

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, SSC, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	109
Program Memory Size	256KB (256K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3a0256-alut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Peripheral Bus A able to run on at divided bus speeds compared to the High Speed Bus

Figure 4-1 gives an overview of the bus system. All modules connected to the same bus use the same clock, but the clock to each module can be individually shut off by the Power Manager. The figure identifies the number of master and slave interfaces of each module connected to the High Speed Bus, and which DMA controller is connected to which peripheral.

5. Signals Description

The following table gives details on the signal name classified by peripheral

The signals are multiplexed with GPIO pins as described in "Peripheral Multiplexing on I/O lines" on page 31.

|--|

Signal Name	Function	Туре	Active Level	Comments	
	Power				
VDDPLL	Power supply for PLL	Power Input		1.65V to 1.95 V	
VDDCORE	Core Power Supply	Power Input		1.65V to 1.95 V	
VDDIO	I/O Power Supply	Power Input		3.0V to 3.6V	
VDDANA	Analog Power Supply	Power Input		3.0V to 3.6V	
VDDIN	Voltage Regulator Input Supply	Power Input		3.0V to 3.6V	
VDDOUT	Voltage Regulator Output	Power Output		1.65V to 1.95 V	
GNDANA	Analog Ground	Ground			
GND	Ground	Ground			
	Clocks, Oscillators,	and PLL's			
XIN0, XIN1, XIN32	Crystal 0, 1, 32 Input	Analog			
XOUT0, XOUT1, XOUT32	Crystal 0, 1, 32 Output	Analog			
JTAG					
тск	Test Clock	Input			
TDI	Test Data In	Input			
TDO	Test Data Out	Output			
TMS	Test Mode Select	Input			
Auxiliary Port - AUX					
МСКО	Trace Data Output Clock	Output			
MDO0 - MDO5	Trace Data Output	Output			

6. Package and Pinout

The device pins are multiplexed with peripheral functions as described in "Peripheral Multiplexing on I/O lines" on page 31.

Figure 6-1. TQFP100 Pinout

Table 6-1.TQFP100 Package Pinout

1	PB20
2	PB21
3	PB22
4	VDDIO
5	GND
6	PB23
7	PB24
8	PB25
9	PB26
10	PB27
11	VDDOUT
12	VDDIN
13	GND
14	PB28
15	PB29
16	PB30
17	PB31
18	RESET_N
19	PA00
20	PA01
21	GND
22	VDDCORE

PA05
PA06
PA07
PA08
PA09
PA10
N/C
PA11
VDDCORE
GND
PA12
PA13
VDDCORE
PA14
PA15
PA16
PA17
PA18
PA19
PA20
VBUS
VDDIO

51	PA21
52	PA22
53	PA23
54	PA24
55	PA25
56	PA26
57	PA27
58	PA28
59	VDDANA
60	ADVREF
61	GNDANA
62	VDDPLL
63	PC00
64	PC01
65	PB00
66	PB01
67	VDDIO
68	VDDIO
69	GND
70	PB02
71	PB03
72	PB04

76	PB08
77	PB09
78	PB10
79	VDDIO
80	GND
81	PB11
82	PB12
83	PA29
84	PA30
85	PC02
86	PC03
87	PB13
88	PB14
89	TMS
90	ТСК
91	TDO
92	TDI
93	PC04
94	PC05
95	PB15
96	PB16
97	VDDCORE

7. Power Considerations

7.1 Power Supplies

The AT32UC3A has several types of power supply pins:

- VDDIO: Powers I/O lines. Voltage is 3.3V nominal.
- VDDANA: Powers the ADC Voltage is 3.3V nominal.
- VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal.
- VDDCORE: Powers the core, memories, and peripherals. Voltage is 1.8V nominal.
- VDDPLL: Powers the PLL. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE, VDDIO, VDDPLL. The ground pin for VDDANA is GNDANA.

Refer to "Power Consumption" on page 44 for power consumption on the various supply pins.

Port	Register	Mode	Local Bus Address	Access
3	Output Driver Enable Register (ODER)	WRITE	0x4000_0340	Write-only
		SET	0x4000_0344	Write-only
		CLEAR	0x4000_0348	Write-only
		TOGGLE	0x4000_034C	Write-only
Outpu	Output Value Register (OVR)	WRITE	0x4000_0350	Write-only
		SET	0x4000_0354	Write-only
		CLEAR	0x4000_0358	Write-only
		TOGGLE	0x4000_035C	Write-only
	Pin Value Register (PVR)	-	0x4000_0360	Read-only

 Table 10-2.
 Local bus mapped GPIO registers

10.3 Interrupt Request Signal Map

The various modules may output Interrupt request signals. These signals are routed to the Interrupt Controller (INTC), described in a later chapter. The Interrupt Controller supports up to 64 groups of interrupt requests. Each group can have up to 32 interrupt request signals. All interrupt signals in the same group share the same autovector address and priority level. Refer to the documentation for the individual submodules for a description of the semantics of the different interrupt requests.

The interrupt request signals are connected to the INTC as follows.

Group	Line	Module	Signal
0	0	AVR32 UC CPU with optional MPU and optional OCD	SYSBLOCK COMPARE
	0	External Interrupt Controller	EIC 0
	1	External Interrupt Controller	EIC 1
	2	External Interrupt Controller	EIC 2
1	3	External Interrupt Controller	EIC 3
	4	External Interrupt Controller	EIC 4
	5	External Interrupt Controller	EIC 5
	6	External Interrupt Controller	EIC 6
	7	External Interrupt Controller	EIC 7
	8	Real Time Counter	RTC
	9	Power Manager	PM
	10	Frequency Meter	FREQM

 Table 10-3.
 Interrupt Request Signal Map

9	0	Serial Peripheral Interface	SPI0	
10	0	Serial Peripheral Interface	SPI1	
11	0	Two-wire Interface	TWI	
12	0	Pulse Width Modulation Controller	PWM	
13	0	Synchronous Serial Controller	SSC	
	0	Timer/Counter	TC0	
14	1	Timer/Counter	TC1	
	2	Timer/Counter	TC2	
15	0	Analog to Digital Converter	ADC	
16	0	Ethernet MAC	MACB	
17	0	USB 2.0 OTG Interface	USBB	
18	0	SDRAM Controller	SDRAMC	
19	0	Audio Bitstream DAC	DAC	

 Table 10-3.
 Interrupt Request Signal Map

10.4 Clock Connections

10.4.1 Timer/Counters

Each Timer/Counter channel can independently select an internal or external clock source for its counter:

Source	Name	Connection
Internal	TIMER_CLOCK1	32 KHz Oscillator
	TIMER_CLOCK2	PBA clock / 2
	TIMER_CLOCK3	PBA clock / 8
	TIMER_CLOCK4	PBA clock / 32
	TIMER_CLOCK5	PBA clock / 128
External	XC0	See Section 10.7
	XC1	
	XC2	

 Table 10-4.
 Timer/Counter clock connections

10.4.2 USARTs

Each USART can be connected to an internally divided clock:

USART	Source	Name	Connection	
0	Internal	CLK_DIV	PBA clock / 8	
1				
2				
3				

Table 10-5. USART clock connections

10.4.3 SPIs

Each SPI can be connected to an internally divided clock:

SPI	Source	Name	Connection
0	Internal	CLK_DIV	PBA clock or
1			PBA clock / 32

10.5 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irrespectively of the PIO configuration. Two different OCD trace pin mappings are possible, depending on the configuration of the OCD AXS register. For details, see the AVR32 UC Technical Reference Manual.

Pin	AXS=0	AXS=1
EVTI_N	PB19	PA08
MDO[5]	PB16	PA27
MDO[4]	PB14	PA26
MDO[3]	PB13	PA25
MDO[2]	PB12	PA24
MDO[1]	PB11	PA23
MDO[0]	PB10	PA22
EVTO_N	PB20	PB20
МСКО	PB21	PA21
MSEO[1]	PB04	PA07
MSEO[0]	PB17	PA28

 Table 10-7.
 Nexus OCD AUX port connections

10.6 PDC handshake signals

The PDC and the peripheral modules communicate through a set of handshake signals. The following table defines the valid settings for the Peripheral Identifier (PID) in the PDC Peripheral Select Register (PSR).

Table 10-0. I DO Handshake Signals			
PID Value Peripheral module & direction			
0	ADC		
1	SSC - RX		
2	USART0 - RX		
3	USART1 - RX		

Table 10-8. PDC Handshake Signals

	T De l'handenake eignale
PID Value	Peripheral module & direction
4	USART2 - RX
5	USART3 - RX
6	TWI - RX
7	SPI0 - RX
8	SPI1 - RX
9	SSC - TX
10	USART0 - TX
11	USART1 - TX
12	USART2 - TX
13	USART3 - TX
14	TWI - TX
15	SPI0 - TX
16	SPI1 - TX
17	ABDAC

 Table 10-8.
 PDC Handshake Signals

10.7 Peripheral Multiplexing on I/O lines

Each GPIO line can be assigned to one of 3 peripheral functions; A, B or C. The following table define how the I/O lines on the peripherals A, B and C are multiplexed by the GPIO.

 Table 10-9.
 GPIO Controller Function Multiplexing

TQFP100	VQFP144	PIN	GPIO Pin	Function A	Function B	Function C
19	25	PA00	GPIO 0	USART0 - RXD	TC - CLK0	
20	27	PA01	GPIO 1	USART0 - TXD	TC - CLK1	
23	30	PA02	GPIO 2	USART0 - CLK	TC - CLK2	
24	32	PA03	GPIO 3	USART0 - RTS	EIM - EXTINT[4]	DAC - DATA[0]
25	34	PA04	GPIO 4	USART0 - CTS	EIM - EXTINT[5]	DAC - DATAN[0]
26	39	PA05	GPIO 5	USART1 - RXD	PWM - PWM[4]	
27	41	PA06	GPIO 6	USART1 - TXD	PWM - PWM[5]	
28	43	PA07	GPIO 7	USART1 - CLK	PM - GCLK[0]	SPI0 - NPCS[3]
29	45	PA08	GPIO 8	USART1 - RTS	SPI0 - NPCS[1]	EIM - EXTINT[7]
30	47	PA09	GPIO 9	USART1 - CTS	SPI0 - NPCS[2]	MACB - WOL
31	48	PA10	GPIO 10	SPI0 - NPCS[0]	EIM - EXTINT[6]	
33	50	PA11	GPIO 11	SPI0 - MISO	USB - USB_ID	
36	53	PA12	GPIO 12	SPI0 - MOSI	USB - USB_VBOF	
37	54	PA13	GPIO 13	SPI0 - SCK		
39	56	PA14	GPIO 14	SSC - TX_FRAME_SYNC	SPI1 - NPCS[0]	EBI - NCS[0]
40	57	PA15	GPIO 15	SSC - TX_CLOCK	SPI1 - SCK	EBI - ADDR[20]

99	PX25	GPIO 79	EBI - ADDR[9]	EIM - SCAN[6]	
101	PX26	GPIO 78	EBI - ADDR[8]	EIM - SCAN[7]	
103	PX27	GPIO 77	EBI - ADDR[7]	SPI0 - MISO	
105	PX28	GPIO 76	EBI - ADDR[6]	SPI0 - MOSI	
107	PX29	GPIO 75	EBI - ADDR[5]	SPI0 - SCK	
110	PX30	GPIO 74	EBI - ADDR[4]	SPI0 - NPCS[0]	
112	PX31	GPIO 73	EBI - ADDR[3]	SPI0 - NPCS[1]	
114	PX32	GPIO 72	EBI - ADDR[2]	SPI0 - NPCS[2]	
118	PX33	GPIO 71	EBI - ADDR[1]	SPI0 - NPCS[3]	
120	PX34	GPIO 70	EBI - ADDR[0]	SPI1 - MISO	
135	PX35	GPIO 105	EBI - DATA[15]	SPI1 - MOSI	
137	PX36	GPIO 104	EBI - DATA[14]	SPI1 - SCK	
140	PX37	GPIO 103	EBI - DATA[13]	SPI1 - NPCS[0]	
142	PX38	GPIO 102	EBI - DATA[12]	SPI1 - NPCS[1]	
144	PX39	GPIO 101	EBI - DATA[11]	SPI1 - NPCS[2]	

Table 10-9. GPIO Controller Function Multiplexing

10.8 Oscillator Pinout

The oscillators are not mapped to the normal A,B or C functions and their muxings are controlled by registers in the Power Manager (PM). Please refer to the power manager chapter for more information about this.

TQFP100 pin	VQFP144 pin	Pad	Oscillator pin
85	124	PC02	xin0
93	132	PC04	xin1
63	85	PC00	xin32
86	125	PC03	xout0
94	94 133		xout1
64	86	PC01	xout32

Table 10-10. Oscillator pinout

10.9 USART Configuration

Table 10-11.	USART Supported Mode
--------------	----------------------

	SPI	RS485	ISO7816	IrDA	Modem	Manchester Encoding
USART0	Yes	No	No	No	No	No
USART1	Yes	Yes	Yes	Yes	Yes	Yes
USART2	Yes	No	No	No	No	No
USART3	Yes	No	No	No	No	No

- Supports Mobile SDRAM Devices
- Error Detection
 - Refresh Error Interrupt
- SDRAM Power-up Initialization by Software
- CAS Latency of 1, 2, 3 Supported
- Auto Precharge Command Not Used

10.11.4 USB Controller

- USB 2.0 Compliant, Full-/Low-Speed (FS/LS) and On-The-Go (OTG), 12 Mbit/s
- 7 Pipes/Endpoints
- 960 bytes of Embedded Dual-Port RAM (DPRAM) for Pipes/Endpoints
- Up to 2 Memory Banks per Pipe/Endpoint (Not for Control Pipe/Endpoint)
- Flexible Pipe/Endpoint Configuration and Management with Dedicated DMA Channels
- On-Chip Transceivers Including Pull-Ups

10.11.5 Serial Peripheral Interface

- Supports communication with serial external devices
 - Four chip selects with external decoder support allow communication with up to 15 peripherals
 - Serial memories, such as DataFlash and 3-wire EEPROMs
 - Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
 - External co-processors
- Master or slave serial peripheral bus interface
 - 8- to 16-bit programmable data length per chip select
 - Programmable phase and polarity per chip select
 - Programmable transfer delays between consecutive transfers and between clock and data per chip select
 - Programmable delay between consecutive transfers
 - Selectable mode fault detection
- Very fast transfers supported
 - Transfers with baud rates up to Peripheral Bus A (PBA) max frequency
 - The chip select line may be left active to speed up transfers on the same device

10.11.6 Two-wire Interface

- High speed up to 400kbit/s
- · Compatibility with standard two-wire serial memory
- One, two or three bytes for slave address
- Sequential read/write operations

10.11.7 USART

- Programmable Baud Rate Generator
- 5- to 9-bit full-duplex synchronous or asynchronous serial communications
 - 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
 - Parity generation and error detection
 - Framing error detection, overrun error detection
 - MSB- or LSB-first
 - Optional break generation and detection
 - By 8 or by-16 over-sampling receiver frequency
 - Hardware handshaking RTS-CTS
 - Receiver time-out and transmitter timeguard
 - Optional Multi-drop Mode with address generation and detection

12. Electrical Characteristics

12.1 Absolute Maximum Ratings*

Operating Temperature40.C to +85.C
Storage Temperature60°C to +150°C
Voltage on Input Pin with respect to Ground except for PC00, PC01, PC02, PC03, PC04, PC050.3V to 5.5V
Voltage on Input Pin with respect to Ground for PC00, PC01, PC02, PC03, PC04, PC050.3V to 3.6V
Maximum Operating Voltage (VDDCORE, VDDPLL) 1.95V
Maximum Operating Voltage (VDDIO, VDDIN, VDDANA).3.6V
Total DC Output Current on all I/O Pin for TQFP100 package

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Min	Units
SDRAMC ₁₁	Address Change before SDCK Rising Edge	6.2	
SDRAMC ₁₂	Address Change after SDCK Rising Edge	2.2	
SDRAMC ₁₃	Bank Change before SDCK Rising Edge	6.3	
SDRAMC ₁₄	Bank Change after SDCK Rising Edge	2.4	
SDRAMC ₁₅	CAS Low before SDCK Rising Edge	7.4	
SDRAMC ₁₆	CAS High after SDCK Rising Edge	1.9	
SDRAMC ₁₇	DQM Change before SDCK Rising Edge	6.4]
SDRAMC ₁₈	DQM Change after SDCK Rising Edge	2.2	ns
SDRAMC ₁₉	D0-D15 in Setup before SDCK Rising Edge	9	
SDRAMC ₂₀	D0-D15 in Hold after SDCK Rising Edge	0	
SDRAMC ₂₃	SDWE Low before SDCK Rising Edge	7.6	
SDRAMC ₂₄	SDWE High after SDCK Rising Edge	1.8	
SDRAMC ₂₅	D0-D15 Out Valid before SDCK Rising Edge	7.1	
SDRAMC ₂₆	D0-D15 Out Valid after SDCK Rising Edge	1.5	

Table	12-28.	SDRAM (Clock	Signal.
				•

AT32UC3A

Figure 12-4. SDRAMC Signals relative to SDCK.

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. **Fix/Workaround** None.

15.2 Rev. J

15.2.1 PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel interrupt is enabled.

2. PWM counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period
- Consecutive periods are 0x0001, 0x0002, ..., period

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

15.2.2 ADC

1. Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

15.2.3 SPI

1. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

2. SPI FDIV option does not work

Selecting clock signal using FDIV = 1 does not work as specified.

Fix/Workaround

Do not set FDIV = 1.

3. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and NCPHA=0

When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't equal to 1, and CPOL=1 and CPHA=0, then an aditional pulse will be generated on SCK. **Fix/workaround**

When multiple CS are in use, if one of the baudrate equals 1, the other must also equal 1 if CPOL=1 and CPHA=0.

4. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or during the first transfer.

Fix/Workaround

- 1. Set slave mode, set required CPOL/CPHA.
- 2. Enable SPI.
- 3. Set the polarity CPOL of the line in the opposite value of the required one.
- 4. Set the polarity CPOL to the required one.
- 5. Read the RXHOLDING register.

Transfers can now befin and RXREADY will now behave as expected.

5. SPI Disable does not work in Slave mode Fix/workaround

Read the last received data then perform a Software reset.

15.3.4 Power Manager

1. If the BOD level is higher than VDDCORE, the part is constantly under reset

If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than VDDCORE max and disable the BOD.

15.3.5 Flashc

1. On AT32UC3A0512 and AT32UC3A1512, corrupted read in flash after FLASHC WP, EP, EA, WUP, EUP commands may happen

- After a FLASHC Write Page (WP) or Erase Page (EP) command applied to a page in a given half of the flash (first or last 256 kB of flash), reading (data read or code fetch) the other half of the flash may fail. This may lead to an exception or to other errors derived from this corrupted read access.

After a FLASHC Erase All (EA) command, reading (data read or code fetch) the flash may fail. This may lead to an exception or to other errors derived from this corrupted read access.
After a FLASHC Write User Page (WUP) or Erase User Page (EUP) command, reading (data read or code fetch) the second half (last 256 kB) of the flash may fail. This may lead to an exception or to other errors derived from this corrupted read access.

Fix/Workaround

Flashc WP, EP, EA, WUP, EUP commands: these commands must be issued from RAM or through the EBI. After these commands, read twice one flash page initialized to 00h in each half part of the flash.

15.3.6 PDCA

1. Wrong PDCA behavior when using two PDCA channels with the same PID.

15.4 Rev. H

15.4.1 PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel interrupt is enabled.

2. PWM counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period
- Consecutive periods are 0x0001, 0x0002, ..., period

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

15.4.2 ADC

1. Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

15.4.3 SPI

1. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

2. SPI FDIV option does not work

Selecting clock signal using FDIV = 1 does not work as specified.

Fix/Workaround

Do not set FDIV = 1

3. SPI disable does not work in SLAVE mode. Fix/Workaround

Read the last received data, then perform a Software Reset.

RETS behaves incorrectly when MPU is enabled and MPU is configured so that system stack is not readable in unprivileged mode.

Fix/Woraround

Workaround 1: Make system stack readable in unprivileged mode, or

Workaround 2: Return from supervisor mode using rete instead of rets. This requires :

1. Changing the mode bits from 001b to 110b before issuing the instruction. Updating the mode bits to the desired value must be done using a single mtsr instruction so it is done atomically. Even if this step is described in general as not safe in the UC technical reference guide, it is safe in this very specific case.

2. Execute the RETE instruction.

6. CPU Cycle Counter does not reset the COUNT system register on COMPARE match. The device revision E does not reset the COUNT system register on COMPARE match. In this revision, the COUNT register is clocked by the CPU clock, so when the CPU clock stops, so does incrementing of COUNT. Fix/Workaround

None.

7. Memory Protection Unit (MPU) is non functional. Fix/Workaround

Do not use the MPU.

8. The following alternate GPIO function C are not available in revE

MACB-WOL on GPIO9 (PA09), MACB-WOL on GPIO18 (PA18), USB-USB_ID on GPIO21 (PA21), USB-USB_VBOF on GPIO22 (PA22), and all function B and C on GPIO70 to GPIO101 (PX00 to PX39).

Fix/Workaround

Do not use these alternate B and C functions on the listed GPIO pins.

9. Clock connection table on Rev E

Here is the table of Rev E

Source	Name	Connection
Internal	TIMER_CLOCK1	32 KHz Oscillator
	TIMER_CLOCK2	PBA Clock / 4
	TIMER_CLOCK3	PBA Clock / 8
	TIMER_CLOCK4	PBA Clock / 16
	TIMER_CLOCK5	PBA Clock / 32
External	XC0	
	XC1	
	XC2	

Figure 15-1. Timer/Counter clock connections on RevE

10. Local Bus fast GPIO not available in RevE. Fix/Workaround

Do not use on this silicon revision.

11. Spurious interrupt may corrupt core SR mode to exception

If the rules listed in the chapter `Masking interrupt requests in peripheral modules' of the AVR32UC Technical Reference Manual are not followed, a spurious interrupt may occur. An interrupt context will be pushed onto the stack while the core SR mode will indicate an exception. A RETE instruction would then corrupt the stack.

Fix/Workaround

Follow the rules of the AVR32UC Technical Reference Manual. To increase software robustness, if an exception mode is detected at the beginning of an interrupt handler, change the stack interrupt context to an exception context and issue a RETE instruction.

Table of Contents

1	Description	3
2	Configuration Summary	4
3	Abbreviations	4
4	Blockdiagram	5
	4.1Processor and architecture	6
5	Signals Description	8
6	Package and Pinout	13
7	Power Considerations	17
	7.1Power Supplies	17
	7.2Voltage Regulator	18
	7.3Analog-to-Digital Converter (A.D.C) reference.	19
8	I/O Line Considerations	20
	8.1JTAG pins	20
	8.2RESET_N pin	20
	8.3TWI pins	20
	8.4GPIO pins	20
9	Memories	21
	9.1Embedded Memories	21
	9.2Physical Memory Map	21
	9.3Bus Matrix Connections	22
10	Peripherals	24
	10.1Peripheral address map	24
	10.2CPU Local Bus Mapping	25
	10.3Interrupt Request Signal Map	27
	10.4Clock Connections	29
	10.5Nexus OCD AUX port connections	30
	10.6PDC handshake signals	30
	10.7Peripheral Multiplexing on I/O lines	31
	10.8Oscillator Pinout	34
	10.9USART Configuration	34
	10.10GPIO	35

