
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, SSC, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	109
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/at32uc3a0128au-alut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Configuration Summary

Device	Flash	SRAM	Ext. Bus Interface	Ethernet MAC	Package
AT32UC3A0512	512 Kbytes	64 Kbytes	yes	yes	144 pin LQFP 144 pin BGA
AT32UC3A0256	256 Kbytes	64 Kbytes	yes	yes	144 pin LQFP 144 pin BGA
AT32UC3A0128	128 Kbytes	32 Kbytes	yes	yes	144 pin LQFP 144 pin BGA
AT32UC3A1512	512 Kbytes	64 Kbytes	no	yes	100 pin TQFP
AT32UC3A1256	256 Kbytes	64 Kbytes	no	yes	100 pin TQFP
AT32UC3A1128	128 Kbytes	32 Kbytes	no	yes	100 pin TQFP

The table below lists all AT32UC3A memory and package configurations:

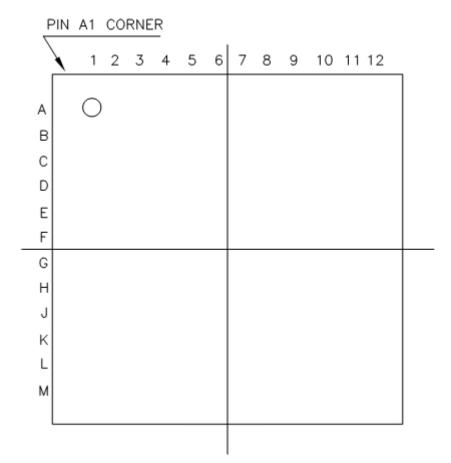
3. Abbreviations

- GCLK: Power Manager Generic Clock
- GPIO: General Purpose Input/Output
- HSB: High Speed Bus
- MPU: Memory Protection Unit
- OCD: On Chip Debug
- PB: Peripheral Bus
- PDCA: Peripheral Direct Memory Access Controller (PDC) version A
- USBB: USB On-The-GO Controller version B

Table 5-1.Signal Description List

Signal Name	Function	Туре	Active Level	Comments
	Analog to Digital Co	nverter - ADC		
AD0 - AD7	Analog input pins	Analog input		
ADVREF	Analog positive reference voltage input	Analog input		2.6 to 3.6V
	Pulse Width Modu	lator - PWM	•	
PWM0 - PWM6	PWM Output Pins	Output		
	Universal Serial Bus	Device - USB		
DDM	USB Device Port Data -	Analog		
DDP	USB Device Port Data +	Analog		
VBUS	USB VBUS Monitor and OTG Negociation	Analog Input		
USBID	ID Pin of the USB Bus	Input		
USB_VBOF	USB VBUS On/off: bus power control port	output		
	Audio Bitstream D	AC (ABDAC)		1
DATA0-DATA1	D/A Data out	Outpu		
DATAN0-DATAN1	D/A Data inverted out	Outpu		

Table 6-2.VQFP144 Package Pinout

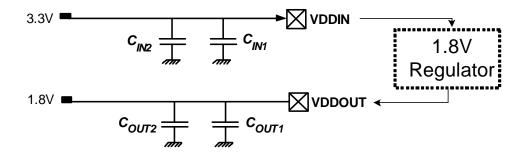

22	PB31
23	RESET_N
24	PX05
25	PA00
26	PX06
27	PA01
28	GND
29	VDDCORE
30	PA02
31	PX07
32	PA03
33	PX08
34	PA04
35	PX09
36	VDDIO

58	PA16			
59	PX15			
60	PA17			
61	PX16			
62	PA18			
63	PX17			
64	PA19			
65	PX18			
66	PA20			
67	PX19			
68	VBUS			
69	VDDIO			
70	DM			
71	DP			
72	GND			

94	GND
95	PX23
96	PB02
97	PX24
98	PB03
99	PX25
100	PB04
101	PX26
102	PB05
103	PX27
104	PB06
105	PX28
106	PB07
107	PX29
108	VDDIO

130	TDO
131	TDI
132	PC04
133	PC05
134	PB15
135	PX35
136	PB16
137	PX36
138	VDDCORE
139	PB17
140	PX37
141	PB18
142	PX38
143	PB19
144	PX39

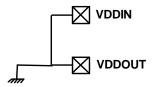
Figure 6-3. BGA144 Pinout


7.2 Voltage Regulator

7.2.1 Single Power Supply

The AT32UC3A embeds a voltage regulator that converts from 3.3V to 1.8V. The regulator takes its input voltage from VDDIN, and supplies the output voltage on VDDOUT. VDDOUT should be externally connected to the 1.8V domains.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability and reduce source voltage drop. Two input decoupling capacitors must be placed close to the chip.


Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscillations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and GND as close to the chip as possible

Refer to Section 12.3 on page 42 for decoupling capacitors values and regulator characteristics

7.2.2 Dual Power Supply

In case of dual power supply, VDDIN and VDDOUT should be connected to ground to prevent from leakage current.

Table 10-8.	PDC Handshake Signals
PID Value	Peripheral module & direction
4	USART2 - RX
5	USART3 - RX
6	TWI - RX
7	SPI0 - RX
8	SPI1 - RX
9	SSC - TX
10	USART0 - TX
11	USART1 - TX
12	USART2 - TX
13	USART3 - TX
14	TWI - TX
15	SPI0 - TX
16	SPI1 - TX
17	ABDAC

 Table 10-8.
 PDC Handshake Signals

10.7 Peripheral Multiplexing on I/O lines

Each GPIO line can be assigned to one of 3 peripheral functions; A, B or C. The following table define how the I/O lines on the peripherals A, B and C are multiplexed by the GPIO.

 Table 10-9.
 GPIO Controller Function Multiplexing

TQFP100	VQFP144	PIN	GPIO Pin	Function A	Function B	Function C
19	25	PA00	GPIO 0	USART0 - RXD	TC - CLK0	
20	27	PA01	GPIO 1	USART0 - TXD	TC - CLK1	
23	30	PA02	GPIO 2	USART0 - CLK	TC - CLK2	
24	32	PA03	GPIO 3	USART0 - RTS	EIM - EXTINT[4]	DAC - DATA[0]
25	34	PA04	GPIO 4	USART0 - CTS	EIM - EXTINT[5]	DAC - DATAN[0]
26	39	PA05	GPIO 5	USART1 - RXD	PWM - PWM[4]	
27	41	PA06	GPIO 6	USART1 - TXD	PWM - PWM[5]	
28	43	PA07	GPIO 7	USART1 - CLK	PM - GCLK[0]	SPI0 - NPCS[3]
29	45	PA08	GPIO 8	USART1 - RTS	SPI0 - NPCS[1]	EIM - EXTINT[7]
30	47	PA09	GPIO 9	USART1 - CTS	SPI0 - NPCS[2]	MACB - WOL
31	48	PA10	GPIO 10	SPI0 - NPCS[0]	EIM - EXTINT[6]	
33	50	PA11	GPIO 11	SPI0 - MISO	USB - USB_ID	
36	53	PA12	GPIO 12	SPI0 - MOSI	USB - USB_VBOF	
37	54	PA13	GPIO 13	SPI0 - SCK		
39	56	PA14	GPIO 14	SSC - TX_FRAME_SYNC	SPI1 - NPCS[0]	EBI - NCS[0]
40	57	PA15	GPIO 15	SSC - TX_CLOCK	SPI1 - SCK	EBI - ADDR[20]

 Table 10-9.
 GPIO Controller Function Multiplexing

Table 10-9.	GFIO COIII		in manupicking	1		
41	58	PA16	GPIO 16	SSC - TX_DATA	SPI1 - MOSI	EBI - ADDR[21]
42	60	PA17	GPIO 17	SSC - RX_DATA	SPI1 - MISO	EBI - ADDR[22]
43	62	PA18	GPIO 18	SSC - RX_CLOCK	SPI1 - NPCS[1]	MACB - WOL
44	64	PA19	GPIO 19	SSC - RX_FRAME_SYNC	SPI1 - NPCS[2]	
45	66	PA20	GPIO 20	EIM - EXTINT[8]	SPI1 - NPCS[3]	
51	73	PA21	GPIO 21	ADC - AD[0]	EIM - EXTINT[0]	USB - USB_ID
52	74	PA22	GPIO 22	ADC - AD[1]	EIM - EXTINT[1]	USB - USB_VBOF
53	75	PA23	GPIO 23	ADC - AD[2]	EIM - EXTINT[2]	DAC - DATA[1]
54	76	PA24	GPIO 24	ADC - AD[3]	EIM - EXTINT[3]	DAC - DATAN[1]
55	77	PA25	GPIO 25	ADC - AD[4]	EIM - SCAN[0]	EBI - NCS[0]
56	78	PA26	GPIO 26	ADC - AD[5]	EIM - SCAN[1]	EBI - ADDR[20]
57	79	PA27	GPIO 27	ADC - AD[6]	EIM - SCAN[2]	EBI - ADDR[21]
58	80	PA28	GPIO 28	ADC - AD[7]	EIM - SCAN[3]	EBI - ADDR[22]
83	122	PA29	GPIO 29	TWI - SDA	USART2 - RTS	
84	123	PA30	GPIO 30	TWI - SCL	USART2 - CTS	
65	88	PB00	GPIO 32	MACB - TX_CLK	USART2 - RTS	USART3 - RTS
66	90	PB01	GPIO 33	MACB - TX_EN	USART2 - CTS	USART3 - CTS
70	96	PB02	GPIO 34	MACB - TXD[0]	DAC - DATA[0]	
71	98	PB03	GPIO 35	MACB - TXD[1]	DAC - DATAN[0]	
72	100	PB04	GPIO 36	MACB - CRS	USART3 - CLK	EBI - NCS[3]
73	102	PB05	GPIO 37	MACB - RXD[0]	DAC - DATA[1]	
74	104	PB06	GPIO 38	MACB - RXD[1]	DAC - DATAN[1]	
75	106	PB07	GPIO 39	MACB - RX_ER		
76	111	PB08	GPIO 40	MACB - MDC		
77	113	PB09	GPIO 41	MACB - MDIO		
78	115	PB10	GPIO 42	MACB - TXD[2]	USART3 - RXD	EBI - SDCK
81	119	PB11	GPIO 43	MACB - TXD[3]	USART3 - TXD	EBI - SDCKE
82	121	PB12	GPIO 44	MACB - TX_ER	TC - CLK0	EBI - RAS
87	126	PB13	GPIO 45	MACB - RXD[2]	TC - CLK1	EBI - CAS
88	127	PB14	GPIO 46	MACB - RXD[3]	TC - CLK2	EBI - SDWE
95	134	PB15	GPIO 47	MACB - RX_DV		
96	136	PB16	GPIO 48	MACB - COL	USB - USB_ID	EBI - SDA10
98	139	PB17	GPIO 49	MACB - RX_CLK	USB - USB_VBOF	EBI - ADDR[23]
99	141	PB18	GPIO 50	MACB - SPEED	ADC - TRIGGER	PWM - PWM[6]
100	143	PB19	GPIO 51	PWM - PWM[0]	PM - GCLK[0]	EIM - SCAN[4]
1	3	PB20	GPIO 52	PWM - PWM[1]	PM - GCLK[1]	EIM - SCAN[5]
2	5	PB21	GPIO 53	PWM - PWM[2]	PM - GCLK[2]	EIM - SCAN[6]
3	6	PB22	GPIO 54	PWM - PWM[3]	PM - GCLK[3]	EIM - SCAN[7]
	9	PB23	GPIO 55	TC - A0	USART1 - DCD	

These figures represent the power consumption measured on the power supplies.

 Table 12-9.
 Power Consumption for Different Modes

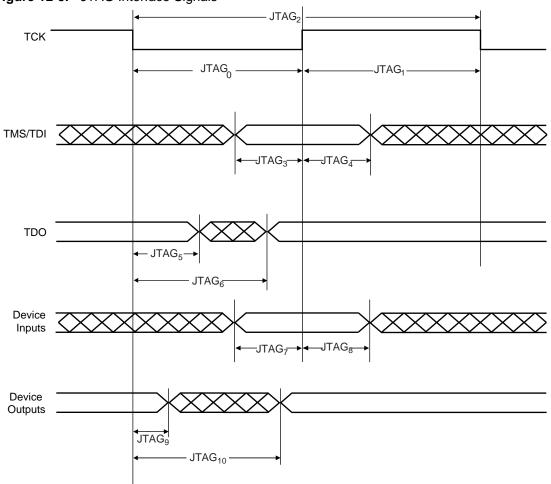
Mode	Conditions		Тур.	Unit
	Typ : Ta =25 °C	f = 12 MHz	9	mA
	CPU running from flash ⁽¹⁾ .	f = 24 MHz	15	mA
	VDDIN=3.3 V. VDDCORE =1.8V. CPU clocked from PLL0 at f MHz	f = 36MHz	20	mA
	Voltage regulator is on.	f = 50 MHz	28	mA
Active	 XIN0 : external clock. ⁽¹⁾ XIN1 stopped. XIN32 stopped PLL0 running All peripheral clocks activated. GPIOs on internal pull-up. JTAG unconnected with ext pull-up. 	f = 66 MHz	36.3	mA
	Typ : Ta = 25 °C	f = 12 MHz	5	mA
	CPU running from flash ⁽¹⁾ . VDDIN=3.3 V. VDDCORE =1.8V.	f = 24 MHz	10	mA
	CPU clocked from PLL0 at f MHz	f = 36MHz	14	mA
	Voltage regulator is on.	f = 50 MHz	19	mA
Idle XIN0 : external clock. XIN1 stopped. XIN32 stopped PLL0 running All peripheral clocks activated. GPIOs on internal pull-up. JTAG unconnected with ext pull-up.	f = 66 MHz	25.5	mA	
	Typ : Ta = 25 °C CPU running from flash ⁽¹⁾ . CPU clocked from PLL0 at f MHz Voltage regulator is on.	f = 12 MHz	3	mA
		f = 24 MHz	6	mA
		f = 36MHz	9	mA
-	XIN0 : external clock.	f = 50 MHz	13	mA
Frozen	XIN1 stopped. XIN32 stopped PLL0 running All peripheral clocks activated. GPIOs on internal pull-up. JTAG unconnected with ext pull-up.	f = 66 MHz	16.8	mA
	Typ : Ta = 25 °C	f = 12 MHz	1	mA
	CPU running from flash ⁽¹⁾ .	f = 24 MHz	2	mA
Standby	CPU clocked from PLL0 at f MHz Voltage regulator is on.	f = 36MHz	3	mA
	XIN0 : external clock.	f = 50 MHz	4	mA
	XIN1 stopped. XIN32 stopped PLL0 running All peripheral clocks activated. GPIOs on internal pull-up. JTAG unconnected with ext pull-up.	f = 66 MHz	4.8	mA

Table 12-9. Power Consumption for Different Modes

Mode	Conditions	Тур.	Unit	
	Typ : Ta = 25 °C. CPU is in stop mode	on Amp0	47	uA
Stop	GPIOs on internal pull-up. All peripheral clocks de-activated. DM and DP pins connected to ground. XIN0,Xin1 and XIN2 are stopped	on Amp1	40	uA
	Typ : Ta = 25 °C.CPU is in deepstop mode	on Amp0	36	uA
Deepstop	GPIOs on internal pull-up. All peripheral clocks de-activated. DM and DP pins connected to ground. XIN0,Xin1 and XIN2 are stopped	on Amp1	28	uA
	Typ : Ta = 25 °C. CPU is in static mode	on Amp0	25	uA
Static	GPIOs on internal pull-up. All peripheral clocks de-activated. DM and DP pins connected to ground. XIN0,Xin1 and XIN2 are stopped	on Amp1	14	uA

1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < fpll0 < 160 MHz and 10 MHz < fxin0 < 12MHz

Peripheral	Тур.	Unit
GPIO	37	
SMC	10	
SDRAMC	4	
ADC	18	
EBI	31	
INTC	25	
TWI	14	
MACB	45	
PDCA	30	μA/MHz
PWM	36	
RTC	7	
SPI	13	
SSC	13	
TC	10	
USART	35	
USB	45	


Table 12-10. Power Consumption by Peripheral in Active Mode

12.6 Clock Characteristics

These parameters are given in the following conditions:

12.11 SPI Characteristics

Table 12-30. SPI Timings

Symbol	Parameter	Conditions	Min	Max	Units
SPI0	MISO Setup time before SPCK rises (master)	3.3V domain ⁽¹⁾	22 + (t _{СРМСК})/2 ⁽²⁾		ns
SPI ₁	MISO Hold time after SPCK rises (master)	3.3V domain ⁽¹⁾	0		ns
SPI ₂	SPCK rising to MOSI Delay (master)	3.3V domain ⁽¹⁾		7	ns
SPI ₃	MISO Setup time before SPCK falls (master)	3.3V domain ⁽¹⁾	$22 + (t_{CPMCK})/2^{(2)}$		ns
SPI4	MISO Hold time after SPCK falls (master)	3.3V domain ⁽¹⁾	0		ns
SPI ₅	SPCK falling to MOSI Delay (master)	3.3V domain ⁽¹⁾		7	ns
SPI ₆	SPCK falling to MISO Delay (slave)	3.3V domain ⁽¹⁾		26.5	ns
SPI7	MOSI Setup time before SPCK rises (slave)	3.3V domain ⁽¹⁾	0		ns
SPI ₈	MOSI Hold time after SPCK rises (slave)	3.3V domain ⁽¹⁾	1.5		ns
SPI ₉	SPCK rising to MISO Delay (slave)	3.3V domain ⁽¹⁾		27	ns
SPI ₁₀	MOSI Setup time before SPCK falls (slave)	3.3V domain ⁽¹⁾	0		ns
SPI ₁₁	MOSI Hold time after SPCK falls (slave)	3.3V domain ⁽¹⁾	1		ns

Notes: 1. 3.3V domain: V_{VDDIO} from 3.0V to 3.6V, maximum external capacitor = 40 pF.

2. t_{CPMCK} : Master Clock period in ns.

12.12 MACB Characteristics

Table 12-31. Ethernet MAC Signals

Symbol	Parameter	Conditions	Min (ns)	Max (ns)
EMAC ₁	Setup for EMDIO from EMDC rising	Load: 20pF ⁽²⁾		
EMAC ₂	Hold for EMDIO from EMDC rising	Load: 20pF ⁽²⁾		
EMAC ₃	EMDIO toggling from EMDC falling	Load: 20pF ⁽²⁾		

Notes: 1. f: MCK frequency (MHz)

2. V_{VDDIO} from 3.0V to 3.6V, maximum external capacitor = 20 pF

Table 12-32. Ethernet MAC MII Specific Signals

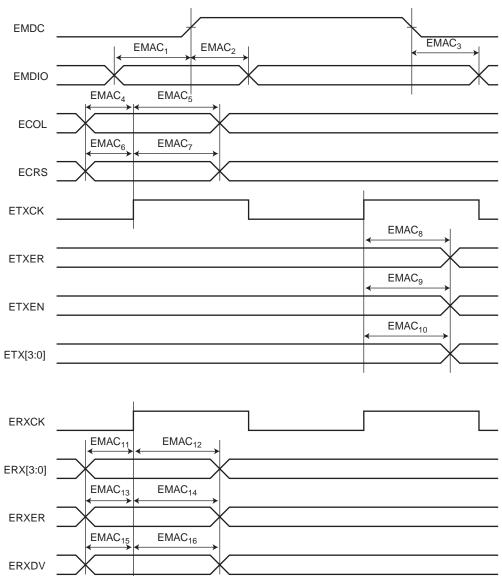
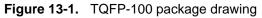

Symbol	Parameter	Conditions	Min (ns)	Max (ns)
EMAC ₄	Setup for ECOL from ETXCK rising	Load: 20pF ⁽¹⁾	3	
EMAC ₅	Hold for ECOL from ETXCK rising	Load: 20pF ⁽¹⁾	0	
EMAC ₆	Setup for ECRS from ETXCK rising	Load: 20pF ⁽¹⁾	3	
EMAC ₇	Hold for ECRS from ETXCK rising	Load: 20pF ⁽¹⁾	0	
EMAC ₈	ETXER toggling from ETXCK rising	Load: 20pF (1)		15
EMAC ₉	ETXEN toggling from ETXCK rising	Load: 20pF ⁽¹⁾		15
EMAC ₁₀	ETX toggling from ETXCK rising	Load: 20pF ⁽¹⁾		15
EMAC ₁₁	Setup for ERX from ERXCK	Load: 20pF ⁽¹⁾	1	

Table 12-32. Ethernet MAC MII Specific Signals

Symbol	Parameter	Conditions	Min (ns)	Max (ns)
EMAC ₁₂	Hold for ERX from ERXCK	Load: 20pF ⁽¹⁾	1.5	
EMAC ₁₃	Setup for ERXER from ERXCK	Load: 20pF ⁽¹⁾	1	
EMAC ₁₄	Hold for ERXER from ERXCK	Load: 20pF ⁽¹⁾	0.5	
EMAC ₁₅	Setup for ERXDV from ERXCK	Load: 20pF ⁽¹⁾	1.5	
EMAC ₁₆	Hold for ERXDV from ERXCK	Load: 20pF ⁽¹⁾	1	


Note: 1. V_{VDDIO} from 3.0V to 3.6V, maximum external capacitor = 20 pF

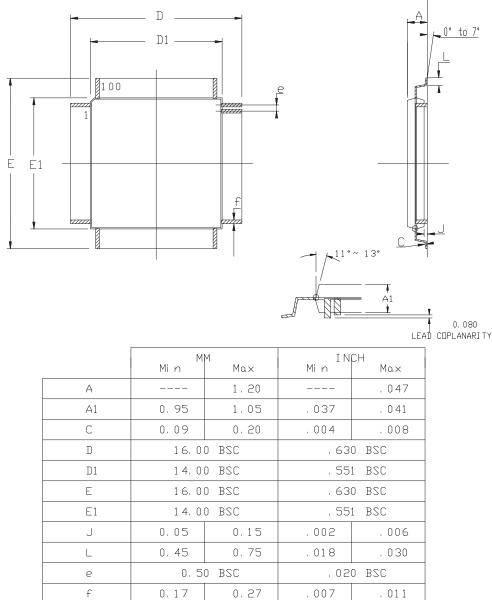


Figure 12-10. Ethernet MAC MII Mode

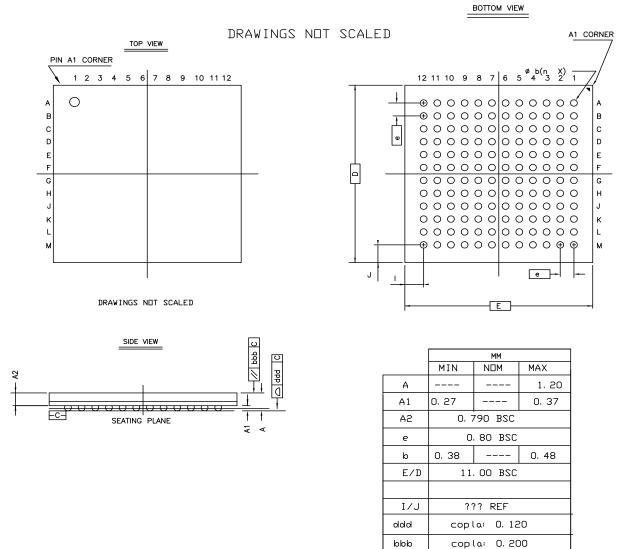
13.2 Package Drawings

Table 13-2. Device and Package Maximum Weight

500 mg

Table 13-3. Package Characteristics

Moisture Sensitivity Level	Jdec J-STD0-20D - MSL 3
----------------------------	-------------------------


Table 13-4.Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

AT32UC3A

Figure 13-3. FFBGA-144 package drawing

Table 13-8.	Device and Package Maximum Weight
-------------	-----------------------------------

	1300	mg
_		

Table 13-9. Package Characteristics

Moisture Sensitivity Level MSL3

Table 13-10. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

13.3 Soldering Profile

Table 13-11 gives the recommended soldering profile from J-STD-20.

Profile Feature	Green Package
Average Ramp-up Rate (217°C to Peak)	3°C/sec
Preheat Temperature 175°C ±25°C	Min. 150 °C, Max. 200 °C
Time Maintained Above 217°C	60-150 sec
Time within 5.C of Actual Peak Temperature	30 sec
Peak Temperature Range	260 °C
Ramp-down Rate	6 °C/sec
Time 25 C to Peak Temperature	Max. 8 minutes

Note: It is recommended to apply a soldering temperature higher than 250°C. A maximum of three reflow passes is allowed per component.

3. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and NCPHA=0

When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't equal to 1, and CPOL=1 and CPHA=0, then an aditional pulse will be generated on SCK. **Fix/workaround**

When multiple CS are in use, if one of the baudrate equals 1, the other must also equal 1 if CPOL=1 and CPHA=0.

4. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or during the first transfer.

Fix/Workaround

1. Set slave mode, set required CPOL/CPHA.

- 2. Enable SPI.
- 3. Set the polarity CPOL of the line in the opposite value of the required one.
- 4. Set the polarity CPOL to the required one.
- 5. Read the RXHOLDING register.

Transfers can now befin and RXREADY will now behave as expected.

 SPI Disable does not work in Slave mode Fix/workaround Read the last received data then perform a Software reset.

15.1.4 Power Manager

If the BOD level is higher than VDDCORE, the part is constantly under reset
 If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
 be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than VDDCORE max and disable the BOD.

- 15.1.5 PDCA
- 1. Wrong PDCA behavior when using two PDCA channels with the same PID. Fix/Workaround

The same PID should not be assigned to more than one channel.

15.1.6 TWI

1. The TWI RXRDY flag in SR register is not reset when a software reset is performed. Fix/Workaround

After a Software Reset, the register TWI RHR must be read.

- 15.1.7 USART
- ISO7816 info register US_NER cannot be read The NER register always returns zero.
 Fix/Workaround None

15.1.8 Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

15.5.4 USB

1. USB No end of host reset signaled upon disconnection

In host mode, in case of an unexpected device disconnection whereas a usb reset is being sent by the usb controller, the UHCON.RESET bit may not been cleared by the hardware at the end of the reset.

Fix/Workaround

A software workaround consists in testing (by polling or interrupt) the disconnection (UHINT.DDISCI == 1) while waiting for the end of reset (UHCON.RESET == 0) to avoid being stuck.

2. USBFSM and UHADDR1/2/3 registers are not available.

Do not use USBFSM register.

Fix/Workaround

Do not use USBFSM register and use HCON[6:0] field instead for all the pipes.

15.5.5 Processor and Architecture

1. Incorrect Processor ID

The processor ID reads 0x01 and not 0x02 as it should.

Fix/Workaround

None.

2. Bus error should be masked in Debug mode

If a bus error occurs during debug mode, the processor will not respond to debug commands through the DINST register.

Fix/Workaround

A reset of the device will make the CPU respond to debug commands again.

3. Read Modify Write (RMW) instructions on data outside the internal RAM does not work.

Read Modify Write (RMW) instructions on data outside the internal RAM does not work.

Fix/Workaround

Do not perform RMW instructions on data outside the internal RAM.

4. CRC calculation of a locked device will calculate CRC for 512 kB of flash memory, even though the part has less flash. Fix/Workaround

The flash address space is wrapping, so it is possible to use the CRC value by calculating CRC of the flash content concatenated with itself N times. Where N is 512 kB/flash size.

5. Need two NOPs instruction after instructions masking interrupts

The instructions following in the pipeline the instruction masking the interrupt through SR may behave abnormally.

Fix/Workaround

Place two NOPs instructions after each SSRF or MTSR instruction setting IxM or GM in SR.

2. USART RXBREAK problem when no timeguard

In asynchronous mode the RXBREAK flag is not correctly handled when the timeguard is 0 and the break character is located just after the stop bit.

Fix/Workaround

If the NBSTOP is 1, timeguard should be different from 0.

3. USART Handshaking: 2 characters sent / CTS rises when TX

If CTS switches from 0 to 1 during the TX of a character, if the Holding register is not empty, the TXHOLDING is also transmitted.

Fix/Workaround

None.

4. USART PDC and TIMEGUARD not supported in MANCHESTER

Manchester encoding/decoding is not working.

Fix/Workaround

Do not use manchester encoding.

5. USART SPI mode is non functional on this revision. Fix/Workaround

Do not use the USART SPI mode.

6. DCD is active High instead of Low.

In modem mode the DCD signal is assumed to be active high by the USART, butshould have been active low. **Fix/Workaround**

Add an external inverter to the DCD line.

 ISO7816 info register US_NER cannot be read The NER register always returns zero.
 Fix/Workaround None.

15.5.8 Power Manager

1. Voltage regulator input and output is connected to VDDIO and VDDCORE inside the device

The voltage regulator input and output is connected to VDDIO and VDDCORE respectively inside the device.

Fix/Workaround

Do not supply VDDCORE externally, as this supply will work in paralell with the regulator.

2. Wrong reset causes when BOD is activated

Setting the BOD enable fuse will cause the Reset Cause Register to list BOD reset as the reset source even though the part was reset by another source.

Fix/Workaround

Do not set the BOD enable fuse, but activate the BOD as soon as your program starts.

3. PLL0/1 Lock control does not work

Lock Control does not work for PLL0 and PLL1.

AT32UC3A

Fix/Workaround

In PLL0/1 Control register, the bit 7 should be set in order to prevent unexpected behaviour.

4. Peripheral Bus A maximum frequency is 33MHz instead of 66MHz. Fix/Workaround

Do not set PBA frequency higher than 33 MHz.

5. PCx pins go low in stop mode

In sleep mode stop all PCx pins will be controlled by GPIO module instead of oscillators. This can cause drive contention on the XINx in worst case.

Fix/Workaround

Before entering stop mode set all PCx pins to input and GPIO controlled.

6. On some rare parts, the maximum HSB and CPU speed is 50MHz instead of 66MHz. Fix/Workaround

Do not set the HSB/CPU speed higher than 50MHz when the firmware generate exceptions.

7. If the BOD level is higher than VDDCORE, the part is constantly under reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than VDDCORE max and disable the BOD.

8. System Timer mask (Bit 16) of the PM CPUMASK register is not available. Fix/Workaround

Do not use this bit.

15.5.9 HMatrix

1. HMatrix fixed priority arbitration does not work Fixed priority arbitration does not work.

Fix/Workaround

Use Round-Robin arbitration instead.

15.5.10 ADC

1. ADC possible miss on DRDY when disabling a channel The ADC does not work properly when more than one channel is enabled.

Fix/Workaround

Do not use the ADC with more than one channel enabled at a time.

2. ADC OVRE flag sometimes not reset on Status Register read The OVRE flag does not clear properly if read simultaneously to an end of conversion.

Fix/Workaround None.

3. Sleep Mode activation needs additional A to D conversion

Table of Contents

1	Description	3
2	Configuration Summary	4
3	Abbreviations	
4	Blockdiagram	5
	4.1Processor and architecture	6
5	Signals Description	
6	Package and Pinout	13
7	Power Considerations	17
	7.1Power Supplies	17
	7.2Voltage Regulator	18
	7.3Analog-to-Digital Converter (A.D.C) reference.	19
8	I/O Line Considerations	20
	8.1JTAG pins	20
	8.2RESET_N pin	20
	8.3TWI pins	20
	8.4GPIO pins	20
9	Memories	21
	9.1Embedded Memories	21
	9.2Physical Memory Map	21
	9.3Bus Matrix Connections	22
10	Peripherals	24
	10.1Peripheral address map	24
	10.2CPU Local Bus Mapping	25
	10.3Interrupt Request Signal Map	27
	10.4Clock Connections	29
	10.5Nexus OCD AUX port connections	30
	10.6PDC handshake signals	30
	10.7Peripheral Multiplexing on I/O lines	31
	10.8Oscillator Pinout	34
	10.9USART Configuration	34
	10.10GPIO	35

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600 www.atmel.com

Atmel Asia Limited

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369

Atmel Munich GmbH

Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621

Atmel Japan

16F, Shin Osaki Kangyo Bldg. 1-6-4 Osaka Shinagawa-ku Tokyo 104-0032 JAPAN Tel: (+81) 3-6417-0300 Fax: (+81) 3-6417-0370

© 2012 Atmel Corporation. All rights reserved.

Atmel[®], Atmel logo and combinations thereof, AVR[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.