

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

20000	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f684t-e-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, PORTA change and external RA2/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE | PEIE | TOIE | INTE | RAIE | TOIF | INTF | RAIF |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts 0 = Disables all interrupts
bit 6	PEIE: Peripheral Interrupt Enable bit 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TolE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: RA2/INT External Interrupt Enable bit 1 = Enables the RA2/INT external interrupt 0 = Disables the RA2/INT external interrupt
bit 3	RAIE: PORTA Change Interrupt Enable bit ⁽¹⁾ 1 = Enables the PORTA change interrupt 0 = Disables the PORTA change interrupt
bit 2	TOIF: Timer0 Overflow Interrupt Flag bit ⁽²⁾ 1 = Timer0 register has overflowed (must be cleared in software) 0 = Timer0 register did not overflow
bit 1	INTF: RA2/INT External Interrupt Flag bit 1 = The RA2/INT external interrupt occurred (must be cleared in software) 0 = The RA2/INT external interrupt did not occur
bit 0	RAIF: PORTA Change Interrupt Flag bit 1 = When at least one of the PORTA <5:0> pins changed state (must be cleared in software) 0 = None of the PORTA <5:0> pins have changed state

- Note 1: IOCA register must also be enabled.
 - 2: T0IF bit is set when TMR0 rolls over. TMR0 is unchanged on Reset and should be initialized before clearing T0IF bit.

4.2 Additional Pin Functions

Every PORTA pin on the PIC16F684 has an interrupt-on-change option and a weak pull-up option. RA0 has an Ultra Low-Power Wake-up option. The next three sections describe these functions.

4.2.1 ANSEL REGISTER

The ANSEL register is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSEL bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSEL bits has no affect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

4.2.2 WEAK PULL-UPS

Each of the PORTA pins, except RA3, has an individually configurable internal weak pull-up. Control bits WPUAx enable or disable each pull-up. Refer to Register 4-4. Each weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RAPU bit of the OPTION register). A weak pull-up is automatically enabled for RA3 when configured as MCLR and disabled when RA3 is an I/O. There is no software control of the MCLR pull-up.

4.2.3 INTERRUPT-ON-CHANGE

Each of the PORTA pins is individually configurable as an interrupt-on-change pin. Control bits IOCAx enable or disable the interrupt function for each pin. Refer to Register 4-5. The interrupt-on-change is disabled on a Power-on Reset.

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last read of PORTA. The 'mismatch' outputs of the last read are OR'd together to set the PORTA Change Interrupt Flag bit (RAIF) in the INTCON register (Register 2-3).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTA. This will end the mismatch condition, then,
- b) Clear the flag bit RAIF.

D 444 4

A mismatch condition will continue to set flag bit RAIF. Reading PORTA will end the mismatch condition and allow flag bit RAIF to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After these resets, the RAIF flag will continue to be set if a mismatch is present.

Note: If a change on the I/O pin should occur when any PORTA operation is being executed, then the RAIF interrupt flag may not get set.

D 444 4

D 444 4

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

D 444 4

REGISTER 4-3: ANSEL: ANALOG SELECT REGISTER

D 444 4

bit 7-0 ANS<7:0>: Analog Select bits

D / 4/ 4

Analog select between analog or digital function on pins AN<7:0>, respectively.

1 =Analog input. Pin is assigned as analog input⁽¹⁾.

0 = Digital I/O. Pin is assigned to port or special function.

D 444 4

Note 1: Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups and interrupt-on-change, if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

NOTES:

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7		•					bit
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-3	TOUTPS<3:0	>: Timer2 Out	out Postscaler	Select bits			
	0000 = 1:1 P	ostscaler					
	0001 = 1:2 P	ostscaler					
	0010 = 1:3 P	ostscaler					
	0011 = 1:4 P						
	0100 = 1:5 P						
	0101 = 1:6 P						
	0110 = 1:7 P						
	0111 = 1:8 P						
	1000 = 1:9 P						
	1001 = 1:10 1010 = 1:11						
	1010 = 1.11						
	1011 = 1.121 1100 = 1:131						
	1101 = 1:14						
	1110 = 1:15						
	1111 = 1:16						
bit 2	TMR2ON: Tir	ner2 On bit					
	1 = Timer2 is	on					
	0 = Timer2 is	off					
bit 1-0	T2CKPS<1:0	>: Timer2 Cloc	k Prescale Se	lect bits			
	00 = Prescale	eris 1					
	01 = Prescale	-					
	1x = Prescale	-					

REGISTER 7-1: T2CON: TIMER 2 CONTROL REGISTER

TABLE 7-1: SUMMARY OF ASSOCIATED TIMER2 REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
PIE1	EEIE	ADIE	CCP1IE	C2IE	C1IE	OSFIE	TMR2IE	TMR1IE	0000 0000	0000 0000
PIR1	EEIF	ADIF	CCP1IF	C2IF	C1IF	OSFIF	TMR2IF	TMR1IF	0000 0000	0000 0000
PR2	Timer2 N	Iodule Perio	d Register						1111 1111	1111 1111
TMR2	Holding Register for the 8-bit TMR2 Register								0000 0000	0000 0000
T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000

 $\label{eq:Legend: Legend: Legend: u = unchanged, - = unimplemented read as `0'. Shaded cells are not used for Timer2 module.$

10.5 Protection Against Spurious Write

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during:

- Brown-out
- Power Glitch
- Software Malfunction

10.6 Data EEPROM Operation During Code-Protect

Data memory can be code-protected by programming the \overline{CPD} bit in the Configuration Word register (Register 12-1) to '0'.

When the data memory is code-protected, the CPU is able to read and write data to the data EEPROM. It is recommended to code-protect the program memory when code-protecting data memory. This prevents anyone from programming zeroes over the existing code (which will execute as NOPS) to reach an added routine, programmed in unused program memory, which outputs the contents of data memory. Programming unused locations in program memory to '0' will also help prevent data memory code protection from becoming breached.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
INTCON	GIE	PEIE	T0IE	INTE	RAIE	T0IF	INTF	RAIF	0000 0000	0000 0000
PIR1	EEIF	ADIF	CCP1IF	C2IF	C1IF	OSFIF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	EEIE	ADIE	CCP1IE	C2IE	C1IE	OSFIE	TMR2IE	TMR1IE	0000 0000	0000 0000
EEDAT	EEDAT7	EEDAT6	EEDAT5	EEDAT4	EEDAT3	EEDAT2	EEDAT1	EEDAT0	0000 0000	0000 0000
EEADR	EEADR7	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	0000 0000	0000 0000
EECON1	_	_	_	_	WRERR	WREN	WR	RD	x000	q000
EECON2 ⁽¹⁾	EEPROM									

TABLE 10-1: SUMMARY OF ASSOCIATED DATA EEPROM REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by the Data EEPROM module.

Note 1: EECON2 is not a physical register.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0
bit 7							
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

REGISTER 11-3: PWM1CON: ENHANCED PWM CONTROL REGISTER

bit 7 **PRSEN:** PWM Restart Enable bit

- 1 = Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event goes away; the PWM restarts automatically
- 0 = Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM

PDCn = Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal **should** transition active and the **actual** time it transitions active

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

TABLE 11-5 :	SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND PWM
---------------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on: BOR	all o	e on other sets
CCPR1L	Capture/Compare/PWM Register 1 Low Byte										uuuu	uuuu
CCPR1H	Capture/Co	mpare/PWI	A Register 2	1 High Byte					xxxx	xxxx	uuuu	uuuu
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000	0000	0000	0000
CMCON0	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000	0000	0000	0000
CMCON1	_			_	—	_	T1GSS	C2SYNC		10		10
ECCPAS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1	PSSBD0	0000	0000	0000	0000
INTCON	GIE	PEIE	TOIE	INTE	RAIE	TOIF	INTF	RAIF	0000	0000	0000	0000
PIE1	EEIE	ADIE	CCP1IE	C2IE	C1IE	OSFIE	TMR2IE	TMR1IE	0000	0000	0000	0000
PIR1	EEIF	ADIF	CCP1IF	C2IF	C1IF	OSFIF	TMR2IF	TMR1IF	0000	0000	0000	0000
PR2	Timer2 Mod	dule Period	Register						1111	1111	1111	1111
PWM1CON	PRSEN	PDC6	PDC5	PDC4	PDC3	PDC2	PDC1	PDC0	0000	0000	0000	0000
T1CON	T1GINV	TMR1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000	0000	uuuu	uuuu
T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
TMR1L	Holding Re	gister for the	e Least Sigr	nificant Byte	of the 16-bi	t TMR1 Reg	gister		xxxx	xxxx	uuuu	uuuu
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register								xxxx	xxxx	uuuu	uuuu
TMR2	Timer2 Module Register								0000	0000	0000	0000
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	11	1111	11	1111
TRISC			TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11	1111	11	1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Capture, Compare and PWM.

bit 6-0 PDC<6:0>: PWM Delay Count bits

12.6 Watchdog Timer (WDT)

The WDT has the following features:

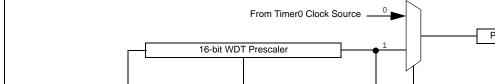
- Operates from the LFINTOSC (31 kHz)
- · Contains a 16-bit prescaler
- Shares an 8-bit prescaler with Timer0
- · Time-out period is from 1 ms to 268 seconds
- · Configuration bit and software controlled

WDT is cleared under certain conditions described in Table 12-7.

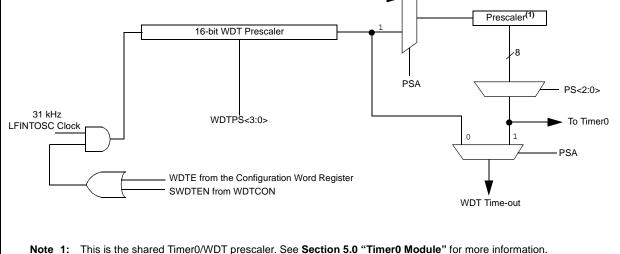
12.6.1 WDT OSCILLATOR

The WDT derives its time base from the 31 kHz LFINTOSC. The LTS bit of the OSCCON register does not reflect that the LFINTOSC is enabled.

The value of WDTCON is '---0 1000' on all Resets. This gives a nominal time base of 17 ms.


Note: When the Oscillator Start-up Timer (OST) is invoked, the WDT is held in Reset, because the WDT Ripple Counter is used by the OST to perform the oscillator delay count. When the OST count has expired, the WDT will begin counting (if enabled).

12.6.2 WDT CONTROL


The WDTE bit is located in the Configuration Word register. When set, the WDT runs continuously.

When the WDTE bit in the Configuration Word register is set, the SWDTEN bit of the WDTCON register has no effect. If WDTE is clear, then the SWDTEN bit can be used to enable and disable the WDT. Setting the bit will enable it and clearing the bit will disable it.

The PSA and PS<2:0> bits of the OPTION register have the same function as in previous versions of the PIC16F684 Family of microcontrollers. See Section 5.0 "Timer0 Module" for more information.

FIGURE 12-9: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 12-7: WDT STATUS

Conditions	WDT		
WDTE = 0			
CLRWDT Command	Cleared		
Oscillator Fail Detected	Cleared		
Exit Sleep + System Clock = T1OSC, EXTRC, INTRC, EXTCLK			
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST		

DC CHARACTERISTICS			ard Oper ing temp				s otherwise stated) 35°C for industrial
Param	Device Characteristics	Min	Tunt	Max	Units		Conditions
No.	Device Characteristics		Тур†	IVIAX	Units	Vdd	Note
D020	Power-down Base		0.05	1.2	μA	2.0	WDT, BOR, Comparators, VREF and
	Current(IPD) ⁽²⁾	_	0.15	1.5	μA	3.0	T1OSC disabled
		_	0.35	1.8	μA	5.0	
			150	500	nA	3.0	$-40^{\circ}C \le TA \le +25^{\circ}C$
D021		_	1.0	2.2	μA	2.0	WDT Current ⁽¹⁾
		_	2.0	4.0	μA	3.0	
			3.0	7.0	μA	5.0	
D022			42	60	μA	3.0	BOR Current ⁽¹⁾
		_	85	122	μA	5.0	
D023		_	32	45	μA	2.0	Comparator Current ⁽¹⁾ , both
		_	60	78	μA	3.0	comparators enabled
		_	120	160	μA	5.0	
D024			30	36	μA	2.0	CVREF Current ⁽¹⁾ (high range)
			45	55	μA	3.0	
		_	75	95	μA	5.0	
D025*			39	47	μA	2.0	CVREF Current ⁽¹⁾ (low range)
			59	72	μA	3.0	
		—	98	124	μA	5.0	
D026		—	4.5	7.0	μA	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz
			5.0	8.0	μA	3.0	
		_	6.0	12	μA	5.0	
D027			0.30	1.6	μΑ	3.0	A/D Current ⁽¹⁾ , no conversion in
		—	0.36	1.9	μA	5.0	progress

15.3 DC Characteristics: PIC16F684-I (Industrial)

These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

*

15.4 DC Characteristics: PIC16F684-E (Extended)

DC CHA	RACTERISTICS		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended								
Param	Device Characteristics	Min	Trunt	Max	Unite		Conditions				
No.	Device Characteristics	Min	Тур†	Мах	Units	Vdd	Note				
D020E	Power-down Base	_	0.05	9	μA	2.0	WDT, BOR, Comparators, VREF and				
	Current (IPD) ⁽²⁾		0.15	11	μA	3.0	T1OSC disabled				
		—	0.35	15	μA	5.0					
D021E		_	1	17.5	μΑ	2.0	WDT Current ⁽¹⁾				
			2	19	μA	3.0					
		_	3	22	μΑ	5.0					
D022E		_	42	65	μΑ	3.0	BOR Current ⁽¹⁾				
		_	85	127	μΑ	5.0					
D023E		_	32	45	μΑ	2.0	Comparator Current ⁽¹⁾ , both				
		_	60	78	μΑ	3.0	comparators enabled				
		_	120	160	μΑ	5.0					
D024E		_	30	70	μΑ	2.0	CVREF Current ⁽¹⁾ (high range)				
		_	45	90	μΑ	3.0					
		_	75	120	μΑ	5.0					
D025E*			39	91	μA	2.0	CVREF Current ⁽¹⁾ (low range)				
		_	59	117	μΑ	3.0					
		_	98	156	μΑ	5.0					
D026E		_	4.5	25	μΑ	2.0	T1OSC Current ⁽¹⁾ , 32.768 kHz				
		_	5	30	μA	3.0]				
		—	6	40	μΑ	5.0	7				
D027E			0.30	12	μΑ	3.0	A/D Current ⁽¹⁾ , no conversion in				
		_	0.36	16	μA	5.0	progress				

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

TABLE 15-2: OSCILLATOR PARAMETERS

	g Tempera	ture $-40^{\circ}C \le TA \le +125^{\circ}$		-)				
Param No.	Sym	Characteristic	Freq Tolerance	Min	Тур†	Max	Units	Conditions
OS06	TWARM	Internal Oscillator Switch when running ⁽³⁾	_		—	2	Tosc	Slowest clock
OS07	Tsc	Fail-Safe Sample Clock Period ⁽¹⁾	—	—	21	_	ms	LFINTOSC/64
OS08	HFosc	Internal Calibrated	±1%	7.92	8.0	8.08	MHz	VDD = 3.5V, 25°C
		HFINTOSC Frequency ⁽²⁾	±2%	7.84	8.0	8.16	MHz	$2.5V \le VDD \le 5.5V$, $0^{\circ}C \le TA \le +85^{\circ}C$
			±5%	7.60	8.0	8.40	MHz	$2.0V \le VDD \le 5.5V,$ -40°C \le TA \le +85°C (Ind.), -40°C \le TA \le +125°C (Ext.)
OS09*	LFosc	Internal Uncalibrated LFINTOSC Frequency	—	15	31	45	kHz	
OS10*	Tiosc	HFINTOSC Oscillator	_	5.5	12	24	μs	VDD = 2.0V, -40°C to +85°C
	ST	Wake-up from Sleep	—	3.5	7	14	μs	VDD = 3.0V, -40°C to +85°C
		Start-up Time	—	3	6	11	μs	VDD = 5.0V, -40°C to +85°C

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at 'min' values with an external clock applied to the OSC1 pin. When an external clock input is used, the 'max' cycle time limit is 'DC' (no clock) for all devices.
 - 2: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

3: By design.

TABLE 15-7: **COMPARATOR SPECIFICATIONS**

Standard Operating Conditions (unless otherwise stated)

Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym	Characteristics		Min	Тур†	Max	Units	Comments
CM01	Vos	Input Offset Voltage			± 5.0	± 10	mV	(Vdd - 1.5)/2
CM02	Vсм	Input Common Mode Voltage		0	_	Vdd - 1.5	V	
CM03*	CMRR	Common Mode Rejection Ratio		+55	_	_	dB	
CM04*	Trt	Response Time	Falling		150	600	ns	(NOTE 1)
			Rising		200	1000	ns	
CM05*	Тмс2coV	Comparator Mode Change to Output Valid			_	10	μs	

These parameters are characterized but not tested.

† Data in 'Typ' column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Response time is measured with one comparator input at (VDD - 1.5)/2 - 100 mV to (VDD - 1.5)/2 + 20 mV.

COMPARATOR VOLTAGE REFERENCE (CVREF) SPECIFICATIONS TABLE 15-8:

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}C < T_A < +125^{\circ}C$

Param No.	Sym	Characteristics	Min	Тур†	Max	Units	Comments	
CV01*	CLSB	Step Size ⁽²⁾		Vdd/24 Vdd/32	_	V V	Low Range (VRR = 1) High Range (VRR = 0)	
CV02*	CACC	Absolute Accuracy			± 1/2 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)	
CV03*	CR	Unit Resistor Value (R)	_	2k	_	Ω		
CV04*	CST	Settling Time ⁽¹⁾	_		10	μs		

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

2: See Section 8.10 "Comparator Voltage Reference" for more information.

TABLE 15-9: PIC16F684 A/D CONVERTER (ADC) CHARACTERISTICS

	Standard Operating Conditions (unless otherwise stated) Dperating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions			
AD01	NR	Resolution	—	_	10 bits	bit				
AD02	EIL	Integral Error	—	—	±1	LSb	VREF = 5.12V			
AD03	Edl	Differential Error	-		±1	LSb	No missing codes to 10 bits VREF = 5.12V			
AD04	EOFF	Offset Error	_	_	±1	LSb	VREF = 5.12V			
AD07	Egn	Gain Error	_	_	±1	LSb	VREF = 5.12V			
AD06 AD06A	Vref	Reference Voltage ⁽³⁾	2.2 2.7	—	— Vdd	V	Absolute minimum to ensure 1 LSb accuracy			
AD07	VAIN	Full-Scale Range	Vss	_	Vref	V				
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	—	_	10	kΩ				
AD09*	IREF	VREF Input Current ⁽³⁾	10	—	1000	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN.			
			—	_	50	μA	During A/D conversion cycle.			

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF or VDD pin, whichever is selected as reference input.

4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

TABLE 15-10: PIC16F684 A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)

Operating temperature	$-40^{\circ}C \le TA \le +125^{\circ}C$
-----------------------	---

Operatin	ig temp	erature $-40^{\circ}C \le TA \le$	+125°0	3			
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
AD130*	TAD	A/D Clock Period	1.6	—	9.0	μs	Tosc-based, VREF≥3.0V
			3.0	—	9.0	μs	Tosc-based, VREF full range
		A/D Internal RC Oscillator Period	3.0	6.0	9.0	μs	ADCS<1:0> = 11 (ADRC mode) At VDD = 2.5V
			1.6	4.0	6.0	μs	At VDD = 5.0V
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	_	11	_	TAD	Set GO/DONE bit to new data in A/D Result register
AD132*	TACQ	Acquisition Time		11.5	_	μs	
AD133*	TAMP	Amplifier Settling Time	—	—	5	μs	
AD134	Tgo	Q4 to A/D Clock Start	—	Tosc/2	_	_	
			—	Tosc/2 + Tcy	—		If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.

2: See Section 9.3 "A/D Acquisition Requirements" for minimum conditions.

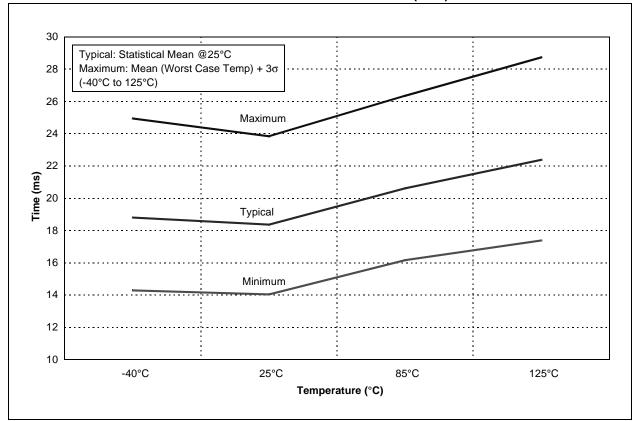
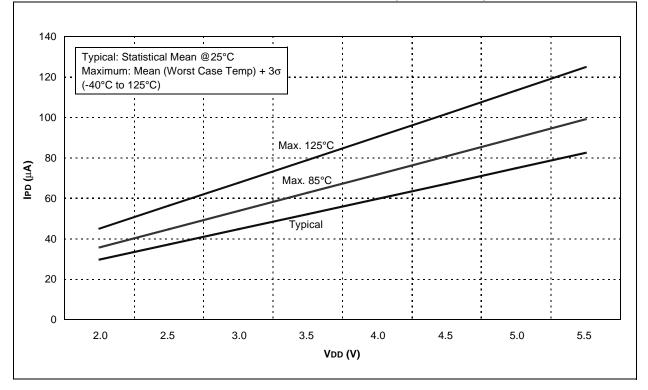



FIGURE 16-20: WDT PERIOD vs. TEMPERATURE OVER VDD (5.0V)

FIGURE 16-21: CVREF IPD vs. VDD OVER TEMPERATURE (HIGH RANGE)

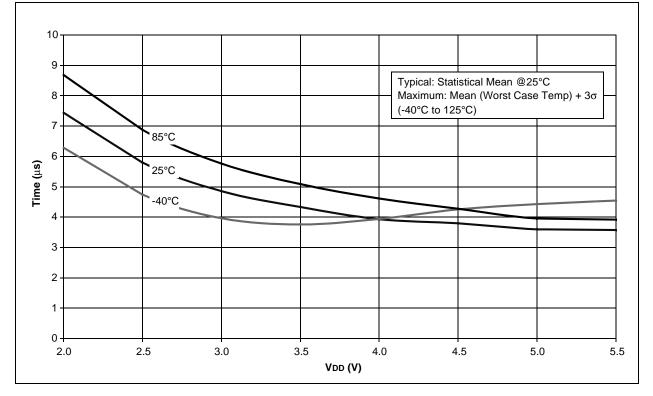
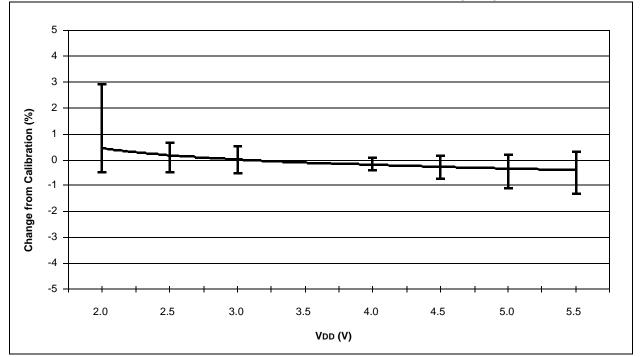



FIGURE 16-37: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (25°C)

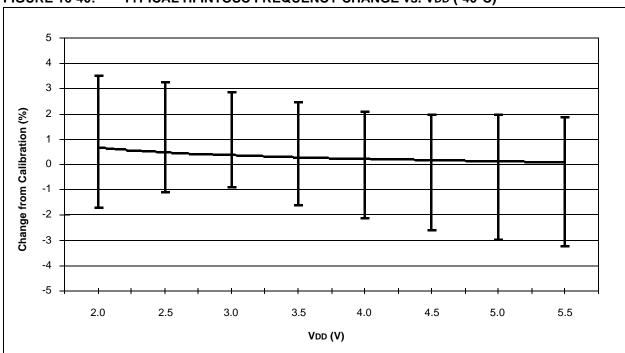
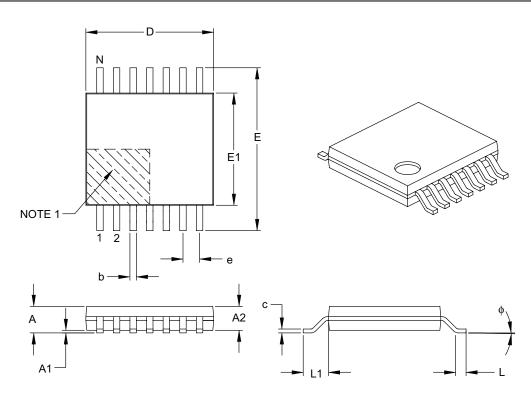



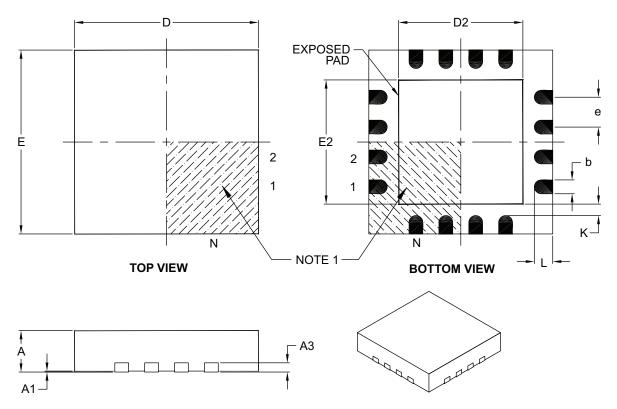
FIGURE 16-40: TYPICAL HFINTOSC FREQUENCY CHANGE vs. VDD (-40°C)

14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimensi	ion Limits	MIN	NOM	MAX	
Number of Pins	Ν		14		
Pitch	е		0.65 BSC		
Overall Height	Α	-	-	1.20	
Molded Package Thickness	A2	0.80	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Overall Width	E	6.40 BSC			
Molded Package Width	E1	4.30	4.40	4.50	
Molded Package Length	D	4.90	5.00	5.10	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Foot Angle	φ	0°	-	8°	
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.19	-	0.30	

Notes:


1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-087B

16-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		16	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		4.00 BSC	
Exposed Pad Width	E2	2.50	2.65	2.80
Overall Length	D		4.00 BSC	
Exposed Pad Length	D2	2.50	2.65	2.80
Contact Width	b	0.25	0.30	0.35
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-127B

PIC16F684

CMCON1 Register	62
Code Examples	
A/D Conversion	69
Assigning Prescaler to Timer0	44
Assigning Prescaler to WDT	44
Changing Between Capture Prescalers	80
Data EEPROM Read	77
Data EEPROM Write	77
Indirect Addressing	19
Initializing PORTA	31
Initializing PORTC	40
Saving Status and W Registers in RAM	
Ultra Low-Power Wake-Up Initialization	34
Write Verify	
Code Protection	
Comparator	55
C2OUT as T1 Gate	62
Configurations	
Interrupts	
Operation	
Operation During Sleep	
Overview	
Response Time	
Synchronizing COUT w/Timer1	
Comparator Module	
Associated Registers	64
Comparator Voltage Reference (CVREF)	04
Response Time	50
Comparator Voltage Reference (CVREF)	
Effects of a Reset	
Specifications	
Comparators	140
C2OUT as T1 Gate	10
Effects of a Reset	
Specifications	
Compare Module. See Enhanced Capture/	140
Compare Module: See Enhanced Capture/ Compare/PWM (ECCP)	
CONFIG Register	00
Configuration Bits	
CPU Features	
Customer Change Notification Service	187
Customer Notification Service	
Customer Support	187
D	

Data EEPROM Memory Associated Registers	78
Code Protection	
Data Memory	-
DC and AC Characteristics	
Graphs and Tables	151
DC Characteristics	
Extended and Industrial	
Industrial and Extended	131
Development Support	
Device Overview	5

Е

ECCP. See Enhanced Capture/Compare/PWM	
ECCPAS Register	93
EEADR Register	75
EECON1 Register	76
EECON2 Register	76
EEDAT Register	75
EEPROM Data Memory	
Avoiding Spurious Write	78

Reading7	7
Write Verify7	7
Writing	
Effects of Reset	
PWM mode8	4
Electrical Specifications	
Enhanced Capture/Compare/PWM	
Enhanced Capture/Compare/PWM (ECCP)	Ũ
Enhanced PWM Mode	5
Auto-Restart	
Auto-shutdown	
Direction Change in Full-Bridge Output Mode 9	-
Full-Bridge Application	
Full-Bridge Mode 8	
Half-Bridge Application	
Half-Bridge Application Examples	
Half-Bridge Mode	
Output Relationships (Active-High and	0
	6
Active-Low)8	
Output Relationships Diagram	
Programmable Dead-Band Delay	
Shoot-through Current	
Start-up Considerations	
Specifications14	
Timer Resources7	-
Errata	4

F

Fail-Safe Clock Monitor	29
Fail-Safe Condition Clearing	29
Fail-Safe Detection	29
Fail-Safe Operation	29
Reset or Wake-up from Sleep	29
Firmware Instructions	115
Fuses. See Configuration Bits	

G

General Purpose Register	File	8
--------------------------	------	---

1	
ID Locations	113
In-Circuit Debugger	114
In-Circuit Serial Programming (ICSP)	114
Indirect Addressing, INDF and FSR registers	19
Instruction Format	
Instruction Set	115
ADDLW	117
ADDWF	117
ANDLW	117
ANDWF	117
BCF	117
BSF	117
BTFSC	117
BTFSS	118
CALL	118
CLRF	118
CLRW	118
CLRWDT	118
COMF	118
DECF	118
DECFSZ	119
GOTO	119
INCF	119
INCFSZ	119
IORLW	119
IORWF	119