

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, SSC, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	109
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3a0256-alur

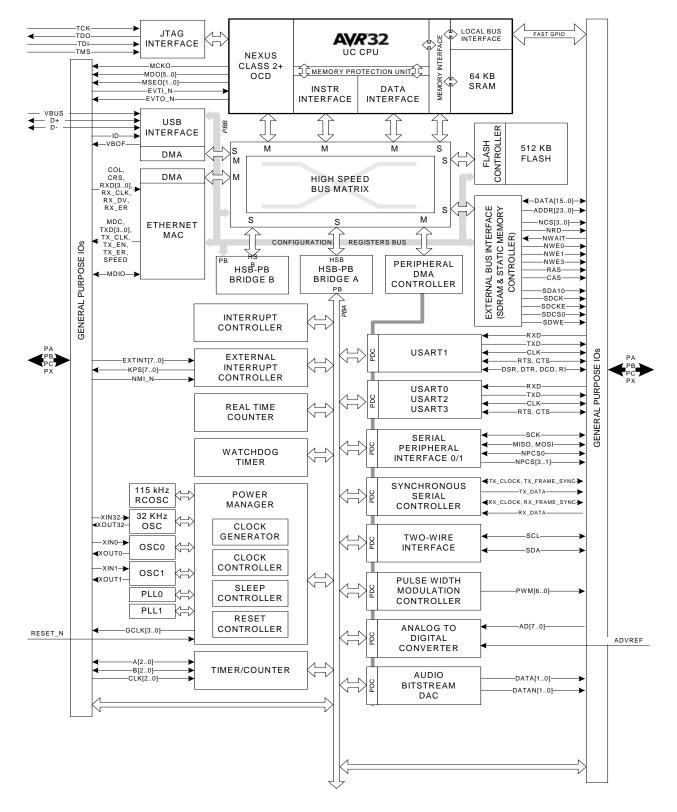
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Configuration Summary

Device	Flash	SRAM	Ext. Bus Interface	Ethernet MAC	Package
AT32UC3A0512	512 Kbytes	64 Kbytes	yes	yes	144 pin LQFP 144 pin BGA
AT32UC3A0256	256 Kbytes	64 Kbytes	yes	yes	144 pin LQFP 144 pin BGA
AT32UC3A0128	128 Kbytes	32 Kbytes	yes	yes	144 pin LQFP 144 pin BGA
AT32UC3A1512	512 Kbytes	64 Kbytes	no	yes	100 pin TQFP
AT32UC3A1256	256 Kbytes	64 Kbytes	no	yes	100 pin TQFP
AT32UC3A1128	128 Kbytes	32 Kbytes	no	yes	100 pin TQFP

The table below lists all AT32UC3A memory and package configurations:


3. Abbreviations

- GCLK: Power Manager Generic Clock
- GPIO: General Purpose Input/Output
- HSB: High Speed Bus
- MPU: Memory Protection Unit
- OCD: On Chip Debug
- PB: Peripheral Bus
- PDCA: Peripheral Direct Memory Access Controller (PDC) version A
- USBB: USB On-The-GO Controller version B

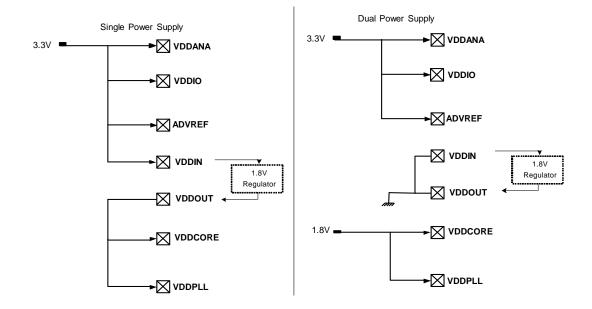
4. Blockdiagram

Figure 4-1. Blockdiagram

Peripheral Bus A able to run on at divided bus speeds compared to the High Speed Bus

Figure 4-1 gives an overview of the bus system. All modules connected to the same bus use the same clock, but the clock to each module can be individually shut off by the Power Manager. The figure identifies the number of master and slave interfaces of each module connected to the High Speed Bus, and which DMA controller is connected to which peripheral.

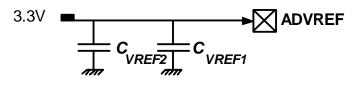
7. Power Considerations


7.1 Power Supplies

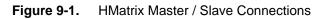
The AT32UC3A has several types of power supply pins:

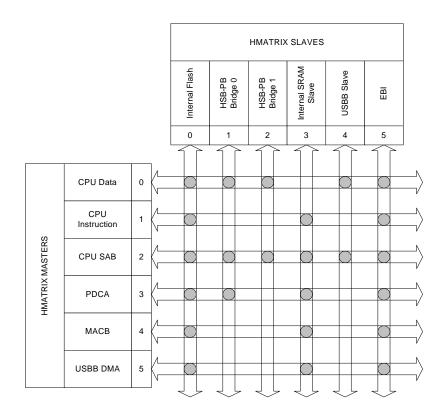
- VDDIO: Powers I/O lines. Voltage is 3.3V nominal.
- VDDANA: Powers the ADC Voltage is 3.3V nominal.
- VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal.
- VDDCORE: Powers the core, memories, and peripherals. Voltage is 1.8V nominal.
- VDDPLL: Powers the PLL. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE, VDDIO, VDDPLL. The ground pin for VDDANA is GNDANA.


Refer to "Power Consumption" on page 44 for power consumption on the various supply pins.

7.3 Analog-to-Digital Converter (A.D.C) reference.


The ADC reference (ADVREF) must be provided from an external source. Two decoupling capacitors must be used to insure proper decoupling.



Refer to Section 12.4 on page 42 for decoupling capacitors values and electrical characteristics. In case ADC is not used, the ADVREF pin should be connected to GND to avoid extra consumption.

AT32UC3A

Table 10-1. Peripheral Address Mapping (Continued)

Address		Peripheral Name	Bus
0xFFFF1C00	USART2	Universal Synchronous Asynchronous Receiver Transmitter - USART2	PBA
0xFFFF2000	USART3	Universal Synchronous Asynchronous Receiver Transmitter - USART3	PBA
0xFFFF2400	SPI0	Serial Peripheral Interface - SPI0	PBA
0xFFFF2800	SPI1	Serial Peripheral Interface - SPI1	PBA
0xFFFF2C00	TWI	Two Wire Interface - TWI	PBA
0xFFFF3000	PWM	Pulse Width Modulation Controller - PWM	PBA
0xFFFF3400	SSC	Synchronous Serial Controller - SSC	PBA
0xFFFF3800	тс	Timer/Counter - TC	PBA
0xFFFF3C00	ADC	Analog To Digital Converter - ADC	PBA

10.2 CPU Local Bus Mapping

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to being mapped on the Peripheral Bus. These registers can therefore be reached both by accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at CPU speed, one write or read operation can be performed per clock cycle to the local busmapped GPIO registers.

 Table 10-9.
 GPIO Controller Function Multiplexing

Table 10-9.		roller Functio		1		
7	11	PB24	GPIO 56	TC - B0	USART1 - DSR	
8	13	PB25	GPIO 57	TC - A1	USART1 - DTR	
9	14	PB26	GPIO 58	TC - B1	USART1 - RI	
10	15	PB27	GPIO 59	TC - A2	PWM - PWM[4]	
14	19	PB28	GPIO 60	TC - B2	PWM - PWM[5]	
15	20	PB29	GPIO 61	USART2 - RXD	PM - GCLK[1]	EBI - NCS[2]
16	21	PB30	GPIO 62	USART2 - TXD	PM - GCLK[2]	EBI - SDCS
17	22	PB31	GPIO 63	USART2 - CLK	PM - GCLK[3]	EBI - NWAIT
63	85	PC00	GPIO 64			
64	86	PC01	GPIO 65			
85	124	PC02	GPIO 66			
86	125	PC03	GPIO 67			
93	132	PC04	GPIO 68			
94	133	PC05	GPIO 69			
	1	PX00	GPIO 100	EBI - DATA[10]	USART0 - RXD	
	2	PX01	GPIO 99	EBI - DATA[9]	USART0 - TXD	
	4	PX02	GPIO 98	EBI - DATA[8]	USART0 - CTS	
	10	PX03	GPIO 97	EBI - DATA[7]	USART0 - RTS	
	12	PX04	GPIO 96	EBI - DATA[6]	USART1 - RXD	
	24	PX05	GPIO 95	EBI - DATA[5]	USART1 - TXD	
	26	PX06	GPIO 94	EBI - DATA[4]	USART1 - CTS	
	31	PX07	GPIO 93	EBI - DATA[3]	USART1 - RTS	
	33	PX08	GPIO 92	EBI - DATA[2]	USART3 - RXD	
	35	PX09	GPIO 91	EBI - DATA[1]	USART3 - TXD	
	38	PX10	GPIO 90	EBI - DATA[0]	USART2 - RXD	
	40	PX11	GPIO 109	EBI - NWE1	USART2 - TXD	
	42	PX12	GPIO 108	EBI - NWE0	USART2 - CTS	
	44	PX13	GPIO 107	EBI - NRD	USART2 - RTS	
	46	PX14	GPIO 106	EBI - NCS[1]		TC - A0
	59	PX15	GPIO 89	EBI - ADDR[19]	USART3 - RTS	TC - B0
	61	PX16	GPIO 88	EBI - ADDR[18]	USART3 - CTS	TC - A1
	63	PX17	GPIO 87	EBI - ADDR[17]		TC - B1
	65	PX18	GPIO 86	EBI - ADDR[16]		TC - A2
	67	PX19	GPIO 85	EBI - ADDR[15]	EIM - SCAN[0]	TC - B2
	87	PX20	GPIO 84	EBI - ADDR[14]	EIM - SCAN[1]	TC - CLK0
	89	PX21	GPIO 83	EBI - ADDR[13]	EIM - SCAN[2]	TC - CLK1
	91	PX22	GPIO 82	EBI - ADDR[12]	EIM - SCAN[3]	TC - CLK2
	95	PX23	GPIO 81	EBI - ADDR[11]	EIM - SCAN[4]	
	97	PX24	GPIO 80	EBI - ADDR[10]	EIM - SCAN[5]	
				L - 1	L-1	

- Optional Manchester Encoding
- RS485 with driver control signal
- ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
- NACK handling, error counter with repetition and iteration limit
- IrDA modulation and demodulation
 - Communication at up to 115.2 Kbps
- Test Modes
 - Remote Loopback, Local Loopback, Automatic Echo
- SPI Mode
 - Master or Slave
 - Serial Clock Programmable Phase and Polarity
 - SPI Serial Clock (SCK) Frequency up to Internal Clock Frequency PBA/4
- Supports Connection of Two Peripheral DMA Controller Channels (PDC)
 - Offers Buffer Transfer without Processor Intervention

10.11.8 Serial Synchronous Controller

- Provides serial synchronous communication links used in audio and telecom applications (with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)
- · Contains an independent receiver and transmitter and a common clock divider
- Offers a configurable frame sync and data length
- Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal
- Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal
- 10.11.9 Timer Counter
- Three 16-bit Timer Counter Channels
- Wide range of functions including:
 - Frequency Measurement
 - Event Counting
 - Interval Measurement
 - Pulse Generation
 - Delay Timing
 - Pulse Width Modulation
 - Up/down Capabilities
- Each channel is user-configurable and contains:
 - Three external clock inputs
 - Five internal clock inputs
 - Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels

10.11.10 Pulse Width Modulation Controller

- 7 channels, one 20-bit counter per channel
- Common clock generator, providing Thirteen Different Clocks
 - A Modulo n counter providing eleven clocks
 - Two independent Linear Dividers working on modulo n counter outputs
- Independent channel programming
 - Independent Enable Disable Commands
 - Independent Clock
 - Independent Period and Duty Cycle, with Double Bufferization
 - Programmable selection of the output waveform polarity
 - Programmable center or left aligned output waveform

12.3 Regulator characteristics

 Table 12-2.
 Electrical characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V_{VDDIN}	Supply voltage (input)		3	3.3	3.6	V
V _{VDDOUT}	Supply voltage (output)		1.81	1.85	1.89	V
	Maximum DC output current with $V_{VDDIN = 3.3V}$				100	mA
OUT	Maximum DC output current with $V_{VDDIN = 2.7V}$				90	mA
I _{SCR}	Static Current of internal regulator	Low Power mode (stop, deep stop or static) at $T_A = 25^{\circ}C$		10		μA

Table 12-3.Decoupling requirements

Symbol	Parameter	Condition	Тур.	Techno.	Units
C _{IN1}	Input Regulator Capacitor 1		1	NPO	nF
C _{IN2}	Input Regulator Capacitor 2		4.7	X7R	uF
C _{OUT1}	Output Regulator Capacitor 1		470	NPO	pF
C _{OUT2}	Output Regulator Capacitor 2		2.2	X7R	uF

12.4 Analog characteristics

Table 12-4. Electrical characteristics

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
VADVREF	Analog voltage reference (input)		2.6		3.6	V

Table 12-5.Decoupling requirements

Symbol	Parameter	Condition	Тур.	Techno	Units
C _{VREF1}	Voltage reference Capacitor 1		10	-	nF
C _{VREF2}	Voltage reference Capacitor 2		1	-	uF

12.4.1 BOD

Table 12-6.BODLEVEL Values

BODLEVEL Value	Тур.	Тур.	Тур.	Units.
00 0000b	1.40	1.47	1.55	V
01 0111b	1.45	1.52	1.6	V
01 1111b	1.55	1.6	1.65	V
10 0111b	1.65	1.69	1.75	V

The values in Table 12-6 describes the values of the BODLEVEL in the flash FGPFR register.

Table 12-9. Power Consumption for Different Modes

Mode	Conditions		Тур.	Unit
	Typ : Ta = 25 °C. CPU is in stop mode	on Amp0	47	uA
Stop	GPIOs on internal pull-up. All peripheral clocks de-activated. DM and DP pins connected to ground. XIN0,Xin1 and XIN2 are stopped	on Amp1	40	uA
	Typ : Ta = 25 °C.CPU is in deepstop mode	on Amp0	36	uA
GPIOs on internal pull-up.DeepstopAll peripheral clocks de-activated.DM and DP pins connected to grounXIN0,Xin1 and XIN2 are stopped	All peripheral clocks de-activated. DM and DP pins connected to ground.	on Amp1	28	uA
	Typ : Ta = 25 °C. CPU is in static mode	on Amp0	25	uA
Static	GPIOs on internal pull-up. All peripheral clocks de-activated. DM and DP pins connected to ground. XIN0,Xin1 and XIN2 are stopped	on Amp1	14	uA

1. Core frequency is generated from XIN0 using the PLL so that 140 MHz < fpll0 < 160 MHz and 10 MHz < fxin0 < 12MHz

Peripheral	Тур.	Unit
GPIO	37	
SMC	10	
SDRAMC	4	
ADC	18	
EBI	31	
INTC	25	
TWI	14	
MACB	45	
PDCA	30	μA/MHz
PWM	36	
RTC	7	
SPI	13	
SSC	13	
TC	10	
USART	35	
USB	45	

Table 12-10. Power Consumption by Peripheral in Active Mode

12.6 Clock Characteristics

These parameters are given in the following conditions:

12.8 ADC Characteristics

Table 12-17.	Channel Conversion Time and ADC Clock

Parameter	Conditions	Min	Тур	Max	Units
ADC Clock Frequency	10-bit resolution mode			5	MHz
ADC Clock Frequency	8-bit resolution mode			8	MHz
Startup Time	Return from Idle Mode			20	μs
Track and Hold Acquisition Time		600			ns
Conversion Time	ADC Clock = 5 MHz			2	μs
Conversion Time	ADC Clock = 8 MHz			1.25	μs
Throughput Rate	ADC Clock = 5 MHz			384 ⁽¹⁾	kSPS
Throughput Rate	ADC Clock = 8 MHz			533 ⁽²⁾	kSPS

Notes: 1. Corresponds to 13 clock cycles at 5 MHz: 3 clock cycles for track and hold acquisition time and 10 clock cycles for conversion.

2. Corresponds to 15 clock cycles at 8 MHz: 5 clock cycles for track and hold acquisition time and 10 clock cycles for conversion.

Table 12-18. External Voltage Reference Input

Parameter	Conditions	Min	Тур	Max	Units
ADVREF Input Voltage Range		2.6		VDDANA	V
ADVREF Average Current	On 13 samples with ADC Clock = 5 MHz		200	250	μA
Current Consumption on VDDANA				1.25	mA

Note: ADVREF should be connected to GND to avoid extra consumption in case ADC is not used.

Table 12-19. Analog Inputs

Parameter	Min	Тур	Max	Units
Input Voltage Range	0		VADVREF	
Input Leakage Current			1	μA
Input Capacitance		17		pF

Table 12-20. Transfer Characteristics in 8-bit mode

Parameter	Conditions	Min	Тур	Max	Units
Resolution			8		Bit
	f=5MHz			0.8	LSB
Absolute Accuracy	f=8MHz			1.5	LSB
Integral Non-linearity	f=5MHz		0.35	0.5	LSB
	f=8MHz		0.5	1.0	LSB
Differential Non-linearity	f=5MHz		0.3	0.5	LSB
	f=8MHz		0.5	1.0	LSB
Offset Error	f=5MHz	-0.5		0.5	LSB
Gain Error	f=5MHz	-0.5		0.5	LSB

12.9 EBI Timings

These timings are given for worst case process, T = 85·C, VDDCORE = 1.65V, VDDIO = 3V and 40 pF load capacitance.

Symbol	Parameter	Max ⁽¹⁾	Units
1/(t _{CPSMC})	SMC Controller Clock Frequency	1/(t _{cpcpu})	MHz

Note: 1. The maximum frequency of the SMC interface is the same as the max frequency for the HSB.

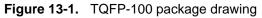
Table 12-23. SMC Read Signals with Hold Settings

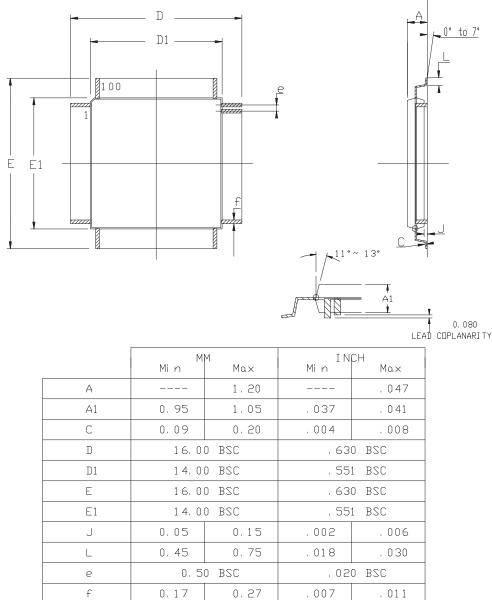
Symbol	Parameter	Min	Units			
	NRD Controlled (READ_MODE = 1)					
SMC ₁	Data Setup before NRD High	12				
SMC ₂	Data Hold after NRD High	0				
SMC ₃	NRD High to NBS0/A0 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3				
SMC ₄	NRD High to NBS1 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3				
SMC ₅	NRD High to NBS2/A1 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	ns			
SMC ₆	NRD High to NBS3 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3				
SMC ₇	NRD High to A2 - A25 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3				
SMC ₈	NRD High to NCS Inactive ⁽¹⁾	(nrd hold length - ncs rd hold length) * t _{CPSMC} - 2.3				
SMC ₉	NRD Pulse Width	nrd pulse length * t _{CPSMC} - 1.4				
	NRD C	controlled (READ_MODE = 0)	U			
SMC ₁₀	Data Setup before NCS High	11.5				
SMC ₁₁	Data Hold after NCS High	0				
SMC ₁₂	NCS High to NBS0/A0 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3				
SMC ₁₃	NCS High to NBS0/A0 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3				
SMC ₁₄	NCS High to NBS2/A1 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3	ns			
SMC ₁₅	NCS High to NBS3 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3				
SMC ₁₆	NCS High to A2 - A25 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 4				
SMC ₁₇	NCS High to NRD Inactive ⁽¹⁾	ncs rd hold length - nrd hold length)* t _{CPSMC} - 1.3				
SMC ₁₈	NCS Pulse Width	ncs rd pulse length * t _{CPSMC} - 3.6				

Note: 1. hold length = total cycle duration - setup duration - pulse duration. "hold length" is for "ncs rd hold length" or "nrd hold length".

12.10 JTAG Timings

12.10.1 JTAG Interface Signals


Table 12-29. JTAG Interface Timing specification


Symbol	Parameter	Conditions	Min	Max	Units
JTAG ₀	TCK Low Half-period	(1)	6		ns
JTAG ₁	TCK High Half-period	(1)	3		ns
JTAG ₂	TCK Period	(1)	9		ns
JTAG ₃	TDI, TMS Setup before TCK High	(1)	1		ns
JTAG ₄	TDI, TMS Hold after TCK High	(1)	0		ns
JTAG ₅	TDO Hold Time	(1)	4		ns
JTAG ₆	TCK Low to TDO Valid	(1)		6	ns
JTAG ₇	Device Inputs Setup Time	(1)			ns
JTAG ₈	Device Inputs Hold Time	(1)			ns
JTAG ₉	Device Outputs Hold Time	(1)			ns
JTAG ₁₀	TCK to Device Outputs Valid	(1)			ns

Note: 1. V_{VDDIO} from 3.0V to 3.6V, maximum external capacitor = 40pF

13.2 Package Drawings

Table 13-2. Device and Package Maximum Weight

500 mg

Table 13-3. Package Characteristics

Moisture Sensitivity Level	Jdec J-STD0-20D - MSL 3
----------------------------	-------------------------

Table 13-4.Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

13.3 Soldering Profile

Table 13-11 gives the recommended soldering profile from J-STD-20.

Profile Feature	Green Package	
Average Ramp-up Rate (217°C to Peak)	3°C/sec	
Preheat Temperature 175°C ±25°C Min. 150 °C, Max. 200 °C		
Time Maintained Above 217°C	60-150 sec	
Time within 5.C of Actual Peak Temperature	30 sec	
Peak Temperature Range	260 °C	
Ramp-down Rate	6 °C/sec	
Time 25 C to Peak Temperature	Max. 8 minutes	

Note: It is recommended to apply a soldering temperature higher than 250°C. A maximum of three reflow passes is allowed per component.

15.3.7	GPIO	Workaround/fix The same PID should not be assigned to more than one channel.
		 Some GPIO VIH (input high voltage) are 3.6V max instead of 5V tolerant Only 11 GPIOs remain 5V tolerant (VIHmax=5V):PB01, PB02, PB03, PB10, PB19, PB20, PB21, PB22, PB23, PB27, PB28. Workaround/fix None.
15.3.8	USART	
		 ISO7816 info register US_NER cannot be read The NER register always returns zero. Fix/Workaround None.
15.3.9	тwi	
		 The TWI RXRDY flag in SR register is not reset when a software reset is performed. Fix/Workaround After a Software Reset, the register TWI RHR must be read.
15.3.10	SDRAMC	Aller a Soliwale Resel, the register T WI KITK must be read.
		1. Code execution from external SDRAM does not work Code execution from SDRAM does not work.
15.3.11	Brocossor an	Fix/Workaround Do not run code from SDRAM.
15.5.11	11 Processor and Architecture	
		 LDM instruction with PC in the register list and without ++ increments Rp For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. Fix/Workaround None.
		 RETE instruction does not clear SREG[L] from interrupts. The RETE instruction clears SREG[L] as expected from exceptions. Fix/Workaround
		When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.
		 Exceptions when system stack is protected by MPU RETS behaves incorrectly when MPU is enabled and MPU is configured so that
		system stack is not readable in unprivileged mode. Fix/Woraround Warkeround 1: Make system stack readable in unprivileged mode
		Workaround 1: Make system stack readable in unprivileged mode, or
		Workaround 2: Return from supervisor mode using rete instead of rets. This requires :
		1. Changing the mode bits from 001b to 110b before issuing the instruction. Updating the mode bits to the desired value must be done using a single mtsr

Updating the mode bits to the desired value must be done using a single m instruction so it is done atomically. Even if this step is described in general as not safe in the UC technical reference guide, it is safe in this very

15.5.4 USB

1. USB No end of host reset signaled upon disconnection

In host mode, in case of an unexpected device disconnection whereas a usb reset is being sent by the usb controller, the UHCON.RESET bit may not been cleared by the hardware at the end of the reset.

Fix/Workaround

A software workaround consists in testing (by polling or interrupt) the disconnection (UHINT.DDISCI == 1) while waiting for the end of reset (UHCON.RESET == 0) to avoid being stuck.

2. USBFSM and UHADDR1/2/3 registers are not available.

Do not use USBFSM register.

Fix/Workaround

Do not use USBFSM register and use HCON[6:0] field instead for all the pipes.

15.5.5 Processor and Architecture

1. Incorrect Processor ID

The processor ID reads 0x01 and not 0x02 as it should.

Fix/Workaround

None.

2. Bus error should be masked in Debug mode

If a bus error occurs during debug mode, the processor will not respond to debug commands through the DINST register.

Fix/Workaround

A reset of the device will make the CPU respond to debug commands again.

3. Read Modify Write (RMW) instructions on data outside the internal RAM does not work.

Read Modify Write (RMW) instructions on data outside the internal RAM does not work.

Fix/Workaround

Do not perform RMW instructions on data outside the internal RAM.

4. CRC calculation of a locked device will calculate CRC for 512 kB of flash memory, even though the part has less flash. Fix/Workaround

The flash address space is wrapping, so it is possible to use the CRC value by calculating CRC of the flash content concatenated with itself N times. Where N is 512 kB/flash size.

5. Need two NOPs instruction after instructions masking interrupts

The instructions following in the pipeline the instruction masking the interrupt through SR may behave abnormally.

Fix/Workaround

Place two NOPs instructions after each SSRF or MTSR instruction setting IxM or GM in SR.

AT32UC3A

Fix/Workaround

In PLL0/1 Control register, the bit 7 should be set in order to prevent unexpected behaviour.

4. Peripheral Bus A maximum frequency is 33MHz instead of 66MHz. Fix/Workaround

Do not set PBA frequency higher than 33 MHz.

5. PCx pins go low in stop mode

In sleep mode stop all PCx pins will be controlled by GPIO module instead of oscillators. This can cause drive contention on the XINx in worst case.

Fix/Workaround

Before entering stop mode set all PCx pins to input and GPIO controlled.

6. On some rare parts, the maximum HSB and CPU speed is 50MHz instead of 66MHz. Fix/Workaround

Do not set the HSB/CPU speed higher than 50MHz when the firmware generate exceptions.

7. If the BOD level is higher than VDDCORE, the part is constantly under reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than VDDCORE max and disable the BOD.

8. System Timer mask (Bit 16) of the PM CPUMASK register is not available. Fix/Workaround

Do not use this bit.

15.5.9 HMatrix

1. HMatrix fixed priority arbitration does not work Fixed priority arbitration does not work.

Fix/Workaround

Use Round-Robin arbitration instead.

15.5.10 ADC

1. ADC possible miss on DRDY when disabling a channel The ADC does not work properly when more than one channel is enabled.

Fix/Workaround

Do not use the ADC with more than one channel enabled at a time.

2. ADC OVRE flag sometimes not reset on Status Register read The OVRE flag does not clear properly if read simultaneously to an end of conversion.

Fix/Workaround None.

3. Sleep Mode activation needs additional A to D conversion

16. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

16.1 Rev. K - 01/12

- 1. Update "Errata" on page 70.
- 2. Update eletrical characteristic in "DC Characteristics" on page 41.
- 3. Remove Preliminary from first page.

16.2 Rev. G - 01/09

- 1. Update "Errata" on page 70.
- 2. Update GPIO eletrical characteristic in "DC Characteristics" on page 41.

16.3 Rev. F - 08/08

- 1. Add revision J to "Errata" on page 70.
- 2. Update DMIPS number in "Features" on page 1.
- 16.4 Rev. E 04/08
- 1. Open Drain Mode removed from "General-Purpose Input/Output Controller (GPIO)" on page 151.

16.5 Rev. D - 04/08

- 1. Updated "Signal Description List" on page 8. Removed RXDN and TXDN from USART section.
- 2. Updated "Errata" on page 70. Rev G replaced by rev H.

