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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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3.6.1 TRADITIONAL DATA MEMORY
The traditional data memory is a region from FSR
address 0x000 to FSR address 0xFFF. The addresses
correspond to the absolute addresses of all SFR, GPR
and common registers.

FIGURE 3-10: TRADITIONAL DATA MEMORY MAP

Indirect AddressingDirect Addressing

Bank Select Location Select

4 BSR 6 0From Opcode FSRxL7 0

Bank Select Location Select
00000 00001 00010 11111

0x00

0x7F

Bank 0 Bank 1 Bank 2 Bank 31

0 FSRxH7 0

0 0 0 0
 2011-2014 Microchip Technology Inc. DS40001579E-page 37



PIC16(L)F1782/3

FIGURE 5-2:   BROWN-OUT SITUATIONS 

5.3 Register Definitions: BOR Control
           
REGISTER 5-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u R/W-0/u U-0 U-0 U-0 U-0 U-0 R-q/u
SBOREN BORFS — — — — — BORRDY

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Value depends on condition

bit 7 SBOREN: Software Brown-out Reset Enable bit
If BOREN <1:0> in Configuration Words  01:
SBOREN is read/write, but has no effect on the BOR.
If BOREN <1:0> in Configuration Words = 01:
1 = BOR Enabled
0 = BOR Disabled

bit 6 BORFS: Brown-out Reset Fast Start bit(1)

If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)
BORFS is Read/Write, but has no effect.
If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):
1 = Band gap is forced on always (covers sleep/wake-up/operating cases)
0 = Band gap operates normally, and may turn off

bit 5-1 Unimplemented: Read as ‘0’
bit 0 BORRDY: Brown-out Reset Circuit Ready Status bit

1 = The Brown-out Reset circuit is active
0 = The Brown-out Reset circuit is inactive

Note 1: BOREN<1:0> bits are located in Configuration Words.

TPWRT(1)

VBOR 
VDD

Internal
Reset

VBOR 
VDD

Internal
Reset TPWRT(1)< TPWRT

TPWRT(1)

VBOR 
VDD

Internal
Reset

Note 1: TPWRT delay only if PWRTE bit is programmed to ‘0’.
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6.2.1.6 External RC Mode
The external Resistor-Capacitor (RC) modes support
the use of an external RC circuit. This allows the
designer maximum flexibility in frequency choice while
keeping costs to a minimum when clock accuracy is not
required. 

The RC circuit connects to OSC1. OSC2/CLKOUT is
available for general purpose I/O or CLKOUT. The
function of the OSC2/CLKOUT pin is determined by the
CLKOUTEN bit in Configuration Words.

Figure 6-6 shows the external RC mode connections.

FIGURE 6-6: EXTERNAL RC MODES 

The RC oscillator frequency is a function of the supply
voltage, the resistor (REXT) and capacitor (CEXT) values
and the operating temperature. Other factors affecting
the oscillator frequency are:
• threshold voltage variation
• component tolerances
• packaging variations in capacitance

The user also needs to take into account variation due
to tolerance of external RC components used.

6.2.2 INTERNAL CLOCK SOURCES
The device may be configured to use the internal
oscillator block as the system clock by performing one
of the following actions:

• Program the FOSC<2:0> bits in Configuration 
Words to select the INTOSC clock source, which 
will be used as the default system clock upon a 
device Reset.

• Write the SCS<1:0> bits in the OSCCON register 
to switch the system clock source to the internal 
oscillator during run-time. See Section 6.3 
“Clock Switching”for more information.

In INTOSC mode, OSC1/CLKIN is available for general
purpose I/O. OSC2/CLKOUT is available for general
purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined
by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent
oscillators and a dedicated Phase-Lock Loop, HFPLL
that can produce one of three internal system clock
sources.

1. The HFINTOSC (High-Frequency Internal
Oscillator) is factory calibrated and operates at
16 MHz. The HFINTOSC source is generated
from the 500 kHz MFINTOSC source and the
dedicated Phase-Lock Loop, HFPLL. The
frequency of the HFINTOSC can be
user-adjusted via software using the OSCTUNE
register (Register 6-3).

2. The MFINTOSC (Medium-Frequency Internal
Oscillator) is factory calibrated and operates at
500 kHz. The frequency of the MFINTOSC can
be user-adjusted via software using the
OSCTUNE register (Register 6-3).

3. The LFINTOSC (Low-Frequency Internal
Oscillator) is uncalibrated and operates at
31 kHz.

OSC2/CLKOUT

CEXT

REXT

PIC® MCU

OSC1/CLKIN

FOSC/4 or

Internal
Clock

VDD

VSS

Recommended values: 10 k  REXT  100 k, <3V
3 k  REXT  100 k, 3-5V
CEXT > 20 pF, 2-5V

Note 1: Output depends upon CLKOUTEN bit of the 
Configuration Words.

I/O(1)
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REGISTER 6-2: OSCSTAT: OSCILLATOR STATUS REGISTER

R-1/q R-0/q R-q/q R-0/q R-0/q R-q/q R-0/0 R-0/q
T1OSCR PLLR OSTS HFIOFR HFIOFL MFIOFR LFIOFR HFIOFS

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared q = Conditional

bit 7 T1OSCR: Timer1 Oscillator Ready bit
If T1OSCEN = 1:
1 =  Timer1 oscillator is ready
0 =  Timer1 oscillator is not ready
If T1OSCEN = 0:
1 =  Timer1 clock source is always ready

bit 6 PLLR 4x PLL Ready bit
1 =  4x PLL is ready
0 =  4x PLL is not ready

bit 5 OSTS: Oscillator Start-up Timer Status bit
1 =  Running from the clock defined by the FOSC<2:0> bits of the Configuration Words
0 =  Running from an internal oscillator (FOSC<2:0> = 100)

bit 4 HFIOFR: High-Frequency Internal Oscillator Ready bit 
1 = HFINTOSC is ready
0 = HFINTOSC is not ready

bit 3 HFIOFL: High-Frequency Internal Oscillator Locked bit
1 = HFINTOSC is at least 2% accurate
0 = HFINTOSC is not 2% accurate

bit 2 MFIOFR: Medium-Frequency Internal Oscillator Ready bit 
1 = MFINTOSC is ready 
0 = MFINTOSC is not ready

bit 1 LFIOFR: Low-Frequency Internal Oscillator Ready bit 
1 = LFINTOSC is ready
0 = LFINTOSC is not ready

bit 0 HFIOFS: High-Frequency Internal Oscillator Stable bit
1 = HFINTOSC is at least 0.5% accurate
0 = HFINTOSC is not 0.5% accurate
 2011-2014 Microchip Technology Inc. DS40001579E-page 69
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REGISTER 13-5: ANSELA: PORTA ANALOG SELECT REGISTER

R/W-1/1 U-0 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
ANSA7 — ANSA5 ANSA4 ANSA3 ANSA2 ANSA1 ANSA0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 5 ANSA7: Analog Select between Analog or Digital Function on pins RA7, respectively
0 = Digital I/O. Pin is assigned to port or digital special function.
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.

bit 6 Unimplemented: Read as ‘0’
bit 5-0 ANSA<5:0>: Analog Select between Analog or Digital Function on pins RA<5:0>, respectively

0 = Digital I/O. Pin is assigned to port or digital special function.
1 = Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to 
allow external control of the voltage on the pin.

REGISTER 13-6: WPUA: WEAK PULL-UP PORTA REGISTER

R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1 R/W-1/1
WPUA7 WPUA6 WPUA5 WPUA4 WPUA3 WPUA2 WPUA1 WPUA0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets
‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7-0 WPUA<7:0>: Weak Pull-up Register bits
1 = Pull-up enabled
0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.
 2011-2014 Microchip Technology Inc. DS40001579E-page 115
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17.1 ADC Configuration 
When configuring and using the ADC the following
functions must be considered:

• Port configuration
• Channel selection

- Single-ended
- Differential

• ADC voltage reference selection
• ADC conversion clock source
• Interrupt control
• Result formatting

17.1.1 PORT CONFIGURATION
The ADC can be used to convert both analog and
digital signals. When converting analog signals, the I/O
pin should be configured for analog by setting the
associated TRIS and ANSEL bits. Refer to
Section 13.0 “I/O Ports” for more information.

17.1.2 CHANNEL SELECTION
There are up to 14 channel selections available:

• AN<13:8, 4:0> pins
• Temperature Indicator
• DAC_output
• FVR (Fixed Voltage Reference) Output

Refer to Section 15.0 “Fixed Voltage Reference
(FVR)” and Section 16.0 “Temperature Indicator
Module” for more information on these channel
selections.

When converting differential signals, the negative input
for the channel is selected with the CHSN<3:0> bits of
the ADCON2 register. Any positive input can be paired
with any negative input to determine the differential
channel.

The CHS<4:0> bits of the ADCON0 register determine
which positive channel is selected.

When CHSN<3:0> = 1111 then the ADC is effectively
a single ended ADC converter.

When changing channels, a delay is required before
starting the next conversion.

17.1.3 ADC VOLTAGE REFERENCE
The ADPREF bits of the ADCON1 register provide
control of the positive voltage reference. The positive
voltage reference can be:

• VREF+
• VDD

• FVR Buffer1

The ADNREF bits of the ADCON1 register provide
control of the negative voltage reference. The negative
voltage reference can be:

• VREF- pin
• VSS

See Section 15.0 “Fixed Voltage Reference (FVR)”
for more details on the Fixed Voltage Reference.

17.1.4  CONVERSION CLOCK
The source of the conversion clock is software
selectable via the ADCS bits of the ADCON1 register.
There are seven possible clock options:

• FOSC/2
• FOSC/4
• FOSC/8
• FOSC/16
• FOSC/32
• FOSC/64
• FRC (dedicated internal FRC oscillator)

The time to complete one bit conversion is defined as
TAD. One full 12-bit conversion requires 15 TAD periods
as shown in Figure 17-2.

For correct conversion, the appropriate TAD specification
must be met. Refer to the ADC conversion requirements
in Section 30.0 “Electrical Specifications” for more
information. Table 17-1 gives examples of appropriate
ADC clock selections.

Note: Analog voltages on any pin that is defined
as a digital input may cause the input
buffer to conduct excess current.

Note: Unless using the FRC, any changes in the
system clock frequency will change the
ADC clock frequency, which may
adversely affect the ADC result.
 2011-2014 Microchip Technology Inc. DS40001579E-page 141
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19.0 DIGITAL-TO-ANALOG 
CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable
voltage reference, ratiometric with the input source,
with 256 selectable output levels. 

The input of the DAC can be connected to:

• External VREF pins
• VDD supply voltage
• FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a
reference voltage to the following:

• Comparator positive input
• Op amp positive input
• ADC input channel
• DACOUT1 pin
• DACOUT2 pin

The Digital-to-Analog Converter (DAC) is enabled by
setting the DACEN bit of the DACCON0 register.

19.1 Output Voltage Selection
The DAC has 256 voltage level ranges. The 256 levels
are set with the DACR<7:0> bits of the DACCON1
register.

The DAC output voltage is determined by Equation 19-1:

EQUATION 19-1: DAC OUTPUT VOLTAGE

19.2 Ratiometric Output Level
The DAC output value is derived using a resistor ladder
with each end of the ladder tied to a positive and
negative voltage reference input source. If the voltage
of either input source fluctuates, a similar fluctuation will
result in the DAC output value.

The value of the individual resistors within the ladder
can be found in Section 30.0 “Electrical
Specifications”.

19.3 DAC Voltage Reference Output
The DAC voltage can be output to the DACOUT1 and
DACOUT2 pins by setting the respective DACOE1 and
DACOE2 pins of the DACCON0 register. Selecting the
DAC reference voltage for output on either DACOUTX
pin automatically overrides the digital output buffer and
digital input threshold detector functions of that pin.
Reading the DACOUTX pin when it has been
configured for DAC reference voltage output will
always return a ‘0’.

Due to the limited current drive capability, a buffer must
be used on the DAC voltage reference output for
external connections to either DACOUTx pin.
Figure 19-2 shows an example buffering technique.

IF DACxEN = 1

VSOURCE+ = VDD, VREF, or FVR BUFFER 2

VSOURCE- = VSS

VOUT VSOURCE+ VSOURCE-–  DACxR 7:0 

28--------------------------------- 
  VSOURCE-+=
DS40001579E-page 158  2011-2014 Microchip Technology Inc.
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TABLE 23-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2 

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register 
on Page

CCP2CON — — DC2B<1:0> CCP2M<3:0> 255
INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 79
PIE1 TMR1GIE ADIE RCIE TXIE SSP1IE CCP1IE TMR2IE TMR1IE 80
PIR1 TMR1GIF ADIF RCIF TXIF SSP1IF CCP1IF TMR2IF TMR1IF 83
PR2 Timer2 Module Period Register 186*
T2CON — T2OUTPS<3:0> TMR2ON T2CKPS<1:0> 188
TMR2 Holding Register for the 8-bit TMR2 Register 186*
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for Timer2 module.

* Page provides register information.
 2011-2014 Microchip Technology Inc. DS40001579E-page 189
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24.3.4 PUSH-PULL PWM WITH 

COMPLEMENTARY OUTPUTS
The complementary push-pull PWM is used to drive
transistor bridge circuits as well as synchronous
switches on the secondary side of the bridge. The
PWM waveform is output on four pins presented as
two pairs of two-output signals with a normal and
complementary output in each pair. Dead band can be
inserted between the normal and complementary
outputs at the transition times.

24.3.4.1 Mode Features
• Dead-band control is available
• No steering control available
• Primary PWM output is only on:

- PSMCxA
- PSMCxB

• Complementary PWM output is only on:
- PSMCxE
- PSMCxF

24.3.4.2 Waveform Generation
Push-Pull waveforms generate alternating outputs on
the output pairs. Therefore, there are two sets of rising
edge events and two sets of falling edge events

Odd numbered period rising edge event:

• PSMCxE is set inactive
• Dead-band rising is activated (if enabled)
• PSMCxA is set active

Odd numbered period falling edge odd event:

• PSMCxA is set inactive
• Dead-band falling is activated (if enabled)
• PSMCxE is set active

Even numbered period rising edge event:

• PSMCxF is set inactive
• Dead-band rising is activated (if enabled)
• PSMCxB is set active 

Even numbered period falling edge event:

• PSMCxB is set inactive
• Dead-band falling is activated (if enabled)
• PSMCxF is set active

FIGURE 24-7: PUSH-PULL WITH COMPLEMENTARY OUTPUTS PWM WAVEFORM

Note: This is a subset of the 6-pin output of the
push-pull PWM output, which is why pin func-
tions are fixed in these positions, so they are
compatible with that mode. See
Section 24.3.6 “Push-Pull PWM with Four
Full-Bridge and Complementary Outputs”. 

1 2 3

Falling Edge Dead Band
Rising Edge Dead Band

Falling Edge Dead BandFalling Edge Dead Band

Rising Edge Dead BandRising Edge Dead Band

PWM Period Number

Period Event

Rising Edge Event

Falling Edge Event

PSMCxA

PSMCxB

PSMCxE

PSMCxF
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24.3.10 VARIABLE FREQUENCY – FIXED 

DUTY CYCLE PWM
This mode of operation is quite different from all of the
other modes. It uses only the period event for
waveform generation. At each period event, the PWM
output is toggled.

The rising edge and falling edge events are unused in
this mode.

24.3.10.1 Mode Features
• No dead-band control available
• No steering control available
• Fractional Frequency Adjust

- Fine period adjustments are made with the 
PSMC Fractional Frequency Adjust 
(PSMCxFFA) register (Register 24-27)

• PWM is output on the following pin only:
- PSMCxA

24.3.10.2 Waveform Generation
Period Event

• Output of PSMCxA is toggled
• FFA counter is incremented by the 4-bit value in 

PSMCxF FA

FIGURE 24-13: VARIABLE FREQUENCY – FIXED DUTY CYCLE PWM WAVEFORM

1 2 3 4 5 6 7 8 9 10

Unused in this mode

Unused in this mode

PWM Period Number

period_event

Rising Edge Event

Falling Edge Event

PSMCxA
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24.3.11 VARIABLE FREQUENCY - FIXED 

DUTY CYCLE PWM WITH 
COMPLEMENTARY OUTPUTS

This mode is the same as the single output Fixed Duty
Cycle mode except a complementary output with
dead-band control is generated.

The rising edge and falling edge events are unused in
this mode. Therefore, a different triggering mechanism
is required for the dead-band counters.

A period events that generate a rising edge on
PSMCxA use the rising edge dead-band counters.

A period events that generate a falling edge on
PSMCxA use the falling edge dead-band counters.

24.3.11.1 Mode Features
• Dead-band control is available
• No steering control available
• Fractional Frequency Adjust

- Fine period adjustments are made with the 
PSMC Fractional Frequency Adjust 
(PSMCxFFA) register (Register 24-27)

• Primary PWM is output to the following pin:
- PSMCxA

• Complementary PWM is output to the following 
pin:
- PSMCxB

24.3.11.2 Waveform Generation
Period Event

When output is going inactive to active:

• Complementary output is set inactive
• FFA counter is incremented by the 4-bit value in 

PSMCFFA register.
• Dead-band rising is activated (if enabled)
• Primary output is set active

When output is going active to inactive:

• Primary output is set inactive
• FFA counter is incremented by the 4-bit value in 

PSMCFFA register
• Dead-band falling is activated (if enabled)
• Complementary output is set active

FIGURE 24-14: VARIABLE FREQUENCY – FIXED DUTY CYCLE PWM WITH COMPLEMENTARY 
OUTPUTS WAVEFORM

1 2 3 4 5 6 7 8 9 10

Unused in this mode

Unused in this mode

Falling Edge Dead Band
Rising Edge Dead Band

PWM Period Number

period_event

Rising Edge Event

Falling Edge Event

PSMCxA

PSMCxB
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TABLE 24-4: SAMPLE FFA OUTPUT PERIODS/FREQUENCIES

FFA number Output Frequency (kHz) Step Size (Hz)
0 125.000 0
1 124.970 -30.4
2 124.939 -60.8
3 124.909 -91.2
4 124.878 -121.6
5 124.848 -152.0
6 124.818 -182.4
7 124.787 -212.8
8 124.757 -243.2
9 124.726 -273.6
10 124.696 -304.0
11 124.666 -334.4
12 124.635 -364.8
13 124.605 -395.2
14 124.574 -425.6
15 124.544 -456.0
 2011-2014 Microchip Technology Inc. DS40001579E-page 221
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25.3 PWM Overview
Pulse-Width Modulation (PWM) is a scheme that
provides power to a load by switching quickly between
fully on and fully off states. The PWM signal resembles
a square wave where the high portion of the signal is
considered the on state and the low portion of the signal
is considered the off state. The high portion, also known
as the pulse width, can vary in time and is defined in
steps. A larger number of steps applied, which
lengthens the pulse width, also supplies more power to
the load. Lowering the number of steps applied, which
shortens the pulse width, supplies less power. The
PWM period is defined as the duration of one complete
cycle or the total amount of on and off time combined.

PWM resolution defines the maximum number of steps
that can be present in a single PWM period. A higher
resolution allows for more precise control of the pulse
width time and in turn the power that is applied to the
load.

The term duty cycle describes the proportion of the on
time to the off time and is expressed in percentages,
where 0% is fully off and 100% is fully on. A lower duty
cycle corresponds to less power applied and a higher
duty cycle corresponds to more power applied.

Figure 25-3 shows a typical waveform of the PWM
signal.

25.3.1 STANDARD PWM OPERATION
The standard PWM function described in this section is
available and identical for all CCP modules. 

The standard PWM mode generates a Pulse-Width
Modulation (PWM) signal on the CCPx pin with up to 10
bits of resolution. The period, duty cycle, and resolution
are controlled by the following registers:

• PR2 registers
• T2CON registers
• CCPRxL registers
• CCPxCON registers

Figure 25-4 shows a simplified block diagram of PWM
operation.

FIGURE 25-3: CCP PWM OUTPUT SIGNAL

FIGURE 25-4: SIMPLIFIED PWM BLOCK 
DIAGRAM     

Note 1: The corresponding TRIS bit must be
cleared to enable the PWM output on the
CCPx pin.

2: Clearing the CCPxCON register will
relinquish control of the CCPx pin.

Period

Pulse Width

TMR2 = 0

TMR2 = CCPRxH:CCPxCON<5:4>

TMR2 = PR2

CCPR1L

CCPR1H(2) (Slave)

Comparator

TMR2

PR2

(1)

R Q

S

Duty Cycle Registers
CCP1CON<5:4>

Clear Timer,
toggle CCP1 pin and 
latch duty cycle

Note 1: The 8-bit timer TMR2 register is 
concatenated with the 2-bit internal system 
clock (FOSC), or 2 bits of the prescaler, to 
create the 10-bit time base.

2: In PWM mode, CCPR1H is a read-only 
register.

TRIS

CCP1

Comparator

To PSMC module
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26.6.13.1 Bus Collision During a Start 

Condition
During a Start condition, a bus collision occurs if:

a) SDA or SCL are sampled low at the beginning of
the Start condition (Figure 26-32).

b) SCL is sampled low before SDA is asserted low
(Figure 26-33).

During a Start condition, both the SDA and the SCL
pins are monitored. 

If the SDA pin is already low, or the SCL pin is already
low, then all of the following occur:
• the Start condition is aborted, 
• the BCL1IF flag is set and
•  the MSSP module is reset to its Idle state 

(Figure 26-32). 

The Start condition begins with the SDA and SCL pins
deasserted. When the SDA pin is sampled high, the
Baud Rate Generator is loaded and counts down. If the
SCL pin is sampled low while SDA is high, a bus colli-
sion occurs because it is assumed that another master
is attempting to drive a data ‘1’ during the Start
condition. 

If the SDA pin is sampled low during this count, the
BRG is reset and the SDA line is asserted early
(Figure 26-34). If, however, a ‘1’ is sampled on the SDA
pin, the SDA pin is asserted low at the end of the BRG
count. The Baud Rate Generator is then reloaded and
counts down to zero; if the SCL pin is sampled as ‘0’
during this time, a bus collision does not occur. At the
end of the BRG count, the SCL pin is asserted low.      

FIGURE 26-33: BUS COLLISION DURING START CONDITION (SDA ONLY)      

Note: The reason that bus collision is not a fac-
tor during a Start condition is that no two
bus masters can assert a Start condition
at the exact same time. Therefore, one
master will always assert SDA before the
other. This condition does not cause a bus
collision because the two masters must be
allowed to arbitrate the first address
following the Start condition. If the address
is the same, arbitration must be allowed to
continue into the data portion, Repeated
Start or Stop conditions.

SDA

SCL

SEN
SDA sampled low before 

SDA goes low before the SEN bit is set.

S bit and SSP1IF set because

SSP module reset into Idle state.
SEN cleared automatically because of bus collision. 

S bit and SSP1IF set because

Set SEN, enable Start
condition if SDA = 1, SCL = 1

SDA = 0, SCL = 1.

BCL1IF

S

SSP1IF

SDA = 0, SCL = 1.

SSP1IF and BCL1IF are
cleared by software

SSP1IF and BCL1IF are
cleared by software

Set BCL1IF,

Start condition. Set BCL1IF.
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27.5 EUSART Synchronous Mode
Synchronous serial communications are typically used
in systems with a single master and one or more
slaves. The master device contains the necessary
circuitry for baud rate generation and supplies the clock
for all devices in the system. Slave devices can take
advantage of the master clock by eliminating the
internal clock generation circuitry. 

There are two signal lines in Synchronous mode: a
bidirectional data line and a clock line. Slaves use the
external clock supplied by the master to shift the serial
data into and out of their respective receive and trans-
mit shift registers. Since the data line is bidirectional,
synchronous operation is half-duplex only. Half-duplex
refers to the fact that master and slave devices can
receive and transmit data but not both simultaneously.
The EUSART can operate as either a master or slave
device.

Start and Stop bits are not used in synchronous
transmissions.

27.5.1 SYNCHRONOUS MASTER MODE
The following bits are used to configure the EUSART
for synchronous master operation:

• SYNC = 1
• CSRC = 1
• SREN = 0 (for transmit); SREN = 1 (for receive)
• CREN = 0 (for transmit); CREN = 1 (for receive)
• SPEN = 1

Setting the SYNC bit of the TXSTA register configures
the device for synchronous operation. Setting the CSRC
bit of the TXSTA register configures the device as a
master. Clearing the SREN and CREN bits of the RCSTA
register ensures that the device is in the Transmit mode,
otherwise the device will be configured to receive. Setting
the SPEN bit of the RCSTA register enables the
EUSART. 

27.5.1.1 Master Clock
Synchronous data transfers use a separate clock line,
which is synchronous with the data. A device config-
ured as a master transmits the clock on the TX/CK line.
The TX/CK pin output driver is automatically enabled
when the EUSART is configured for synchronous
transmit or receive operation. Serial data bits change
on the leading edge to ensure they are valid at the
trailing edge of each clock. One clock cycle is
generated for each data bit. Only as many clock cycles
are generated as there are data bits.

27.5.1.2 Clock Polarity
A clock polarity option is provided for Microwire
compatibility. Clock polarity is selected with the SCKP
bit of the BAUDCON register. Setting the SCKP bit sets
the clock Idle state as high. When the SCKP bit is set,
the data changes on the falling edge of each clock.

Clearing the SCKP bit sets the Idle state as low. When
the SCKP bit is cleared, the data changes on the rising
edge of each clock. 

27.5.1.3 Synchronous Master Transmission
Data is transferred out of the device on the RX/DT pin.
The RX/DT and TX/CK pin output drivers are automat-
ically enabled when the EUSART is configured for
synchronous master transmit operation. 

A transmission is initiated by writing a character to the
TXREG register. If the TSR still contains all or part of a
previous character the new character data is held in the
TXREG until the last bit of the previous character has
been transmitted. If this is the first character, or the
previous character has been completely flushed from
the TSR, the data in the TXREG is immediately trans-
ferred to the TSR. The transmission of the character
commences immediately following the transfer of the
data to the TSR from the TXREG.

Each data bit changes on the leading edge of the
master clock and remains valid until the subsequent
leading clock edge.

27.5.1.4 Synchronous Master Transmission 
Set-up:

1. Initialize the SPBRGH, SPBRGL register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section 27.4 “EUSART
Baud Rate Generator (BRG)”).

2. Enable the synchronous master serial port by
setting bits SYNC, SPEN and CSRC.

3. Disable Receive mode by clearing bits SREN
and CREN.

4. Enable Transmit mode by setting the TXEN bit.
5. If 9-bit transmission is desired, set the TX9 bit.
6. If interrupts are desired, set the TXIE bit of the

PIE1 register and the GIE and PEIE bits of the
INTCON register.

7. If 9-bit transmission is selected, the ninth bit
should be loaded in the TX9D bit.

8. Start transmission by loading data to the TXREG
register.

Note: The TSR register is not mapped in data
memory, so it is not available to the user.
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MOVIW Move INDFn to W

Syntax: [ label ] MOVIW ++FSRn
[ label ] MOVIW --FSRn
[ label ] MOVIW FSRn++
[ label ] MOVIW FSRn--
[ label ] MOVIW k[FSRn]

Operands: n  [0,1]
mm  [00,01, 10, 11]
-32  k  31

Operation: INDFn  W
Effective address is determined by
• FSR + 1 (preincrement)
• FSR - 1 (predecrement)
• FSR + k (relative offset)
After the Move, the FSR value will be 
either:
• FSR + 1 (all increments)
• FSR - 1 (all decrements)
• Unchanged

Status Affected:  Z

 Mode  Syntax  mm

 Preincrement  ++FSRn  00

 Predecrement  --FSRn  01

 Postincrement  FSRn++  10

 Postdecrement  FSRn--  11

Description: This instruction is used to move data 
between W and one of the indirect 
registers (INDFn). Before/after this 
move, the pointer (FSRn) is updated by 
pre/post incrementing/decrementing it.

Note: The INDFn registers are not 
physical registers. Any instruction that 
accesses an INDFn register actually 
accesses the register at the address 
specified by the FSRn.

FSRn is limited to the range 0000h - 
FFFFh. Incrementing/decrementing it 
beyond these bounds will cause it to 
wrap-around.

MOVLB Move literal to BSR 

Syntax: [ label ] MOVLB   k

Operands: 0  k  31

Operation: k  BSR

Status Affected: None

Description: The 5-bit literal ‘k’ is loaded into the 
Bank Select Register (BSR).

MOVLP Move literal to PCLATH 

Syntax: [ label ] MOVLP   k

Operands: 0  k  127

Operation: k  PCLATH

Status Affected: None

Description: The 7-bit literal ‘k’ is loaded into the 
PCLATH register.

MOVLW Move literal to W
Syntax: [ label ]    MOVLW   k

Operands: 0  k  255

Operation: k  (W)

Status Affected: None

Description: The 8-bit literal ‘k’ is loaded into W reg-
ister. The “don’t cares” will assemble as 
‘0’s.

Words: 1

Cycles: 1

Example: MOVLW 0x5A

After Instruction
W = 0x5A

MOVWF Move W to f
Syntax: [ label ]    MOVWF     f

Operands: 0  f  127

Operation: (W)  (f)

Status Affected: None

Description: Move data from W register to register 
‘f’.

Words: 1

Cycles: 1

Example: MOVWF OPTION_REG

Before Instruction
OPTION_REG = 0xFF

              W = 0x4F
After Instruction

OPTION_REG = 0x4F
              W = 0x4F
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TABLE 30-19: EUSART SYNCHRONOUS RECEIVE REQUIREMENTS       
Standard Operating Conditions (unless otherwise stated)

Param. 
No. Symbol Characteristic Min. Max. Units Conditions

US125 TDTV2CKL SYNC RCV (Master and Slave)
Data-hold before CK  (DT hold time) 10 — ns

US126 TCKL2DTL Data-hold after CK  (DT hold time) 15 — ns
 2011-2014 Microchip Technology Inc. DS40001579E-page 381



PIC16(L)F1782/3

Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 µF, TA = 25°C.

FIGURE 31-67: LPBOR Reset Voltage. FIGURE 31-68: LPBOR Reset Hysteresis.
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FIGURE 31-69: PWRT Period, 
PIC16F1782/3 Only.

FIGURE 31-70: PWRT Period, 
PIC16LF1782/3 Only.
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FIGURE 31-71: POR Release Voltage. FIGURE 31-72: POR Rearm Voltage, 
NP Mode (VREGPM = 0), PIC16F1782/3 Only.
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