interrupt-on-change
	0 = TTL input used for PORT reads and interrupt-on-change
bit 2-0	Unimplemented: Read as '0'

TABLE 13-9: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	ADRMD			CHS<4:0>	GO/DONE	ADON	147		
INLVLE	—	_	—	—	INLVLE3	—	—		130
PORTE	—	—	—	—	RE3	—	—	_	129
TRISE	—	—	—	—	_(1)	—	—	_	129
WPUE	_	_	_	_	WPUE3	_	_		130

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTE.

Note 1: Unimplemented, read as '1'.

2: PIC16(L)F1783 only

24.7 Auto-Shutdown

Auto-shutdown is a method to immediately override the PSMC output levels with specific overrides that allow for safe shutdown of the application.

Auto-shutdown includes a mechanism to allow the application to restart under different conditions.

Auto-shutdown is enabled with the PxASDEN bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 24-14). All auto-shutdown features are enabled when PxASDEN is set and disabled when cleared.

24.7.1 SHUTDOWN

There are two ways to generate a shutdown event:

- Manual
- External Input

24.7.1.1 Manual Override

The auto-shutdown control register can be used to manually override the pin functions. Setting the PxASE bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 24-14) generates a software shut-down event.

The auto-shutdown override will persist as long as PxASE remains set.

24.7.1.2 External Input Source

Any of the given sources that are available for event generation are also available for system shut-down. This is so that external circuitry can monitor and force a shutdown without any software overhead. Auto-shutdown sources are selected with the PSMC Auto-shutdown Source (PSMCxASDS) register (Register 24-16).

When any of the selected external auto-shutdown sources go high, the PxASE bit is set and an auto-shutdown interrupt is generated.

Note: The external shutdown sources are level sensitive, not edge sensitive. The shutdown condition will persist as long as the circuit is driving the appropriate logic level.

24.7.2 PIN OVERRIDE LEVELS

The logic levels driven to the output pins during an auto-shutdown event are determined by the PSMC Auto-shutdown Output Level (PSMCxASDL) register (Register 24-15).

24.7.2.1 PIN Override Enable

Setting the PxASDOV bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 24-14) will also force the override levels onto the pins, exactly like what happens when the auto-shutdown is used. However, whereas setting PxASE causes an auto-shutdown interrupt, setting PxASDOV does not generate an interrupt.

24.7.3 RESTART FROM AUTO-SHUTDOWN

After an auto-shutdown event has occurred, there are two ways for the module to resume operation:

- Manual restart
- Automatic restart

The restart method is selected with the PxARSEN bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 24-14).

24.7.3.1 Manual Restart

When PxARSEN is cleared, and once the PxASDE bit is set, it will remain set until cleared by software.

The PSMC will restart on the period event after PxASDE bit is cleared in software.

24.7.3.2 Auto-Restart

When PxARSEN is set, the PxASDE bit will clear automatically when the source causing the Reset and no longer asserts the shut-down condition.

The PSMC will restart on the next period event after the auto-shutdown condition is removed.

Examples of manual and automatic restart are shown in Figure 24-20.

Note: Whether manual or auto-restart is selected, the PxASDE bit cannot be cleared in software when the auto-shutdown condition is still present.

26.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 26-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPCON1 register and the CKE bit of the SSPSTAT register. This then, would give waveforms for SPI communication as shown in Figure 26-6, Figure 26-8 and Figure 26-9, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPADD + 1))

Figure 26-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

Write to SSPBUF SCK (CKP = 0 $\dot{C}KE = 0$) SCK (CKP = 1 $\dot{C}KE = 0$) 4 Clock Modes SCK (CKP = 0 CKE = 1) SCK (CKP = 1 CKE = 1) bit 6 bit 2 SDO bit 7 bit 5 bit 4 bit 3 bit 1 bit 0 (CKE = 0) bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 SDO (CKE = 1) SDI (SMP = 0) bit 7 bit 0 Input Sample (SMP = 0)SDI (SMP = 1) bit 7 hi 0 Input Sample (SMP = 1)1 SSP1IF SSPSR to SSPBUF

26.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPSTAT register is set, or bit SSPOV of the SSPCON1 register is set. The BOEN bit of the SSPCON3 register modifies this operation. For more information see Register 26-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSP1IF, must be cleared by software.

When the SEN bit of the SSPCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPCON1 register, except sometimes in 10-bit mode. See Section 26.2.3 "SPI Master Mode" for more detail.

26.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an I^2C Slave in 7-bit Addressing mode. All decisions made by hardware or software and their effect on reception. Figure 26-13 and Figure 26-14 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPSTAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/W bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSP1IF bit.
- 5. Software clears the SSP1IF bit.
- 6. Software reads received address from SSPBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- Slave drives SDA low sending an ACK to the master, and sets SSP1IF bit.
- 10. Software clears SSP1IF.
- 11. Software reads the received byte from SSPBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSPSTAT, and the bus goes idle.

26.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the 8th falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 26-15 displays a module using both address and data holding. Figure 26-16 includes the operation with the SEN bit of the SSPCON2 register set.

- 1. S bit of SSPSTAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSP1IF is set and CKP cleared after the 8th falling edge of SCL.
- 3. Slave clears the SSP1IF.
- Slave can look at the ACKTIM bit of the SSPCON3 register to determine if the SSP1IF was after or before the ACK.
- 5. Slave reads the address value from SSPBUF, clearing the BF flag.
- Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSP1IF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.
- 10. Slave clears SSP1IF.
- Note: SSP1IF is still set after the 9th falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSP1IF not set
- 11. SSP1IF set and CKP cleared after 8th falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.

26.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPCON3 register enables additional clock stretching and interrupt generation after the 8th falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSP1IF interrupt is set.

Figure 26-18 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

- 1. Bus starts Idle.
- Master sends Start condition; the S bit of SSPSTAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the 8th falling edge of the SCL line the CKP bit is cleared and SSP1IF interrupt is generated.
- 4. Slave software clears SSP1IF.
- Slave software reads ACKTIM bit of SSPCON3 register, and R/W and D/A of the SSPSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCL.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSP1IF after the ACK if the R/W bit is set.
- 11. Slave software clears SSP1IF.
- 12. Slave loads value to transmit to the master into SSPBUF setting the BF bit.

Note: SSPBUF cannot be loaded until after the ACK.

13. Slave sets the CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCL pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not \overline{ACK} the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCL line to receive a Stop.

26.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDA when SCL goes from low level to high level.
- SCL goes low before SDA is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user releases SDA and the pin is allowed to float high, the BRG is loaded with SSPADD and counts down to zero. The SCL pin is then deasserted and when sampled high, the SDA pin is sampled. If SDA is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 26-35). If SDA is sampled high, the BRG is reloaded and begins counting. If SDA goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDA at exactly the same time.

If SCL goes from high-to-low before the BRG times out and SDA has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 26-36.

If, at the end of the BRG time-out, both SCL and SDA are still high, the SDA pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCL pin, the SCL pin is driven low and the Repeated Start condition is complete.

FIGURE 26-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0		
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D		
bit 7		1	1	1		<u> </u>	bit 0		
L									
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all of	her Resets		
'1' = Bit is set		'0' = Bit is clea	t is cleared						
bit 7	SPEN: Serial	Port Enable bit	t						
	1 = Serial po	rt enabled (con	figures RX/D	T and TX/CK p	oins as serial po	rt pins)			
hit C		rt disabled (nei	a in Reset)						
DIL O		bit recention	IL						
	0 = Selects 8	B-bit reception							
bit 5	SREN: Single	Receive Enab	le bit						
	Asynchronous	<u>s mode</u> :							
	Don't care								
	<u>Synchronous</u>	mode – Maste	<u>r</u> :						
	1 = Enables	single receive							
	0 = Disables	single receive	ntion is compl	ete					
	Synchronous	<u>mode – Slave</u>							
	Don't care								
bit 4	CREN: Contir	nuous Receive	Enable bit						
	Asynchronous	<u>s mode</u> :							
	1 = Enables	receiver							
	0 = Disables	receiver							
	1 - Enables	<u>moue</u> . continuous rec	aiva until anal	hle hit CREN is	cleared (CREN	l overrides SPE	ENI)		
	0 = Disables	continuous rec	eive			overnues Sill			
bit 3	ADDEN: Add	ress Detect En	able bit						
	Asynchronous	<u>s mode 9-bit (R</u>	X9 = 1):						
	1 = Enables	address detect	ion, enable in	terrupt and loa	d the receive bu	uffer when RSR	<8> is set		
	0 = Disables	address detect	tion, all bytes	are received a	nd ninth bit can	be used as par	ity bit		
	Asynchronous	<u>s mode 8-bit (R</u>	(X9 = 0):						
hit 0	EERD. Frami	na Errar hit							
DIL Z	1 - Framing	orror (can be u	ndated by rec		rogistor and roc	oivo poxt valid k	avto)		
	0 = No framing	ng error	pualed by lea		register and rec		Jyle)		
bit 1	OERR: Overr	un Error bit							
	1 = Overrun 0 = No overr	error (can be cl un error	eared by clea	aring bit CREN)				
bit 0	RX9D: Ninth	bit of Received	Data						
	This can be a	ddress/data bit	or a parity bit	t and must be	calculated by us	er firmware.			

REGISTER 27-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

27.4.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPBRGH:SPBRGL register pair. After the ABDOVF bit has been set, the counter continues to count until the fifth rising edge is detected on the RX pin. Upon detecting the fifth RX edge, the hardware will set the RCIF interrupt flag and clear the ABDEN bit of the BAUDCON register. The RCIF flag can be subsequently cleared by reading the RCREG register. The ABDOVF flag of the BAUDCON register can be cleared by software directly.

To terminate the auto-baud process before the RCIF flag is set, clear the ABDEN bit then clear the ABDOVF bit of the BAUDCON register. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

27.4.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 27-7), and asynchronously if the device is in Sleep mode (Figure 27-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

27.4.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be ten or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared in hardware by a rising edge on RX/DT. The interrupt condition is then cleared in software by reading the RCREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

TABLE 30-6: CLOCK OSCILLATOR TIMING REQUIREMENTS

Param Sum Characteristic Min Turt Max Units Conditions									
No.	Sym.	Characteristic	WIIII.	iypi	Wax.	Units	Conditions		
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	0.5	MHz	EC Oscillator mode (low)		
			DC	_	4	MHz	EC Oscillator mode (medium)		
			DC	_	20	MHz	EC Oscillator mode (high)		
		Oscillator Frequency ⁽¹⁾		32.768		kHz	LP Oscillator mode		
			0.1	—	4	MHz	XT Oscillator mode		
			1	_	4	MHz	HS Oscillator mode		
			1	—	20	MHz	HS Oscillator mode, VDD > 2.7V		
			DC	—	4	MHz	RC Oscillator mode, VDD > 2.0V		
OS02	Tosc	External CLKIN Period ⁽¹⁾	27		×	μS	LP Oscillator mode		
			250	—	∞	ns	XT Oscillator mode		
			50	_	∞	ns	HS Oscillator mode		
			50	—	∞	ns	EC Oscillator mode		
		Oscillator Period ⁽¹⁾		30.5	_	μS	LP Oscillator mode		
			250	—	10,000	ns	XT Oscillator mode		
			50	—	1,000	ns	HS Oscillator mode		
			250	—	—	ns	RC Oscillator mode		
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc		
OS04*	TosH,	External CLKIN High,	2	_	—	μS	LP oscillator		
	TosL	External CLKIN Low	100	_	—	ns	XT oscillator		
			20	—	—	ns	HS oscillator		
OS05*	TosR,	External CLKIN Rise,	0		∞	ns	LP oscillator		
	TosF	External CLKIN Fall	0	—	∞	ns	XT oscillator		
			0	—	∞	ns	HS oscillator		

Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 30-19: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol Characteristic		Min.	Max.	Units	Conditions		
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before CK \downarrow (DT hold time)	10		ns			
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	_	ns			

TABLE 30-20: SPI MODE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)									
Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions		
SP70*	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	2.25*Tcy		—	ns			
SP71*	TscH	SCK input high time (Slave mode	Tcy + 20	Ι	-	ns			
SP72*	TscL	SCK input low time (Slave mode	Tcy + 20	_	—	ns			
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to S	100	_	—	ns			
SP74*	TscH2diL, TscL2diL	Hold time of SDI data input to SO	100	_	_	ns			
SP75*	TDOR	SDO data output rise time	3.0-5.5V	_	10	25	ns		
			1.8-5.5V	_	25	50	ns		
SP76*	TDOF	SDO data output fall time		_	10	25	ns		
SP77*	TssH2doZ	SS↑ to SDO output high-impeda	10	_	50	ns			
SP78*	TscR	SCK output rise time (Master mode)	3.0-5.5V	_	10	25	ns		
			1.8-5.5V	_	25	50	ns		
SP79*	TscF	SCK output fall time (Master mod	_	10	25	ns			
SP80*	TscH2doV, TscL2doV	V, SDO data output valid after V SCK edge	3.0-5.5V	_	_	50	ns		
			1.8-5.5V	_	_	145	ns		
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK e	Тсу	_	_	ns			
SP82*	TssL2DoV	SDO data output valid after $\overline{\text{SS}}\downarrow$	_		50	ns			
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40		_	ns		

Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-20: I²C[™] BUS START/STOP BITS TIMING

*

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-31: IDD, HS Oscillator, 32 MHz (8 MHz + 4x PLL), PIC16LF1782/3 Only.

FIGURE 31-32: IDD, HS Oscillator, 32 MHz (8 MHz + 4x PLL), PIC16F1782/3 Only.

FIGURE 31-33: IPD Base, LP Sleep Mode, PIC16LF1782/3 Only.

FIGURE 31-34: IPD Base, LP Sleep Mode (VREGPM = 1), PIC16F1782/3 Only.

FIGURE 31-35: IPD, Watchdog Timer (WDT), PIC16LF1782/3 Only.

FIGURE 31-36: IPD, Watchdog Timer (WDT), PIC16F1782/3 Only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 31-55: VOH vs. IOH Over Temperature, VDD = 1.8V, PIC16LF1782/3 Only.

Temperature, VDD = 1.8V, PIC16LF1782/3 Only.

FIGURE 31-57: LFINTOSC Frequency, PIC16LF1782/3 Only.

FIGURE 31-58: LFINTOSC Frequency, PIC16F1782/3 Only.

PIC16F1782/3 Only.

FIGURE 31-60: WDT Time-Out Period PIC16LF1782/3 Only.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2