

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1783-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN ALLOCATION TABLE

		••	-	•••••											
0/1	28-Pin SPDIP, SOIC, SSOP	28-Pin QFN, UQFN	ADC	ADC Reference	Comparator	Operation Amplifiers	8-bit DAC	Timers	PSMC	сср	EUSART	MSSP	Interrupt	Pull-up	Basic
RA0	2	27	AN0		C1IN0- C2IN0- C3IN0-	—			—	_	_	—	IOC	Y	—
RA1	3	28	AN1	-	C1IN1- C2IN1- C3IN1-	OPA1OUT	_	_	—		_		IOC	Y	
RA2	4	1	AN2	VREF-	C1IN0+ C2IN0+ C3IN0+	—	DACOUT1 DACVREF-	_	—	—	-	_	IOC	Y	—
RA3	5	2	AN3	VREF+	C1IN1+	_	DACVREF+	_	_	_	_	_	IOC	Y	_
RA4	6	3	_		C10UT	OPA1IN+		TOCKI	_			_	IOC	Y	_
RA5	7	4	ΔΝΛ		C2OUT			10010				22	100	· ·	
DAG	10	7			C2001							00	100	V	00001
RAG	10	1	_	_	6200107	_		_	_	_	_	_	100	ř	CLKOUT
RA7	9	6	_	_	_	_		_	PSMC1CLK PSMC2CLK	_		_	100	Y	CLKIN
RB0	21	18	AN12	_	C2IN1+	—			PSMC1IN PSMC2IN	CCP1 ⁽¹⁾	—	—	INT/ IOC	Y	—
RB1	22	19	AN10	—	C1IN3- C2IN3- C3IN3-	OPA2OUT	_	—	_	_	—	—	IOC	Y	—
RB2	23	20	AN8	-	_	OPA2IN-	_	_	_	_	_	_	IOC	Y	CLKR
RB3	24	21	AN9	_	C1IN2- C2IN2- C3IN2-	OPA2IN+		_	_	CCP2 ⁽¹⁾	_	_	IOC	Y	_
RB4	25	22	AN11	_	C3IN1+	_	_	_	—	_	_	_	IOC	Y	
RB5	26	23	AN13	_	C3OUT	_		T1G	—	_	_	SDO ⁽¹⁾	IOC	Y	_
RB6	27	24	-		—	—	—		—	—	TX ⁽¹⁾ CK ⁽¹⁾	SDI ⁽¹⁾ SDA ⁽¹⁾	IOC	Y	ICSPCLK
RB7	28	25	1		—	—	DACOUT2	l	—	—	RX ⁽¹⁾ DT ⁽¹⁾	SCK ⁽¹⁾ SCL ⁽¹⁾	IOC	Y	ICSPDAT
RC0	11	8	_	—	—	—	_	T1OSO T1CKI	PSMC1A	—	_	-	IOC	Y	-
RC1	12	9	-	-	_	—	-	T10SI	PSMC1B	CCP2	_	—	IOC	Υ	—
RC2	13	10	-	-	—	—	_	-	PSMC1C	CCP1	—	—	IOC	Υ	—
RC3	14	11	—	_	_	_	—	_	PSMC1D	_	—	SCK SCL	IOC	Y	_
RC4	15	12		-	—	-	_	-	PSMC1E	—	_	SDI SDA	IOC	Y	-
RC5	16	13	—	_	_	—	_	_	PSMC1F	—		SDO	IOC	Υ	_
RC6	17	14	—	—		—	—	_	PSMC2A	—	TX CK	—	IOC	Y	—
RC7	18	15	_	—	_	—	_	_	PSMC2B	—	RX DT	—	IOC	Y	-
RE3	1	26	_	_	—	—	—	_	—	—	_	-	IOC	Y	MCLR/ VPP
VDD	20	17	—	—	—	_	—	—	—	—	—	—	—	—	Vdd
Vss	8, 19	5, 16	_	_	_	_	_	_	_	_		_	—	—	Vss

TADLE 4.	
IADLE 1.	20-PIN ALLUCATION TABLE (PIC 10(L)FT/02/3)

Note

1: Alternate pin function selected with the APFCON1 (Register 13-1) register.

6.2.1.6 External RC Mode

The external Resistor-Capacitor (RC) modes support the use of an external RC circuit. This allows the designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required.

The RC circuit connects to OSC1. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

Figure 6-6 shows the external RC mode connections.

FIGURE 6-6: EXTERNAL RC MODES

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- threshold voltage variation
- component tolerances
- · packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

6.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section 6.3 "Clock Switching"for more information.

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators and a dedicated Phase-Lock Loop, HFPLL that can produce one of three internal system clock sources.

- The HFINTOSC (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The HFINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Phase-Lock Loop, HFPLL. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 6-3).
- The MFINTOSC (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 6-3).
- 3. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

PIC16(L)F1782/3

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE				
bit 7			-				bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared								
bit 7	TMR1GIE: Ti	mer1 Gate Inte	rrupt Enable I	bit							
	1 = Enables t	he Timer1 gate	acquisition ir	nterrupt							
	0 = Disables	the Timer1 gate	e acquisition i	nterrupt							
bit 6	ADIE: Analog	I-to-Digital Con	verter (ADC)	Interrupt Enabl	e bit						
	1 = Enables t	he ADC interru	pt								
			upt								
bit 5	RCIE: USAR	I Receive Inter	rupt Enable b	ut							
	1 = Enables t 0 = Disables f	ables the USART receive interrupt									
hit 4		Transmit Inte	rrunt Enable h	vit							
	1 = Enables t	the USART transmit interrupt									
	0 = Disables	the USART transmit interrupt									
bit 3	SSP1IE: Syne	chronous Seria	I Port (MSSP)) Interrupt Enat	ole bit						
	1 = Enables t	he MSSP inter	rupt								
	0 = Disables	the MSSP inter	rupt								
bit 2	CCP1IE: CCF	P1 Interrupt En	able bit								
	1 = Enables the CCP1 interrupt										
bit 1		R2 to PR2 Mate	Ch Interrupt Ei	nable bit							
	\perp = Enables t 0 = Disables t	1 = Enables the Timer2 to PR2 match interrupt									
bit 0	TMR1IE: Tim	er1 Overflow Ir	terrunt Enabl	e hit							
bit o	1 = Enables t	he Timer1 over	flow interrupt	o bit							
	0 = Disables	the Timer1 ove	rflow interrupt	t							

REGISTER 8-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

U-0	U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0			
		PSMC2TIE	PSMC1TIE	—		PSMC2SIE	PSMC1SIE			
bit 7						•	bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7-6	Unimplemen	Unimplemented: Read as '0'								
bit 5	PSMC2TIE: F	PSMC2 Time B	ase Interrupt I	Enable bit						
	1 = Enables	PSMC2 time ba	ase generated	l interrupts						
	0 = Disables	PSMC2 time b	ase generated	d interrupts						
bit 4	PSMC1TIE: F	PSMC1 Time B	ase Interrupt I	Enable bit						
	1 = Enables	PSMC1 time b	ase generated	l interrupts						
h # 0 0			ase generated a ,	a interrupts						
DIT 3-2	Unimplemen	ted: Read as	0							
bit 1	PSMC2SIE: F	PSMC2 Auto-S	hutdown Inter	rupt Enable bit	t					
	1 = Enables	PSMC2 auto-s	hutdown interr	rupts						
	0 = Disables	PSMC2 auto-s	shutdown inter	rupts						
bit 0	PSMC1SIE: F	PSMC1 Auto-S	hutdown Inter	rupt Enable bi	t					
1 = Enables PSMC1 auto-shutdown interrupts										
	0 = Disables	PSMC1 auto-s	shutdown inter	rupts						

REGISTER 8-4: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

12.2 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM without exceeding the total number of write cycles to a single byte. Refer to **Section 30.0 "Electrical Specifications"**. If this is the case, then a refresh of the array must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

12.2.1 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the EEADRL register, clear the EEPGD and CFGS control bits of the EECON1 register, and then set control bit RD. The data is available at the very next cycle, in the EEDATL register; therefore, it can be read in the next instruction. EEDATL will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 12-1: DATA EEPROM READ

BANKSEI	EEADRL	;
MOVLW	DATA_EE_ADD	R ;
MOVWF	EEADRL	;Data Memory
		;Address to read
BCF	EECON1, CFG	S ;Deselect Config space
BCF	EECON1, EEP	GD;Point to DATA memory
BSF	EECON1, RD	;EE Read
MOVF	EEDATL, W	;W = EEDATL

Note: Data EEPROM can be read regardless of the setting of the CPD bit.

12.2.2 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the user must first write the address to the EEADRL register and the data to the EEDATL register. Then the user must follow a specific sequence to initiate the write for each byte.

The write will not initiate if the above sequence is not followed exactly (write 55h to EECON2, write AAh to EECON2, then set the WR bit) for each byte. Interrupts should be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.

12.2.3 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during:

- Brown-out
- Power Glitch
- Software Malfunction

12.2.4 DATA EEPROM OPERATION DURING CODE-PROTECT

Data memory can be code-protected by programming the CPD bit in the Configuration Words to '0'.

When the data memory is code-protected, only the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code-protecting data memory. This prevents anyone from replacing your program with a program that will access the contents of the data EEPROM.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	—	_	ADFVR<1:0>		136

Legend: Shaded cells are unused by the temperature indicator module.

19.4 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the DACCON0 register are not affected. To minimize current consumption in Sleep mode, the voltage reference should be disabled.

19.5 Effects of a Reset

A device Reset affects the following:

- · DAC is disabled.
- DAC output voltage is removed from the DACOUT pin.
- The DACR<7:0> range select bits are cleared.

19.6 Register Definitions: DAC Control

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
DACEN	—	DACOE1	DACOE2	DACP	SS<1:0>		DACNSS
bit 7		-					bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimp					ented bit, read a	as 'O'	
u = Bit is uncha	nged	x = Bit is unkn	own	-n/n = Value a	t POR and BOR	/Value at all oth	er Resets
'1' = Bit is set		'0' = Bit is clea	red				
bit 7 DACEN: DAC Enable bit 1 = DAC is enabled 0 = DAC is disabled							
bit 6	Unimplement	ed: Read as '0'					
bit 5	DACOE1: DAC 1 = DAC volta 0 = DAC volta	C Voltage Outpu age level is also age level is disc	ut 1 Enable bit an output on t onnected from	he DACOUT1 p the DACOUT1	pin pin		
bit 4	DACOE2: DAC 1 = DAC volta 0 = DAC volta	C Voltage Outpu age level is also age level is disc	ut 2 Enable bit an output on t onnected from	he DACOUT2 p the DACOUT2	pin pin		
bit 3-2	<pre>B-2 DACPSS<1:0>: DAC Positive Source Select bits 11 = Reserved, do not use 10 = FVR Buffer2 output 01 = VREF+ pin 00 = VDD</pre>						
bit 1	Unimplement	ed: Read as '0'					
bit 0	DACNSS: DAG 1 = VREF- pin 0 = VSS	C Negative Sou	rce Select bits				

REGISTER 19-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0

REGISTER 19-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			DACF	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable b	it	U = Unimplem	nented bit, read a	as 'O'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other				er Resets			
'1' = Bit is set		'0' = Bit is clear	red				

bit 7-0 DACR<7:0>: DAC Voltage Output Select bits

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u			
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS	<1:0>			
bit 7	•	•	I.			•	bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	/are				
bit 7 TMR1GE: Timer1 Gate Enable bit <u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function										
bit 6	T1GPOL: Tin	ner1 Gate Pola	rity bit							
	1 = Timer1 g 0 = Timer1 g	ate is active-hi ate is active-lo	gh (Timer1 cou w (Timer1 cou	unts when gate nts when gate i	is high) s low)					
bit 5	T1GTM: Time 1 = Timer1 G 0 = Timer1 G Timer1 gate fi	er1 Gate Toggle Gate Toggle mo Gate Toggle mo Lip-flop toggles	e Mode bit de is enabled de is disabled on every rising	and toggle flip-	flop is cleared					
bit 4	T1GSPM: Tin	ner1 Gate Sing	le-Pulse Mode	e bit						
	1 = Timer1 G 0 = Timer1 G	ate Single-Pul ate Single-Pul	se mode is en se mode is dis	abled and is co abled	ntrolling Timer	1 gate				
bit 3	T1GGO/DON	E: Timer1 Gate	e Single-Pulse	Acquisition Sta	atus bit					
	1 = Timer1 g 0 = Timer1 g	ate single-puls ate single-puls	e acquisition is e acquisition h	s ready, waiting as completed o	for an edge or has not been	started				
bit 2	T1GVAL: Tim	er1 Gate Curre	ent State bit							
	Indicates the Unaffected by	current state o / Timer1 Gate I	f the Timer1 ga Enable (TMR1	ate that could b GE).	e provided to T	MR1H:TMR1L.				
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Select	bits						
	11 = Compar 10 = Compar 01 = Timer0 o 00 = Timer1 g	ator 2 optionall ator 1 optionall overflow output gate pin	y synchronize y synchronize	d output (sync_ d output (sync_	<u>C2OUT)</u> C1OUT)					

REGISTER 22-2: T1GCON: TIMER1 GATE CONTROL REGISTER

23.5 Register Definitions: Timer2 Control

REGISTER 23-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
—		T2OUTF	PS<3:0>		TMR2ON	T2CKF	°S<1:0>			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
u = Bit is uncha	anged	x = Bit is unkr	x = Bit is unknown -n/n = Value at POR and BOR/Value							
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	Unimpleme	nted: Read as '	0'							
bit 6-3	T2OUTPS<3	8:0>: Timer2 Ou	tput Postscale	er Select bits						
	1111 = 1:16 Postscaler									
	1110 = 1:15	Postscaler								
	1101 = 1:14	Postscaler								
	1100 = 1:13	Postscaler								
	1011 - 1.12	Postscaler								
	1010 = 1.11 1001 = 1.10	Postscaler								
	1000 = 1:9 F	Postscaler								
	0111 = 1:8 F	Postscaler								
	0110 = 1:7 F	Postscaler								
	0101 = 1:6 F	Postscaler								
	0100 = 1:5 F	Postscaler								
	0011 = 1:4 F	Postscaler								
	0010 = 1:3 F	Postscaler								
	0001 = 1.2 F									
bit 2		imer? On hit								
Dit Z	1 = Timor2 i									
	0 = Timer2 i	soff								
bit 1-0	T2CKPS<1:	0>: Timer2 Cloc	k Prescale Se	lect bits						
	11 = Prescal	er is 64								
	10 = Prescal	ler is 16								
	01 = Prescal	ler is 4								
	00 = Prescal	ler is 1								

REGISTER 24-3: PSMC1SYNC: PSMC1 SYNCHRONIZATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	
—	—	—	—	—	—	P1SYNC<1:0>		
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read as '0)'		
u = Bit is unchang	ged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/Val	ue at all other Re	esets	
'1' = Bit is set		'0' = Bit is cleare	ed					

bit 1-0	P1SYNC<1:0>: PSMC1 Period Synchronization Mode bits
	11 = Reserved – Do not use
	10 = PSMC1 is synchronized with the PSMC2 module
	01 = Reserved – Do not use
	00 = PSMC1 is synchronized with period event

REGISTER 24-4: PSMC2SYNC: PSMC2 SYNCHRONIZATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—		—	—	—	P2SYNC<1:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1-0

P2SYNC<1:0>: PSMC2 Period Synchronization Mode bits

11 = Reserved – Do not use

10 = Reserved – Do not use

- 01 = PSMC2 is synchronized with the PSMC1 module
- 00 = PSMC2 is synchronized with period event

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	—	PxASDLF ⁽¹⁾	PxASDLE ⁽¹⁾	PxASDLD ⁽¹⁾	PxASDLC ⁽¹⁾	PxASDLB	PxASDLA
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemer	nted: Read as '	0'				
bit 5	PxASDLF: P	SMCx Output F	Auto-Shutdo	wn Pin Level b	oit ⁽¹⁾		
	1 = When a	uto-shutdown is	s asserted, pir	n PSMCxF will	drive logic '1'		
	0 = When a	auto-shutdown is	s asserted, pir	n PSMCxF will	drive logic '0'		
bit 4	PxASDLE: P	SMCx Output E	E Auto-Shutdo	wn Pin Level b	pit ⁽¹⁾		
	1 = When a	uto-shutdown is	s asserted, pir	n PSMCxE will	drive logic '1'		
1	0 = when a	auto-snutdown is	s asserted, pir				
bit 3	PXASDLD: F	SMCx Output I	J Auto-Shutdo	wn Pin Level t			
	1 = When a	auto-shutdown is	s asserted, pir	n PSMCxD will n PSMCxD will	drive logic '1'		
bit 2			2 Auto-Shutdo				
	1 = When a	uto-shutdown is	s asserted nir		drive logic '1'		
	0 = When a	auto-shutdown is	s asserted, pir	n PSMCxC will	drive logic '0'		
bit 1	PxASDLB: F	SMCx Output E	3 Auto-Shutdo	wn Pin Level b	oit		
	1 = When a	auto-shutdown is	s asserted, pir	n PSMCxB will	drive logic '1'		
	0 = When a	auto-shutdown is	s asserted, pir	n PSMCxB will	drive logic '0'		
bit 0	PxASDLA: F	SMCx Output A	A Auto-Shutdo	wn Pin Level b	bit		
	1 = When a	auto-shutdown is	s asserted, pir	n PSMCxA will	drive logic '1'		
	0 = When a	auto-shutdown is	s asserted, pir	n PSMCxA will	drive logic '0'		

REGISTER 24-15: PSMCxASDL: PSMC AUTO-SHUTDOWN OUTPUT LEVEL REGISTER

Note 1: These bits are not implemented on PSMC2.

REGISTER 24-28: PSMCxBLKR: PSMC RISING EDGE BLANKING TIME REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
			PSMCxB	SLKR<7:0>					
bit 7							bit 0		
Legend:									
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all c	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-0

-

PSMCxBLKR<7:0>: Rising Edge Blanking Time bits

= Unsigned number of PSMCx psmc_clk clock periods in rising edge blanking

REGISTER 24-29: PSMCxBLKF: PSMC FALLING EDGE BLANKING TIME REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
PSMCxBLKF<7:0>											
bit 7							bit 0				

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSMCxBLKF<7:0>:** Falling Edge Blanking Time bits

= Unsigned number of PSMCx psmc_clk clock periods in falling edge blanking

PIC16(L)F1782/3

FIGURE 26-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

PIC16(L)F1782/3

26.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 26-29).

26.6.8.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

26.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSP1IF bit is set (Figure 26-30).

26.6.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 26-30: ACKNOWLEDGE SEQUENCE WAVEFORM

TABLE 27-3: BAUD RATE FORMULAS

(Configuration Bi	its		Baud Bata Farmula
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Rate Formula
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]
0	0	1	8-bit/Asynchronous	
0	1	0	16-bit/Asynchronous	FOSC/[16 (n+1)]
0	1	1	16-bit/Asynchronous	
1	0	х	8-bit/Synchronous	Fosc/[4 (n+1)]
1	1	х	16-bit/Synchronous	

Legend: x = Don't care, n = value of SPBRGH, SPBRGL register pair

TABLE 27-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	ABDEN	322	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	321	
SPBRGL	BRG<7:0>									
SPBRGH	BRG<15:8>									
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	320	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

PIC16(L)F1782/3

TABLE 29-3: INSTRUCTION SET (CONTINUED)

Mnemonic,		Description	Cyclos		14-Bit	Opcode)	Status	Notos
Oper	ands	Description	Cycles	MSb			LSb	Affected	NOLES
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	_	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
		INHERENT OPERA	ATIONS						
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	_	No Operation	1	00	0000	0000	0000		
OPTION	_	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	_	Software device Reset	1	00	0000	0000	0001		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED						
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	Onkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	1nmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

03/25/14