

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	EBI/EMI, Ethernet, I ² C, SPI, SSC, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	109
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3a0512-alut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6. Package and Pinout

The device pins are multiplexed with peripheral functions as described in "Peripheral Multiplexing on I/O lines" on page 31.

Figure 6-1. TQFP100 Pinout

Table 6-1.TQFP100 Package Pinout

1	PB20
2	PB21
3	PB22
4	VDDIO
5	GND
6	PB23
7	PB24
8	PB25
9	PB26
10	PB27
11	VDDOUT
12	VDDIN
13	GND
14	PB28
15	PB29
16	PB30
17	PB31
18	RESET_N
19	PA00
20	PA01
21	GND
22	VDDCORE

PA05	
PA06	
PA07	
PA08	
PA09	
PA10	
N/C	
PA11	
VDDCORE	
GND	
PA12	
PA13	
VDDCORE	
PA14	
PA15	
PA16	
PA17	
PA18	
PA19	
PA20	
VBUS	
VDDIO	

51	PA21
52	PA22
53	PA23
54	PA24
55	PA25
56	PA26
57	PA27
58	PA28
59	VDDANA
60	ADVREF
61	GNDANA
62	VDDPLL
63	PC00
64	PC01
65	PB00
66	PB01
67	VDDIO
68	VDDIO
69	GND
70	PB02
71	PB03
72	PB04

76	PB08
77	PB09
78	PB10
79	VDDIO
80	GND
81	PB11
82	PB12
83	PA29
84	PA30
85	PC02
86	PC03
87	PB13
88	PB14
89	TMS
90	ТСК
91	TDO
92	TDI
93	PC04
94	PC05
95	PB15
96	PB16
97	VDDCORE

Port	Register	Mode	Local Bus Address	Access
3	Output Driver Enable Register (ODER)		0x4000_0340	Write-only
		SET	0x4000_0344	Write-only
		CLEAR	0x4000_0348	Write-only
		TOGGLE	0x4000_034C	Write-only
Output Value Register (OVR)	WRITE	0x4000_0350	Write-only	
	SET	0x4000_0354	Write-only	
		CLEAR	0x4000_0358	Write-only
		TOGGLE	0x4000_035C	Write-only
	Pin Value Register (PVR)	-	0x4000_0360	Read-only

 Table 10-2.
 Local bus mapped GPIO registers

10.3 Interrupt Request Signal Map

The various modules may output Interrupt request signals. These signals are routed to the Interrupt Controller (INTC), described in a later chapter. The Interrupt Controller supports up to 64 groups of interrupt requests. Each group can have up to 32 interrupt request signals. All interrupt signals in the same group share the same autovector address and priority level. Refer to the documentation for the individual submodules for a description of the semantics of the different interrupt requests.

The interrupt request signals are connected to the INTC as follows.

Group	Line	Module	Signal
0	0	AVR32 UC CPU with optional MPU and optional OCD	SYSBLOCK COMPARE
	0	External Interrupt Controller	EIC 0
	1	External Interrupt Controller	EIC 1
	2	External Interrupt Controller	EIC 2
	3	External Interrupt Controller	EIC 3
	4	External Interrupt Controller	EIC 4
1	5	External Interrupt Controller	EIC 5
	6	External Interrupt Controller	EIC 6
	7	External Interrupt Controller	EIC 7
	8	Real Time Counter	RTC
	9	Power Manager	PM
	10	Frequency Meter	FREQM

 Table 10-3.
 Interrupt Request Signal Map

	iterrupt itequest	Signal Map	
	0	General Purpose Input/Output	GPIO 0
	1	General Purpose Input/Output	GPIO 1
	2	General Purpose Input/Output	GPIO 2
	3	General Purpose Input/Output	GPIO 3
	4	General Purpose Input/Output	GPIO 4
	5	General Purpose Input/Output	GPIO 5
2	6	General Purpose Input/Output	GPIO 6
2	7	General Purpose Input/Output	GPIO 7
	8	General Purpose Input/Output	GPIO 8
	9	General Purpose Input/Output	GPIO 9
	10	General Purpose Input/Output	GPIO 10
	11	General Purpose Input/Output	GPIO 11
	12	General Purpose Input/Output	GPIO 12
	13	General Purpose Input/Output	GPIO 13
	0	Peripheral DMA Controller	PDCA 0
	1	Peripheral DMA Controller	PDCA 1
	2	Peripheral DMA Controller	PDCA 2
	3	Peripheral DMA Controller	PDCA 3
	4	Peripheral DMA Controller	PDCA 4
	5	Peripheral DMA Controller	PDCA 5
	6	Peripheral DMA Controller	PDCA 6
3	7	Peripheral DMA Controller	PDCA 7
	8	Peripheral DMA Controller	PDCA 8
	9	Peripheral DMA Controller	PDCA 9
	10	Peripheral DMA Controller	PDCA 10
	11	Peripheral DMA Controller	PDCA 11
	12	Peripheral DMA Controller	PDCA 12
	13	Peripheral DMA Controller	PDCA 13
	14	Peripheral DMA Controller	PDCA 14
4	0	Flash Controller	FLASHC
5	0	Universal Synchronous/Asynchronous Receiver/Transmitter	USART0
6	0	Universal Synchronous/Asynchronous Receiver/Transmitter	USART1
7	0	Universal Synchronous/Asynchronous Receiver/Transmitter	USART2
8	0	Universal Synchronous/Asynchronous Receiver/Transmitter	USART3

 Table 10-3.
 Interrupt Request Signal Map

10.4.3 SPIs

Each SPI can be connected to an internally divided clock:

SPI	Source	Name	Connection
0	Internal	CLK_DIV	PBA clock or
1			PBA clock / 32

10.5 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irrespectively of the PIO configuration. Two different OCD trace pin mappings are possible, depending on the configuration of the OCD AXS register. For details, see the AVR32 UC Technical Reference Manual.

Pin	AXS=0	AXS=1
EVTI_N	PB19	PA08
MDO[5]	PB16	PA27
MDO[4]	PB14	PA26
MDO[3]	PB13	PA25
MDO[2]	PB12	PA24
MDO[1]	PB11	PA23
MDO[0]	PB10	PA22
EVTO_N	PB20	PB20
МСКО	PB21	PA21
MSEO[1]	PB04	PA07
MSEO[0]	PB17	PA28

 Table 10-7.
 Nexus OCD AUX port connections

10.6 PDC handshake signals

The PDC and the peripheral modules communicate through a set of handshake signals. The following table defines the valid settings for the Peripheral Identifier (PID) in the PDC Peripheral Select Register (PSR).

Table TO-O. T DO TIAITOSTIARE OIGITAIS	
PID Value Peripheral module & direction	
0	ADC
1	SSC - RX
2	USART0 - RX
3	USART1 - RX

Table 10-8. PDC Handshake Signals

	T De l'handenake eignale
PID Value	Peripheral module & direction
4	USART2 - RX
5	USART3 - RX
6	TWI - RX
7	SPI0 - RX
8	SPI1 - RX
9	SSC - TX
10	USART0 - TX
11	USART1 - TX
12	USART2 - TX
13	USART3 - TX
14	TWI - TX
15	SPI0 - TX
16	SPI1 - TX
17	ABDAC

 Table 10-8.
 PDC Handshake Signals

10.7 Peripheral Multiplexing on I/O lines

Each GPIO line can be assigned to one of 3 peripheral functions; A, B or C. The following table define how the I/O lines on the peripherals A, B and C are multiplexed by the GPIO.

 Table 10-9.
 GPIO Controller Function Multiplexing

TQFP100	VQFP144	PIN	GPIO Pin	Function A	Function B	Function C
19	25	PA00	GPIO 0	USART0 - RXD	TC - CLK0	
20	27	PA01	GPIO 1	USART0 - TXD	TC - CLK1	
23	30	PA02	GPIO 2	USART0 - CLK	TC - CLK2	
24	32	PA03	GPIO 3	USART0 - RTS	EIM - EXTINT[4]	DAC - DATA[0]
25	34	PA04	GPIO 4	USART0 - CTS	EIM - EXTINT[5]	DAC - DATAN[0]
26	39	PA05	GPIO 5	USART1 - RXD	PWM - PWM[4]	
27	41	PA06	GPIO 6	USART1 - TXD	PWM - PWM[5]	
28	43	PA07	GPIO 7	USART1 - CLK	PM - GCLK[0]	SPI0 - NPCS[3]
29	45	PA08	GPIO 8	USART1 - RTS	SPI0 - NPCS[1]	EIM - EXTINT[7]
30	47	PA09	GPIO 9	USART1 - CTS	SPI0 - NPCS[2]	MACB - WOL
31	48	PA10	GPIO 10	SPI0 - NPCS[0]	EIM - EXTINT[6]	
33	50	PA11	GPIO 11	SPI0 - MISO	USB - USB_ID	
36	53	PA12	GPIO 12	SPI0 - MOSI	USB - USB_VBOF	
37	54	PA13	GPIO 13	SPI0 - SCK		
39	56	PA14	GPIO 14	SSC - TX_FRAME_SYNC	SPI1 - NPCS[0]	EBI - NCS[0]
40	57	PA15	GPIO 15	SSC - TX_CLOCK	SPI1 - SCK	EBI - ADDR[20]

10.10 GPIO

The GPIO open drain feature (GPIO ODMER register (Open Drain Mode Enable Register)) is not available for this device.

10.11 Peripheral overview

10.11.1 External Bus Interface

- Optimized for Application Memory Space support
- Integrates Two External Memory Controllers:
 - Static Memory Controller
 - SDRAM Controller
- Optimized External Bus:
 - 16-bit Data Bus
 - 24-bit Address Bus, Up to 16-Mbytes Addressable
 - Optimized pin multiplexing to reduce latencies on External Memories
- 4 SRAM Chip Selects, 1SDRAM Chip Select:
 - Static Memory Controller on NCS0
 - SDRAM Controller or Static Memory Controller on NCS1
 - Static Memory Controller on NCS2
 - Static Memory Controller on NCS3

10.11.2 Static Memory Controller

- 4 Chip Selects Available
- 64-Mbyte Address Space per Chip Select
- 8-, 16-bit Data Bus
- Word, Halfword, Byte Transfers
- Byte Write or Byte Select Lines
- Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
- Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
- Programmable Data Float Time per Chip Select
- Compliant with LCD Module
- External Wait Request
- Automatic Switch to Slow Clock Mode
- Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes

10.11.3 SDRAM Controller

- Numerous Configurations Supported
 - 2K, 4K, 8K Row Address Memory Parts
 - SDRAM with Two or Four Internal Banks
 - SDRAM with 16-bit Data Path
- Programming Facilities
 - Word, Half-word, Byte Access
 - Automatic Page Break When Memory Boundary Has Been Reached
 - Multibank Ping-pong Access
 - Timing Parameters Specified by Software
 - Automatic Refresh Operation, Refresh Rate is Programmable
- Energy-saving Capabilities
 - Self-refresh, Power-down and Deep Power Modes Supported

12.5 Power Consumption

The values in Table 12-9 and Table 12-10 on page 46 are measured values of power consumption with operating conditions as follows:

- $\bullet V_{DDIO} = 3.3V$
- • $V_{DDCORE} = V_{DDPLL} = 1.8V$
- •TA = 25° C, TA = 85° C
- •I/Os are configured in input, pull-up enabled.

Figure 12-1. Measurement setup

Table 12-21. Transfer Characteristics in 10	0-bit mode
---	------------

Parameter	Conditions	Min	Тур	Max	Units
Resolution			10		Bit
Absolute Accuracy	f=5MHz			3	LSB
Integral Non-linearity	f=5MHz		1.5	2	LSB
Differential Nep linearity	f=5MHz		1	2	LSB
Diferential Non-intearity	f=2.5MHz		0.6	1	LSB
Offset Error	f=5MHz	-2		2	LSB
Gain Error	f=5MHz	-2		2	LSB

12.9 EBI Timings

These timings are given for worst case process, T = 85·C, VDDCORE = 1.65V, VDDIO = 3V and 40 pF load capacitance.

Table 12-22.	SMC Clock Signal.
--------------	-------------------

Symbol	Parameter	Max ⁽¹⁾	Units
1/(t _{CPSMC})	SMC Controller Clock Frequency	1/(t _{cpcpu})	MHz

Note: 1. The maximum frequency of the SMC interface is the same as the max frequency for the HSB.

Table 12-23. SMC Read Signals with Hold Settings

Symbol	Parameter	Min	Units
	NRD C	ontrolled (READ_MODE = 1)	
SMC ₁	Data Setup before NRD High	12	
SMC ₂	Data Hold after NRD High	0	
SMC ₃	NRD High to NBS0/A0 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	
SMC ₄	NRD High to NBS1 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	
SMC ₅	NRD High to NBS2/A1 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	ns
SMC ₆	NRD High to NBS3 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	
SMC ₇	NRD High to A2 - A25 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	
SMC ₈	NRD High to NCS Inactive ⁽¹⁾	(nrd hold length - ncs rd hold length) * t_{CPSMC} - 2.3	
SMC ₉	NRD Pulse Width	nrd pulse length * t _{CPSMC} - 1.4	
	NRD C	ontrolled (READ_MODE = 0)	
SMC ₁₀	Data Setup before NCS High	11.5	
SMC ₁₁	Data Hold after NCS High	0	
SMC ₁₂	NCS High to NBS0/A0 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3	
SMC ₁₃	NCS High to NBS0/A0 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3	
SMC ₁₄	NCS High to NBS2/A1 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3	ns
SMC ₁₅	NCS High to NBS3 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3	
SMC ₁₆	NCS High to A2 - A25 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 4	
SMC ₁₇	NCS High to NRD Inactive ⁽¹⁾	ncs rd hold length - nrd hold length)* t _{CPSMC} - 1.3	
SMC ₁₈	NCS Pulse Width	ncs rd pulse length * t _{CPSMC} - 3.6	

Note: 1. hold length = total cycle duration - setup duration - pulse duration. "hold length" is for "ncs rd hold length" or "nrd hold length".

Symbol	Parameter	Min	Units
SDRAMC ₁₁	Address Change before SDCK Rising Edge	6.2	
SDRAMC ₁₂	Address Change after SDCK Rising Edge	2.2	
SDRAMC ₁₃	Bank Change before SDCK Rising Edge	6.3	
SDRAMC ₁₄	Bank Change after SDCK Rising Edge	2.4	
SDRAMC ₁₅	CAS Low before SDCK Rising Edge	7.4	
SDRAMC ₁₆	CAS High after SDCK Rising Edge	1.9	
SDRAMC ₁₇	DQM Change before SDCK Rising Edge	6.4]
SDRAMC ₁₈	DQM Change after SDCK Rising Edge	2.2	ns
SDRAMC ₁₉	D0-D15 in Setup before SDCK Rising Edge	9	
SDRAMC ₂₀	D0-D15 in Hold after SDCK Rising Edge	0	
SDRAMC ₂₃	SDWE Low before SDCK Rising Edge	7.6	
SDRAMC ₂₄	SDWE High after SDCK Rising Edge	1.8	
SDRAMC ₂₅	D0-D15 Out Valid before SDCK Rising Edge	7.1	
SDRAMC ₂₆	D0-D15 Out Valid after SDCK Rising Edge	1.5	

12.11 SPI Characteristics

15. Errata

All industrial parts labelled with -UES (engineering samples) are revision E parts.

15.1 Rev. K, L, M

15.1.1 PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel interrupt is enabled.

2. PWM counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period
- Consecutive periods are 0x0001, 0x0002, ..., period

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

15.1.2 ADC

1. Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

15.1.3 SPI

1. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

2. SPI FDIV option does not work

Selecting clock signal using FDIV = 1 does not work as specified.

Fix/Workaround

Do not set FDIV = 1.

3. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and NCPHA=0

When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't equal to 1, and CPOL=1 and CPHA=0, then an aditional pulse will be generated on SCK. **Fix/workaround**

When multiple CS are in use, if one of the baudrate equals 1, the other must also equal 1 if CPOL=1 and CPHA=0.

4. SPI Glitch on RXREADY flag in slave mode when enabling the SPI or during the first transfer

In slave mode, the SPI can generate a false RXREADY signal during enabling of the SPI or during the first transfer.

Fix/Workaround

1. Set slave mode, set required CPOL/CPHA.

- 2. Enable SPI.
- 3. Set the polarity CPOL of the line in the opposite value of the required one.
- 4. Set the polarity CPOL to the required one.
- 5. Read the RXHOLDING register.

Transfers can now befin and RXREADY will now behave as expected.

 SPI Disable does not work in Slave mode Fix/workaround Read the last received data then perform a Software reset.

15.1.4 Power Manager

If the BOD level is higher than VDDCORE, the part is constantly under reset
 If the BOD level is set to a value higher than VDDCORE and enabled by fuses, the part will
 be in constant reset.

Fix/Workaround

Apply an external voltage on VDDCORE that is higher than the BOD level and is lower than VDDCORE max and disable the BOD.

- 15.1.5 PDCA
- 1. Wrong PDCA behavior when using two PDCA channels with the same PID. Fix/Workaround

The same PID should not be assigned to more than one channel.

15.1.6 TWI

1. The TWI RXRDY flag in SR register is not reset when a software reset is performed. Fix/Workaround

After a Software Reset, the register TWI RHR must be read.

- 15.1.7 USART
- ISO7816 info register US_NER cannot be read The NER register always returns zero.
 Fix/Workaround None

15.1.8 Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp

15.2 Rev. J

15.2.1 PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel interrupt is enabled.

2. PWM counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period
- Consecutive periods are 0x0001, 0x0002, ..., period

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

15.2.2 ADC

1. Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

15.2.3 SPI

1. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

2. SPI FDIV option does not work

Selecting clock signal using FDIV = 1 does not work as specified.

Fix/Workaround

Do not set FDIV = 1.

3. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and NCPHA=0

When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't equal to 1, and CPOL=1 and CPHA=0, then an aditional pulse will be generated on SCK. **Fix/workaround**

None.

15.2.9 USART

 ISO7816 info register US_NER cannot be read The NER register always returns zero.
 Fix/Workaround None

15.2.10 Processor and Architecture

1. LDM instruction with PC in the register list and without ++ increments Rp For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12.

Fix/Workaround

None.

2. RETE instruction does not clear SREG[L] from interrupts.

The RETE instruction clears $\mbox{SREG}[L]$ as expected from exceptions. $\mbox{Fix/Workaround}$

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.

3. Exceptions when system stack is protected by MPU

RETS behaves incorrectly when MPU is enabled and MPU is configured so that system stack is not readable in unprivileged mode.

Fix/Woraround

Workaround 1: Make system stack readable in unprivileged mode, or

Workaround 2: Return from supervisor mode using rete instead of rets. This requires :

1. Changing the mode bits from 001b to 110b before issuing the instruction. Updating the mode bits to the desired value must be done using a single mtsr instruction so it is done atomically. Even if this step is described in general as not safe in the UC technical reference guide, it is safe in this very specific case.

2. Execute the RETE instruction.

15.3 Rev. I

15.3.1 PWM

1. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel interrupt is enabled.

2. PWM counter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period
- Consecutive periods are 0x0001, 0x0002, ..., period

3. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

15.3.2 ADC

1. Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

15.3.3 SPI

1. SPI Slave / PDCA transfer: no TX UNDERRUN flag

There is no TX UNDERRUN flag available, therefore in SPI slave mode, there is no way to be informed of a character lost in transmission.

Fix/Workaround

For PDCA transfer: none.

2. SPI FDIV option does not work

Selecting clock signal using FDIV = 1 does not work as specified.

Fix/Workaround

Do not set FDIV = 1.

3. SPI Bad Serial Clock Generation on 2nd chip_select when SCBR = 1, CPOL=1 and NCPHA=0

When multiple CS are in use, if one of the baudrate equals to 1 and one of the others doesn't equal to 1, and CPOL=1 and CPHA=0, then an aditional pulse will be generated on SCK. **Fix/workaround**

15.3.7	GPIO	Workaround/fix The same PID should not be assigned to more than one channel.
		 Some GPIO VIH (input high voltage) are 3.6V max instead of 5V tolerant Only 11 GPIOs remain 5V tolerant (VIHmax=5V):PB01, PB02, PB03, PB10, PB19, PB20, PB21, PB22, PB23, PB27, PB28. Workaround/fix None.
15.3.8	USART	
		 ISO7816 info register US_NER cannot be read The NER register always returns zero. Fix/Workaround None.
15.3.9	тwi	
		1. The TWI RXRDY flag in SR register is not reset when a software reset is performed. Fix/Workaround
15.3.10	SDRAMC	Aller a Soliwale Resel, the register 1 with that be read.
		1. Code execution from external SDRAM does not work Code execution from SDRAM does not work.
15 2 11	Brocossor an	Fix/Workaround Do not run code from SDRAM.
15.5.11		
		 LDM instruction with PC in the register list and without ++ increments Rp For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. Fix/Workaround None.
		 RETE instruction does not clear SREG[L] from interrupts. The RETE instruction clears SREG[L] as expected from exceptions. Fix/Workaround
		When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.
		 Exceptions when system stack is protected by MPU RETS behaves incorrectly when MPU is enabled and MPU is configured so that
		system stack is not readable in unprivileged mode. Fix/Woraround Warkeround 1: Make system stack readable in unprivileged mode
		or
		Workaround 2: Return from supervisor mode using rete instead of rets. This requires :
		1. Changing the mode bits from 001b to 110b before issuing the instruction. Updating the mode bits to the desired value must be done using a single mtsr

Updating the mode bits to the desired value must be done using a single m instruction so it is done atomically. Even if this step is described in general as not safe in the UC technical reference guide, it is safe in this very

15.5.14	OCD	 The RTC CLKEN bit (bit number 16) of CTRL register is not available. Fix/Workaround Do not use the CLKEN bit of the RTC on Rev E.
		 Stalled memory access instruction writeback fails if followed by a HW breakpoint. Consider the following assembly code sequence: A B If a hardware breakpoint is placed on instruction B, and instruction A is a memory access instruction, register file updates from instruction A can be discarded. Fix/Workaround Do not place hardware breakpoints, use software breakpoints instead. Alternatively, place a hardware breakpoint on the instruction before the memory access instruction and then single step over the memory access instruction.
15.5.15	PDCA	
		 Wrong PDCA behavior when using two PDCA channels with the same PID. Workaround/fix The same PID should not be assigned to more than one channel.
15.5.16	TWI	
		 The TWI RXRDY flag in SR register is not reset when a software reset is performed. Fix/Workaround After a Software Reset, the register TWI RHR must be read.

16.6 Rev. C - 10/07

- 1. Updated "Signal Description List" on page 8. Removed RXDN and TXDN from USART section.
- 2. Updated "Errata" on page 70. Rev G replaced by rev H.

16.7 Rev. B - 10/07

- 1. Updated "Features" on page 1.
- 2. Update "Blockdiagram" on page 4 with local bus.
- 3. Updated "Peripherals" on page 34 with local bus.
- 4. Add SPI feature in "Universial Synchronous/Asynchronous Receiver/Transmitter (USART)" on page 315.
- 5. Updated "USB On-The-Go Interface (USBB)" on page 517.
- 6. Updated "JTAG and Boundary Scan" on page 750 with programming procedure .
- 7. Add description for silicon Rev G.

16.8 Rev. A - 03/07

1. Initial revision.

	10.11Peripheral overview	
11	Boot Sequence	39
	11.1Starting of clocks	
	11.2Fetching of initial instructions	
12	Electrical Characteristics	40
	12.1Absolute Maximum Ratings*	40
	12.2DC Characteristics	41
	12.3Regulator characteristics	
	12.4Analog characteristics	42
	12.5Power Consumption	44
	12.6Clock Characteristics	46
	12.7Crystal Oscillator Characteristis	47
	12.8ADC Characteristics	49
	12.9EBI Timings	51
	12.10JTAG Timings	57
	12.11SPI Characteristics	58
	12.12MACB Characteristics	60
	12.13Flash Characteristics	62
13	Mechanical Characteristics	64
13	Mechanical Characteristics 13.1Thermal Considerations	64 64
13	Mechanical Characteristics	64 64 65
13	Mechanical Characteristics	64 64 65 68
13 14	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information	64 64 65
13 14	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information 14.1Automotive Quality Grade	
13 14 15	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information 14.1Automotive Quality Grade Errata	
13 14 15	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile 0rdering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M.	
13 14 15	Mechanical Characteristics	
13 14 15	Mechanical Characteristics	
13 14 15	Mechanical Characteristics	
13 14 15	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile 13.3Soldering Profile 0rdering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M. 15.2Rev. J 15.3Rev. I 15.4Rev. H 15.5Rev. E	
13 14 15 16	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile 13.3Soldering Profile 0rdering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M. 15.2Rev. J 15.3Rev. I 15.4Rev. H 15.5Rev. E	
13 14 15 16	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M. 15.2Rev. J 15.3Rev. I 15.4Rev. H 15.5Rev. E Datasheet Revision History 16.1Rev. K – 01/12	
13 14 15 16	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile Ordering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M. 15.2Rev. J 15.3Rev. I 15.4Rev. H 15.5Rev. E Datasheet Revision History 16.1Rev. K – 01/12 16.1Rev. H – 03/09	
13 14 15 16	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile 0rdering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M 15.2Rev. J 15.3Rev. I 15.4Rev. H 15.5Rev. E Datasheet Revision History 16.1Rev. K – 01/12 16.2Rev. G – 01/09	
13 14 15 16	Mechanical Characteristics 13.1Thermal Considerations 13.2Package Drawings 13.3Soldering Profile 0rdering Information 14.1Automotive Quality Grade Errata 15.1Rev. K,L,M 15.2Rev. J 15.3Rev. I 15.4Rev. H 15.5Rev. E Datasheet Revision History 16.1Rev. K – 01/12 16.2Rev. G – 01/09 16.3Rev. F – 08/08	